gemv_batch¶
Computes a group of gemv
operations.
Description¶
The gemv_batch
routines are batched versions of gemv, performing multiple gemv
operations in a single call.
Each gemv
operations perform a scalar-matrix-vector product and add the result to a scalar-vector product.
gemv_batch
supports the following precisions:
T |
---|
|
|
|
|
gemv_batch (Buffer Version)¶
Buffer version of gemv_batch
supports only strided API.
Strided API¶
Strided API operation is defined as:
for i = 0 … batch_size – 1
A is a matrix at offset i * stridea in a.
X and Y are vctors at offset i * stridex, i * stridey, in x and y.
Y = alpha * op(A) * X + beta * Y
end for
where:
op(
A
) is one of op(A
) =A
, or op(A
) =A
T, or op(A
) =A
Halpha
andbeta
are scalarsA
is matrix andX
andY
are vectors
For strided API, x
and y
buffers contain all the input vectors. The stride between vectors is either given by the stride parameters. Total number of vectors in x
and y
buffers is given by batch_size
parameter.
Syntax¶
namespace oneapi::mkl::blas::column_major {
void gemv_batch(sycl::queue &queue,
oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
std::int64_t stridea,
sycl::buffer<T,1> &x,
std::int64_t incx,
std::int64_t stridex,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size)
}
namespace oneapi::mkl::blas::row_major {
void gemv_batch(sycl::queue &queue,
oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
std::int64_t stridea,
sycl::buffer<T,1> &x,
std::int64_t incx,
std::int64_t stridex,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size)
}
Input Parameters¶
- queue
The queue where the routine should be executed.
- trans
Specifies op(
A
), the transposition operation applied to matricesA
. See Data Types for more details.- m
Number of rows of matrices op(
A
). Must be at least zero.- n
Number of columns of matrices op(
A
). Must be at least zero.- alpha
Scaling factor for matrix-vector product.
- a
The buffer holding input matrices
A
. Size of the buffer must be at leaststridea
*batch_size
.- lda
Leading dimension of matrices
A
. Must be positive and at leastm
if column major layout or at leastn
if row major layout is used.- stridea
Stride between two consecutive
A
matrices.- x
Buffer holding input vectors
X
. Size of the buffer must be at leaststridex
*batch_size
.- incx
Stride between two consecutive elements of
X
vectors.- stridex
Stride between two consecutive
X
vectors. Must be at least zero.- beta
Scaling factor for vectors
Y
.- y
Buffer holding input/output vectors
Y
. Size of the buffer must be at leaststridey
*batch_size
.- incy
Stride between two consecutive elements of
Y
vectors.- stridey
Stride between two consecutive
Y
vectors. Must be at least zero.- batch_size
Number of
gemv
computations to perform. Must be at least zero.
Output Parameters¶
- y
Output buffer overwritten by
batch_size
gemv
operations of the formalpha
* op(A
) *X
+beta
*Y
.
gemv_batch (USM Version)¶
USM version of gemv_batch
supports group API strided API.
Group API¶
Group API operation is defined as:
idx = 0
for i = 0 … group_count – 1
for j = 0 … group_size – 1
A is an m x n matrix in a[idx]
X and Y are vectors in x[idx] and y[idx]
Y = alpha[i] * op(A) * X + beta[i] * Y
idx = idx + 1
end for
end for
where:
op(
A
) is one of op(A
) =A
, or op(A
) =A
T, or op(A
) =A
Halpha
andbeta
are scalarsA
is matrix andX
andY
are vectors
For group API, x
and y
arrays contain the pointers for all the input vectors.
a
array contains the pointers to all input matrices.
The total number of vectors in x
and y
and matrices in a
is given by:
Syntax¶
namespace oneapi::mkl::blas::column_major {
sycl::event gemv_batch(sycl::queue &queue,
oneapi::mkl::transpose *trans,
std::int64_t *m,
std::int64_t *n,
T *alpha,
const T **a,
std::int64_t *lda,
const T **x,
std::int64_t *incx,
T *beta,
T **y,
std::int64_t *incy,
std::int64_t group_count,
std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})
}
namespace oneapi::mkl::blas::row_major {
sycl::event gemv_batch(sycl::queue &queue,
oneapi::mkl::transpose *trans,
std::int64_t *m,
std::int64_t *n,
T *alpha,
const T **a,
std::int64_t *lda,
const T **x,
std::int64_t *incx,
T *beta,
T **y,
std::int64_t *incy,
std::int64_t group_count,
std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})
}
Input Parameters¶
- queue
The queue where the routine should be executed.
