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Motivation

Lie groups

Groups with a smooth structure, group operations smooth.

Very well-understood smooth manifolds.

Abstract nonsense: group objects in Man∞.

Essential for understanding symmetries in geometry and physics.

Example

Let V be a finite-dimensional real vector space.

1 Linear automorphisms of V form a general linear group GL(V ).

2 If g : V × V → R is a metric (pseudo-scalar product), a set of A
satisfying (g−1ATg)A = 1V forms the orthogonal group O(V , g).

3 If ω : V × V → R is a symplectic form, one gets the symplectic
group Sp(V , ω) in the same way.

Main goal: We want these examples in Z-graded geometry.
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Linear algebra

Definition

A graded vector space is a sequence V = (Vk)k∈Z of vector
spaces. We write v ∈ V and |v | = k , if v ∈ Vk for some k ∈ Z.
A graded linear map A : V → W of degree |A| is a sequence
A = (Ak)k∈Z, where Ak : Vk → Wk+|A|

We say that V is finite-dimensional, if
∑

k∈Z Vk <∞.

gVect - the category of real finite-dimensional graded vector spaces
and degree zero graded linear maps.
Lin(V ,W ) ∈ gVect - all graded linear maps from V to W .
We write gl(V ) := Lin(V ,V ).

Observation

gl(V ) together with the graded commutator

[A,B] := AB − (−1)|A||B|BA

forms a graded Lie algebra (of degree 0).
Jan Vysoký Graded Lie Groups with Examples 2 / 15



Linear algebra

Definition

A graded vector space is a sequence V = (Vk)k∈Z of vector
spaces. We write v ∈ V and |v | = k , if v ∈ Vk for some k ∈ Z.
A graded linear map A : V → W of degree |A| is a sequence
A = (Ak)k∈Z, where Ak : Vk → Wk+|A|

We say that V is finite-dimensional, if
∑

k∈Z Vk <∞.

gVect - the category of real finite-dimensional graded vector spaces
and degree zero graded linear maps.
Lin(V ,W ) ∈ gVect - all graded linear maps from V to W .
We write gl(V ) := Lin(V ,V ).

Observation

gl(V ) together with the graded commutator

[A,B] := AB − (−1)|A||B|BA

forms a graded Lie algebra (of degree 0).
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Definition

A degree ℓ metric on V ∈ gVect is bilinear g : V × V → R, such that

1 |g(v ,w)| = ℓ+ |v |+ |w |;
2 g(v ,w) = (−1)(|v |+ℓ)(|w |+ℓ)g(w , v);

3 the induced map g : V → V ∗ is an isomorphism.

V ∗ := Lin(V ,R) and R is viewed as a trivially graded GVS.

The involution

If g is a degree ℓ metric on V , we define τ : gl(V ) → gl(V ) by

τ(A) := (−1)|A|ℓg−1ATg .

1 τ is graded linear of degree 0;

2 τ 2 = 1gl(V ) and it thus has eigenvalues ±1;

3 Its eigenspace decomposition is gl(V ) = Sym(V , g)⊕ o(V , g)

Going from metric g to symplectic ω - add one minus in the definition
and relabel o(V , g) to sp(V , ω).
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Graded manifolds

Definition

Graded manifold M is a pair (M, C∞
M), where

1 M is a smooth manifold (underlying manifold, body of M)

2 C∞
M assigns to each U ∈ Op(M) a graded commutative associative

algebra C∞
M(U) of functions on M over U.

3 C∞
M has to form a sheaf - this is not important.

4 Locally there is something happening - this is not important.

Definition

There is a notion of a graded smooth map φ : M → N .

1 They can be associatively composed, there is the identity 1M;

2 There is an underlying smooth map φ : M → N.

3 Graded manifolds form a category gMan∞.

4 There is a body functor B : gMan∞ → Man∞.
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Diamond functor

M has a graded dimension gdim(M) = (nk)k∈Z, where nk is a
number of coordinates of degree k .

V ∈ gVect has a graded dimension gdim(V ) = (dim(Vk))k∈Z.

For any sequence (ak)k∈Z write ¬(ak)k∈Z := (a−k)k∈Z.

Proposition

1 For any V ∈ gVect, there is V⋄ ∈ gMan∞, such that

gdim(V⋄) = ¬ gdim(V ).

