?gecon

Estimates the reciprocal of the condition number of a general matrix in the 1-norm or the infinity-norm.

Syntax

FORTRAN 77:

call sgecon( norm, n, a, lda, anorm, rcond, work, iwork, info )

call dgecon( norm, n, a, lda, anorm, rcond, work, iwork, info )

call cgecon( norm, n, a, lda, anorm, rcond, work, rwork, info )

call zgecon( norm, n, a, lda, anorm, rcond, work, rwork, info )

FORTRAN 95:

call gecon( a, anorm, rcond [,norm] [,info] )

C:

lapack_int LAPACKE_sgecon( int matrix_order, char norm, lapack_int n, const float* a, lapack_int lda, float anorm, float* rcond );

lapack_int LAPACKE_dgecon( int matrix_order, char norm, lapack_int n, const double* a, lapack_int lda, double anorm, double* rcond );

lapack_int LAPACKE_cgecon( int matrix_order, char norm, lapack_int n, const lapack_complex_float* a, lapack_int lda, float anorm, float* rcond );

lapack_int LAPACKE_zgecon( int matrix_order, char norm, lapack_int n, const lapack_complex_double* a, lapack_int lda, double anorm, double* rcond );

Include Files

Description

The routine estimates the reciprocal of the condition number of a general matrix A in the 1-norm or infinity-norm:

κ 1(A) =||A||1||A-1||1 = κ (AT) = κ (AH)

κ (A) =||A||||A-1|| = κ 1(AT) = κ 1(AH).

Before calling this routine:

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.

norm

CHARACTER*1. Must be '1' or 'O' or 'I'.

If norm = '1' or 'O', then the routine estimates the condition number of matrix A in 1-norm.

If norm = 'I', then the routine estimates the condition number of matrix A in infinity-norm.

n

INTEGER. The order of the matrix A; n 0.

a, work

REAL for sgecon

DOUBLE PRECISION for dgecon

COMPLEX for cgecon

DOUBLE COMPLEX for zgecon. Arrays: a(lda,*), work(*).

The array a contains the LU-factored matrix A, as returned by ?getrf. The second dimension of a must be at least max(1,n). The array work is a workspace for the routine.

The dimension of work must be at least max(1, 4*n) for real flavors and max(1, 2*n) for complex flavors.

anorm

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors. The norm of the original matrix A (see Description).

lda

INTEGER. The leading dimension of a; lda max(1, n).

iwork

INTEGER. Workspace array, DIMENSION at least max(1, n).

rwork

REAL for cgecon

DOUBLE PRECISION for zgecon.

Workspace array, DIMENSION at least max(1, 2*n).

Output Parameters

rcond

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal of the condition number. The routine sets rcond = 0 if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.

info

INTEGER. If info=0, the execution is successful.

If info = -i, the i-th parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gecon interface are as follows:

a

Holds the matrix A of size (n, n).

norm

Must be '1', 'O', or 'I'. The default value is '1'.

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than 10r. A call to this routine involves solving a number of systems of linear equations A*x = b or AH*x = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately 2*n2 floating-point operations for real flavors and 8*n2 for complex flavors.


Submit feedback on this help topic