Graded Lie Groups with Examples

Jan Vysoky

Cost Action CaLISTA General Meeting 2025
Corfu, 14-22 September 2025
Supported by GACR grant no. 24-10031K



Motivation

@ Groups with a smooth structure, group operations smooth.

@ Very well-understood smooth manifolds.
@ Abstract nonsense: group objects in Man™.

@ Essential for understanding symmetries in geometry and physics.
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Motivation

@ Groups with a smooth structure, group operations smooth.

@ Very well-understood smooth manifolds.
@ Abstract nonsense: group objects in Man™.

@ Essential for understanding symmetries in geometry and physics.

Let V be a finite-dimensional real vector space.
@ Linear automorphisms of V form a general linear group GL(V).

Q If g: V x V — R is a metric (pseudo-scalar product), a set of A
satisfying (g AT g)A = 1y forms the orthogonal group O(V, g).

Q Ifw:V xV — Ris a symplectic form, one gets the symplectic
group Sp(V,w) in the same way.
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Motivation

@ Groups with a smooth structure, group operations smooth.

@ Very well-understood smooth manifolds.
@ Abstract nonsense: group objects in Man™.

@ Essential for understanding symmetries in geometry and physics.

Let V be a finite-dimensional real vector space.
@ Linear automorphisms of V form a general linear group GL(V).

Q If g: V x V — R is a metric (pseudo-scalar product), a set of A
satisfying (g AT g)A = 1y forms the orthogonal group O(V, g).

Q Ifw:V xV — Ris a symplectic form, one gets the symplectic
group Sp(V,w) in the same way.

Main goal: We want these examples in Z-graded geometry.
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Linear algebra

o A graded vector space is a sequence V = (V) )kez of vector
spaces. We write v € V and |v| = k, if v € V for some k € Z.

e A graded linear map A: V — W of degree |A| is a sequence
A= (Ak)keZv where Ak . Vk — Wk+|A|

o We say that V is finite-dimensional, if >, ., Vi < oo.
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Linear algebra

o A graded vector space is a sequence V = (V) )kez of vector
spaces. We write v € V and |v| = k, if v € V for some k € Z.

e A graded linear map A: V — W of degree |A| is a sequence
A= (Ak)keZv where Ak . Vk — Wk+\A|

o We say that V is finite-dimensional, if >, ., Vi < oo.

e gVect - the category of real finite-dimensional graded vector spaces
and degree zero graded linear maps.

e Lin(V, W) € gVect - all graded linear maps from V to W.

e We write gl(V) := Lin(V, V).
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Linear algebra

o A graded vector space is a sequence V = (V) )kez of vector
spaces. We write v € V and |v| = k, if v € V for some k € Z.

e A graded linear map A: V — W of degree |A| is a sequence
A= (Ak)keZy where Ak 5 Vk — Wk+\A|

@ We say that V is finite-dimensional, if ZkeZ Vi < o0.

e gVect - the category of real finite-dimensional graded vector spaces
and degree zero graded linear maps.

e Lin(V, W) € gVect - all graded linear maps from V to W.

e We write gl(V) := Lin(V, V).

gl(V) together with the graded commutator
[A, B] .= AB — (—1)1AIBIBA

forms a graded Lie algebra (of degree 0).
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A degree ¢ metric on V € gVect is bilinear g : V x V — R, such that
Q [g(v,w)| =L+ |v[+|w];
Q z(v,w) = (=1)IVHOIWI+D g(w, v);
© the induced map g : V — V* is an isomorphism.

V* :=Lin(V,R) and R is viewed as a trivially graded GVS.
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A degree ¢ metric on V € gVect is bilinear g : V x V — R, such that
Q [g(v,w)| =L+ |v[+|w];
Q z(v,w) = (=1)IVHOIWI+D g(w, v);
© the induced map g : V — V* is an isomorphism.

V* :=Lin(V,R) and R is viewed as a trivially graded GVS.

If g is a degree £ metric on V/, we define 7 : gl(V) — gl(V) by

7(A) = (-1)Ag AT g,

@ 7 is graded linear of degree 0;
Q 2= ]lg[(v) and it thus has eigenvalues +1;
@ lts eigenspace decomposition is gl(V) = Sym(V, g) @ o(V, g)
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A degree ¢ metric on V € gVect is bilinear g : V x V — R, such that
Q [g(v,w)| =L+ |v[+|w];
Q z(v,w) = (=1)IVHOIWI+D g(w, v);
© the induced map g : V — V* is an isomorphism.

V* :=Lin(V,R) and R is viewed as a trivially graded GVS.