2 Underlying manifold is V0 with the usual smooth structure.

3 To any A : V → W of degree 0, there is A⋄ : V⋄ → W⋄.

4 We obtain a functor ⋄ : gVect → gMan∞.

To any basis (tλ)
n
λ=1 of V there are coordinates (zλ)nλ=1 on V⋄.

One has |zλ| = −|tλ|. This explains the “flip”.
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Graded Lie groups

Observation

gMan∞ has products M×N and a terminal object {∗}.

Definition

A graded Lie group is a group object (G, µ, ι, e) in gMan∞, that is
G ∈ gMan∞ and graded smooth maps

1 µ : G × G → G (the multiplication)

2 ι : G → G (the inverse)

3 e : {∗} → G (the unit)

Operations satisfy group axioms - formulated as commutative diagrams.

Proposition

To any graded Lie group G, there is an associated graded Lie algebra
(g, [·, ·]g), where g ∈ gVect is TeG.
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Functor of points

Observation

By applying the functor B, see that (G , µ, ι, e) is an ordinary Lie group.

Let G ∈ gMan∞ be fixed.

To each S ∈ gMan∞ assign a set P(S) = gMan∞(S,G).
S 7→ P(S) defines a functor of points P : (gMan∞)op → Set

Graded smooth maps µ, ι, e induce set maps
1 mS : P(S)×P(S) → P(S);
2 iS : P(S) → P(S);
3 eS : {∗} → P(S);

Proposition

G is a graded Lie group, iff (P(S),mS , iS , eS) is an ordinary group
(object in Set) for all S ∈ gMan∞.
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General linear group

Let V ∈ gVect. GL(V•) := {A ∈ gl(V )0 | A is invertible} is open.
Let GL(V ) := gl(V )⋄|GL(V•), an open submanifold of gl(V )⋄.

1 A map A⊗ B 7→ AB defines a degree zero linear map

β : gl(V )⊗R gl(V ) → gl(V ).

One can apply the ⋄ functor to get a graded smooth map

β⋄ : (gl(V )⊗R gl(V ))⋄ → gl(V )⋄

2 There is a canonical α⋄ : gl(V )⋄ × gl(V )⋄ → (gl(V )⊗R gl(V ))⋄
3 Let µ := α⋄ ◦ β⋄. It restricts to the appropriate open subsets, hence

µ : GL(V )× GL(V ) → GL(V ).

4 The unit e : {∗} → GL(V ) is defined to correspond to the choice of
a single point 1V ∈ GL(V•).
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ι : GL(V ) → GL(V ) can be constructed in coordinates.

Abstract nonsense saves the day for lazy people. For every
S ∈ gMan∞ consider a free C∞

S (S)-module

M(S) := C∞
S (S)⊗R V .

Define F(S) := Aut(M(S)) to be its set of module automorphisms.
This is obviously a group with operations m′

S , i
′
S and e′S .

Proposition

S 7→ F(S) defines a functor naturally isomorphic to P.
Under this isomorphism mS induced by µ corresponds to m′

S .

Proposition

Define iS : P(S) → P(S) to correspond to i′S . Yoneda lemma makes iS
induced by a unique ι : GL(V ) → GL(V ).
Since (P(S),mS , iS , eS) is a group, then so is (GL(V ), µ, ι, e).

The Lie algebra associated to GL(V ) is identified with (gl(V ), [·, ·]).
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Graded orthogonal group

Main goal: for any metric g of degree ℓ, construct a graded Lie group
O(V , g) and j : O(V , g) → GL(V ).

1 j is a closed embedding and a morphism of GLG’s.

2 Its Lie algebra can be identified with o(V , g) ⊆ gl(V ).

The construction closely follows the classical construction, albeit using
maybe more abstract wording.

1 Recall τ : gl(V ) → gl(V ). The induced map τ⋄ restricts to a map

τ× : GL(V ) → GL(V ).

This map is an anti-automorphism of GL(V ). Classically this
corresponds to τ(AB) = τ(B)τ(A).

2 There is a closed embedded submanifold Sym×(V , g) of GL(V ).
Unit of GL(V ) induces e× : {∗} → Sym×(V , g).
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3 Consider a map φ× := µ ◦ (τ×,1GL(V )) : GL(V ) → GL(V ). It lifts as

Sym×(V , g)

GL(V ) GL(V )

φ

φ×

.