- trans
Array of
group_count
oneapi::mkl::transpose
values.transa[i]
specifies op(A
), the transposition operation applied to matricesA
in groupi
. See Data Types for more details.- m
Array of
group_count
integers.m[i]
specifies number of rows of matrices op(A
) in groupi
. All entries must be at least zero.- n
Array of
group_count
integers.n[i]
specifies number of columns of matrices op(A
) in groupi
. All entries must be at least zero.- alpha
Array of
group_count
scalar elements.alpha[i]
specifies scaling factor for matrix-vector products in groupi
.- a
Array of
total_batch_count
pointers for input matricesA
. See Matrix Storage for more details.- lda
Array of
group_count
integers.lda[i]
specifies leading dimension of matricesA
in groupi
. Must be positive and at leastm[i]
if column major layout or at leastn[i]
if row major layout is used.- x
Array of
total_batch_count
pointers for input vectorsX
. See Matrix Storage for more details.- incx
Array of
group_count
integers.incx[i]
specifies stride of vectorsX
in groupi
.- beta
Array of
group_count
scalar elements.beta[i]
specifies scaling factor for vectorsY
in groupi
.- y
Array of
total_batch_count
pointers for input/output vectorsY
. See Matrix Storage for more details.- incy
Array of
group_count
integers.incy[i]
specifies stride of vectorsY
in groupi
.- group_count
Number of groups. Must be at least zero.
- group_size
Array of
group_count
integers.group_size[i]
specifies the number ofgemv
operations in groupi
. Each element ingroup_size
must be at least zero.- dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.
Output Parameters¶
- y
Array of pointers to output vectors
Y
overwritten bytotal_batch_count
gemv
operations of the formalpha
* op(A
) *X
+beta
*Y
.
Return Values¶
Output event to wait on to ensure computation is complete.
Examples¶
An example of how to use USM version of gemv_batch
can be found in oneMKL installation directory, under:
examples/dpcpp/blas/source/gemv_batch_usm.cpp
Strided API¶
Strided API operation is defined as:
for i = 0 … batch_size – 1
A is a matrix at offset i * stridea in a.
X and Y are vctors at offset i * stridex, i * stridey, in x and y.
Y = alpha * op(A) * X + beta * Y
end for
where:
op(
A
) is one of op(A
) =A
, or op(A
) =A
T, or op(A
) =A
Halpha
andbeta
are scalarsA
is matrix andX
andY
are vectors
For strided API, x
and y
arrays contain all the input vectors. The stride between vectors is given by the stride parameters. Total number of vectors in x
and y
arrays is given by batch_size
parameter.
Syntax¶
namespace oneapi::mkl::blas::column_major {
sycl::event gemv_batch(sycl::queue &queue,
oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
const T *a,
std::int64_t lda,
std::int64_t stridea,
const T *x,
std::int64_t incx,
std::int64_t stridex,
T beta,
T *y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size)
}
namespace oneapi::mkl::blas::row_major {
sycl::event gemv_batch(sycl::queue &queue,
oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
const T *a,
std::int64_t lda,
std::int64_t stridea,
const T *x,
std::int64_t incx,
std::int64_t stridex,
T beta,
T *y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size)
}
Input Parameters¶
- queue
The queue where the routine should be executed.
- trans
Specifies op(
A
), the transposition operation applied to matricesA
. See Data Types for more details.- m
Number of rows of matrices op(
A
). Must be at least zero.- n
Number of columns of matrices op(
A
). Must be at least zero.- alpha
Scaling factor for matrix-vector product.
- a
Pointer to input matrices
A
. Size of the array must be at leaststridea
*batch_size
.- lda
Leading dimension of matrices
A
. Must be positive and at leastm
if column major layout or at leastn
if row major layout is used.- stridea
Stride between two consecutive
A
matrices.- x
Pointer to input vectors
X
. Size of the array must be at leaststridex
*batch_size
.- incx
Stride between two consecutive elements of
X
vectors.- stridex
Stride between two consecutive
X
vectors. Must be at least zero.- beta
Scaling factor for vectors
Y
.- y
Pointer to input/output vectors
Y
. Size of the array must be at leaststridey
*batch_size
.- incy
Stride between two consecutive elements of
Y
vectors.- stridey
Stride between two consecutive
Y
vectors. Must be at least zero.- batch_size
Number of
gemv
computations to perform. Must be at least zero.- dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.
Output Parameters¶
- y
Pointer to output vectors
Y
overwritten bybatch_size
gemv
operations of the formalpha
* op(A
) *X
+beta
*Y
.
Return Values¶
Output event to wait on to ensure computation is complete.