The involution

If g is a degree £ metric on V/, we define 7 : gl(V) — gl(V) by
T(A) = (=1)Alg1AT g
@ 7 is graded linear of degree 0;

Q 2= ]lg[(v) and it thus has eigenvalues +1;
@ lts eigenspace decomposition is gl(V) = Sym(V, g) @ o(V, g)

Going from metric g to symplectic w - add one minus in the definition
and relabel o(V/, g) to sp(V,w).
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Graded manifolds

Graded manifold M is a pair (M,C5), where
@ M is a smooth manifold (underlying manifold, body of M)

@ Cf; assigns to each U € Op(M) a graded commutative associative
algebra C35(U) of functions on M over U.

© Cf; has to form a sheaf - this is not important.

@ Locally there is something happening - this is not important.
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Graded manifolds

Graded manifold M is a pair (M,C5%), where
@ M is a smooth manifold (underlying manifold, body of M)

@ Cf; assigns to each U € Op(M) a graded commutative associative
algebra C35(U) of functions on M over U.

© Cf; has to form a sheaf - this is not important.

@ Locally there is something happening - this is not important.

There is a notion of a graded smooth map ¢ : M — N.
@ They can be associatively composed, there is the identity 1 ;
@ There is an underlying smooth map ¢ : M — N.
@ Graded manifolds form a category gMan®.
@ There is a body functor B : gMan> — Man.
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Diamond functor

@ M has a graded dimension gdim(M) = (nk)kez, where ny is a
number of coordinates of degree k.

e V € gVect has a graded dimension gdim(V) = (dim(Vx))kez.

@ For any sequence (ax)kez write =(ax)kez := (a—k)kez.
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Diamond functor

@ M has a graded dimension gdim(M) = (nk)kez, where ny is a
number of coordinates of degree k.

e V € gVect has a graded dimension gdim(V) = (dim(Vx))kez.

@ For any sequence (ax)kez write =(ax)kez := (a—k)kez.

Q For any V € gVect, there is V,, € gMan®, such that
gdim(V,) = —gdim(V).

@ Underlying manifold is Viy with the usual smooth structure.

Q@ Toany A:V — W of degree 0, there is A, : V, — W,.

@ We obtain a functor ¢ : gVect — gMan®°.
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Diamond functor

@ M has a graded dimension gdim(M) = (nk)kez, where ny is a
number of coordinates of degree k.

e V € gVect has a graded dimension gdim(V) = (dim(Vx))kez.

@ For any sequence (ax)kez write =(ax)kez := (a—k)kez.

Q For any V € gVect, there is V,, € gMan®, such that
gdim(V,) = —gdim(V).

@ Underlying manifold is Viy with the usual smooth structure.

Q@ Toany A:V — W of degree 0, there is A, : V, — W,.

@ We obtain a functor ¢ : gVect — gMan®°.

e To any basis (t,)7_, of V there are coordinates (z*)j_, on V.
One has |7}| = —|t\|. This explains the “flip".
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Graded Lie groups

gMan™ has products M x N and a terminal object {x}.

Jan Vysoky Graded Lie Groups with Examples



Graded Lie groups

gMan™ has products M x N and a terminal object {x}.

Definition

A graded Lie group is a group object (G, p, ¢, €) in gMan®™, that is
G € gMan® and graded smooth maps

Q 11:G x G — G (the multiplication)

@ . : G — G (the inverse)

Q e: {x} — G (the unit)

Operations satisfy group axioms - formulated as commutative diagrams.
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Graded Lie groups

gMan™ has products M x N and a terminal object {x}.

A graded Lie group is a group object (G, p, ¢, €) in gMan®™, that is
G € gMan® and graded smooth maps

Q 11:G x G — G (the multiplication)
@ . : G — G (the inverse)
Q e: {x} — G (the unit)

Operations satisfy group axioms - formulated as commutative diagrams.

Proposition

To any graded Lie group G, there is an associated graded Lie algebra
(9,[,]g), where g € gVect is T.G.
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Functor of points

By applying the functor B, see that (G, u, ., e) is an ordinary Lie group.
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Functor of points

By applying the functor B, see that (G, u, ., e) is an ordinary Lie group.

o Let G € gMan®™ be fixed.

@ To each S € gMan®™ assign a set P(S) = gMan™ (S, G).

e S — PB(S) defines a functor of points P : (gMan™)°? — Set
o Graded smooth maps p, ¢, e induce set maps

Q ms : P(S) x P(S) — B(S);
Q is : P(S) = B(S):
Q es: {x} = P(S);
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Functor of points

By applying the functor B, see that (G, u, ., e) is an ordinary Lie group.

o Let G € gMan®™ be fixed.

