Estimates normal, biased, and unbiased auto-correlation of a vector and stores the result in a second vector.
IppStatus ippsAutoCorr_32f(const Ipp32f* pSrc, int srcLen, Ipp32f* pDst, int dstLen);
IppStatus ippsAutoCorr_NormA_32f(const Ipp32f* pSrc, int srcLen, Ipp32f* pDst, int dstLen);
IppStatus ippsAutoCorr_NormB_32f(const Ipp32f* pSrc, int srcLen, Ipp32f* pDst, int dstLen);
IppStatus ippsAutoCorr_64f(const Ipp64f* pSrc, int srcLen, Ipp64f* pDst, int dstLen);
IppStatus ippsAutoCorr_NormA_64f(const Ipp64f* pSrc, int srcLen, Ipp64f* pDst, int dstLen);
IppStatus ippsAutoCorr_NormB_64f(const Ipp64f* pSrc, int srcLen, Ipp64f* pDst, int dstLen);
IppStatus ippsAutoCorr_32fc(const Ipp32fc* pSrc, int srcLen, Ipp32fc* pDst, int dstLen);
IppStatus ippsAutoCorr_NormA_32fc(const Ipp32fc* pSrc, int srcLen, Ipp32fc* pDst, int dstLen);
IppStatus ippsAutoCorr_NormB_32fc(const Ipp32fc* pSrc, int srcLen, Ipp32fc* pDst, int dstLen);
IppStatus ippsAutoCorr_64fc(const Ipp64fc* pSrc, int srcLen, Ipp64fc* pDst, int dstLen);
IppStatus ippsAutoCorr_NormA_64fc(const Ipp64fc* pSrc, int srcLen, Ipp64fc* pDst, int dstLen);
IppStatus ippsAutoCorr_NormB_64fc(const Ipp64fc* pSrc, int srcLen, Ipp64fc* pDst, int dstLen);
IppStatus ippsAutoCorr_16s_Sfs(const Ipp16s* pSrc, int srcLen, Ipp16s* pDst, int dstLen, int scaleFactor);
IppStatus ippsAutoCorr_NormA_16s_Sfs( const Ipp16s* pSrc, int srcLen, Ipp16s* pDst, int dstLen, int scaleFactor);
IppStatus ippsAutoCorr_NormB_16s_Sfs(const Ipp16s* pSrc, int srcLen, Ipp16s* pDst, int dstLen, int scaleFactor);
pSrc |
Pointer to the source vector. |
srcLen |
The number of elements in the source vector. |
pDst |
Pointer to the destination vector, which stores the estimated auto-correlation results of the source vector. |
dstLen |
The number of elements in the destination vector (length of auto-correlation). |
scaleFactor |
Scale factor, refer to Integer Scaling. |
The ippsAutoCorr function is declared in the ipps.h file. This function estimates normal auto-correlation of the srcLen-length source vector pSrc and stores the results in the dstLen-length vector pDst. Function flavors ippsAutoCorr_NormA and ippsAutoCorr_NormB compute biased and unbiased auto-correlation of the source vector, respectively. The resulting vector pDst is defined by the following equations:
where
The example below shows how to call the function ippsAutoCorr_NormB_32f.
The auto-correlation estimates are computed only for positive lags, since the auto-correlation for a negative lag value is the complex conjugate of the auto-correlation for the equivalent positive lag.
See also ippsCrossCorr that estimates the cross-correlation of two vectors.
ippStsNoErr |
Indicates no error. |
ippStsNullPtrErr |
Indicates an error when the pSrc or pDst pointer is NULL. |
ippStsSizeErr |
Indicates an error when srcLen or dstLen is less than or equal to 0. |
Copyright © 2000 - 2011, Intel Corporation. All rights reserved.