Classicaly φ×(A) = τ(A)A = (g−1Ag)A is invertible and symmetric.
4 φ is transversal to e× : {∗} → Sym×(V , g) so we can form a

pullback diagram

O(V , g) {∗}

GL(V ) Sym×(V , g)

j e×

φ

Transversality means that 1V is a regular value of φ, we can thus
form the level set submanifold

O(V , g) = {A ∈ GL(V ) | (g−1Ag)A = 1V }.
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5 Group operations (µ′, ι′, e′) are constructed using the universal
property of pullback. The fact that τ× is anti-automorphism is
utilized. Group axioms are inherited from GL(V ). Hence
(O(V , g), µ′, ι′, e′) forms a graded orthogonal group.

One has τ(AB)(AB) = 1V and τ(A−1)A−1 = 1V for any
A,B ∈ O(V , g).

6 One has Te′(O(V , g)) ∼= ker(Teφ) ⊆ Te(GL(V )). Under the
identification gl(V ) ∼= Te(GL(V )), this corresponds to

{A ∈ gl(V ) | τ(A) = −A} ≡ o(V , g).

Tangent map to φ(A) = τ(A)A is (TAφ)(X ) = τ(X )A+ τ(A)X .
Evaluate at A = 1V and look at its kernel.

Observation

By replacing g with a symplectic form ω, the whole construction works in
the same way to give a graded symplectic group Sp(V , ω) with a
graded Lie algebra sp(V , ω).
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Functor of points II

For any S ∈ gMan∞, a metric g induces a C∞
S (S)-bilinear form

⟨·, ·⟩g : M(S)×M(S) → C∞
S (S).

It has degree ℓ and it is graded symmetric.

We can thus consider a subset F′(S) ⊆ Aut(M(S)) given by

F′(S) = {F ∈ Aut(M(S)) | ⟨F (ψ),F (ψ)⟩g = ⟨ψ,ψ′⟩g}

This agains defines a functor F′ : (gMan∞)op → Set.

Proposition

Let P′(S) := gMan∞(S,O(V , g)) be the functor of points associated to
O(V , g). Then there is a canonical natural isomorphism P′ ∼= F′.

This is how orthogonal supergroups are defined in the literature
(Manin). It is simple and elegant, but it takes a lot more effort to
extract explicit formulas.
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Isomorphisms

1 If M : V → W is a degree |M| isomorphism, the map

η(A) := (−1)|M||A|MAM−1

is a degree 0 linear isomorphism η : gl(V ) → gl(V ). η⋄ restricts to
an isomorphism η× : GL(V ) → GL(W ).

2 If |M| is even, a degree ℓ metric g and ℓ− 2|M| metric g ′ can be
related by M in the sense

g(v ,w) = g ′(M(v),M(w)).

η× restricts to an isomorphism η′ : O(V , g) → O(W , g ′).

3 If |M| is odd, g can be related to a degree ℓ− 2|M| symplectic form
ω′ in the sense

g(v ,w) = (−1)|M|(|v |+ℓ+1)ω′(M(v),M(w)).

η× restricts to an isomorphism η′ : O(V , g) → Sp(W , ω′).

Jan Vysoký Graded Lie Groups with Examples 14 / 15



Isomorphisms

1 If M : V → W is a degree |M| isomorphism, the map

η(A) := (−1)|M||A|MAM−1

is a degree 0 linear isomorphism η : gl(V ) → gl(V ). η⋄ restricts to
an isomorphism η× : GL(V ) → GL(W ).

2 If |M| is even, a degree ℓ metric g and ℓ− 2|M| metric g ′ can be
related by M in the sense

g(v ,w) = g ′(M(v),M(w)).

η× restricts to an isomorphism η′ : O(V , g) → O(W , g ′).

3 If |M| is odd, g can be related to a degree ℓ− 2|M| symplectic form
ω′ in the sense

g(v ,w) = (−1)|M|(|v |+ℓ+1)ω′(M(v),M(w)).

η× restricts to an isomorphism η′ : O(V , g) → Sp(W , ω′).
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Outlooks etc.

Soon to be published including the excruciatingly interesting
technical details.

To complete the classical collection, we need a special linear group
SL(V ) or something similar. There is no det : GL(V ) → R×, nor the
Berenzinian (as is in the supergeometry) yet.

It will be nice to utilize O(V , g) to define orthogonal frame bundles,
sphere bundles (or even spheres!).

Thank you for your attention!
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