@ To each S € gMan®™ assign a set P(S) = gMan™ (S, G).

e S — PB(S) defines a functor of points P : (gMan™)°? — Set
o Graded smooth maps p, ¢, e induce set maps

Q ms : P(S) x P(S) — B(S);
Q is : P(S) = B(S):
Q es: {x} = P(S);

G is a graded Lie group, iff (PB(S), ms,is,es) is an ordinary group
(object in Set) for all S € gMan™.
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General linear group

Let V € gVect. GL(V,) := {A € gl(V)o | A is invertible} is open.
Let GL(V) := gl(V),|cL(v.), an open submanifold of gl(V),,.
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General linear group

Let V € gVect. GL(V,) := {A € gl(V)o | A is invertible} is open.
Let GL(V) := gl(V),|cL(v.), an open submanifold of gl(V),,.

@ A map A® B+ AB defines a degree zero linear map
B gl(V) @r gl(V) — gl(V).
One can apply the ¢ functor to get a graded smooth map

Bo : (gl(V) @r gl(V)), — al(V),
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General linear group

Let V € gVect. GL(V,) := {A € gl(V)o | A is invertible} is open.
Let GL(V) := gl(V),|cL(v.), an open submanifold of gl(V),,.

@ A map A® B+ AB defines a degree zero linear map
B al(V) @r gl(V) — gl(V).
One can apply the ¢ functor to get a graded smooth map
Bo - (al(V) @& gl(V)), — gl (V),

@ There is a canonical a, : gl(V), x gl(V), — (gl(V) @r gl(V)),
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General linear group

Let V € gVect. GL(V,) := {A € gl(V)o | A is invertible} is open.
Let GL(V) := gl(V),|cL(v.), an open submanifold of gl(V),,.

@ A map A® B+ AB defines a degree zero linear map
B al(V) @r gl(V) — gl(V).
One can apply the ¢ functor to get a graded smooth map
Bo - (al(V) @& gl(V)), — gl (V),

@ There is a canonical a, : gl(V), x gl(V), — (gl(V) @r gl(V)),
Q Let = o, 0 . It restricts to the appropriate open subsets, hence

1 GL(V) x GL(V) = GL(V).
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General linear group

Let V € gVect. GL(V,) := {A € gl(V)o | A is invertible} is open.
Let GL(V) := gl(V),|cL(v.), an open submanifold of gl(V),,.

@ A map A® B+ AB defines a degree zero linear map
B al(V) @r gl(V) — gl(V).
One can apply the ¢ functor to get a graded smooth map
Bo - (al(V) @& gl(V)), — gl (V),

@ There is a canonical a, : gl(V), x gl(V), — (gl(V) @r gl(V)),
Q Let = o, 0 . It restricts to the appropriate open subsets, hence

1 GL(V) x GL(V) = GL(V).

@ The unit e: {*x} — GL(V) is defined to correspond to the choice of
a single point 1y € GL(V,).
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e —
@ ¢ : GL(V) — GL(V) can be constructed in coordinates.
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e —
@ ¢ : GL(V) — GL(V) can be constructed in coordinates.

@ Abstract nonsense saves the day for lazy people. For every
S € gMan™ consider a free CZ(S)-module

M(S) = C5°(S) @r V.

Jan Vysoky Graded Lie Groups with Examples 9/15



e —
@ ¢ : GL(V) — GL(V) can be constructed in coordinates.

@ Abstract nonsense saves the day for lazy people. For every
S € gMan™ consider a free CZ(S)-module

M(S) = C5°(S) @r V.

o Define F(S) := Aut(M(S)) to be its set of module automorphisms.
This is obviously a group with operations m’, i's and €.
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e —
@ ¢ : GL(V) — GL(V) can be constructed in coordinates.

@ Abstract nonsense saves the day for lazy people. For every
S € gMan™ consider a free CZ(S)-module

M(S) = C5°(S) @r V.

o Define F(S) := Aut(M(S)) to be its set of module automorphisms.
This is obviously a group with operations m’, i's and €.

Proposition

S — F(S) defines a functor naturally isomorphic to .
Under this isomorphism mgs induced by . corresponds to m's.
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@ ¢ : GL(V) — GL(V) can be constructed in coordinates.
@ Abstract nonsense saves the day for lazy people. For every
S € gMan™ consider a free CZ(S)-module
M(S) :=C(S) ®r V.

o Define F(S) := Aut(M(S)) to be its set of module automorphisms.
This is obviously a group with operations m’, i's and €.

S — F(S) defines a functor naturally isomorphic to .
Under this isomorphism mgs induced by . corresponds to m's.

Proposition

Define is : B(S) — P(S) to correspond to ils. Yoneda lemma makes is
induced by a unique ¢ : GL(V) — GL(V).

Since (P(S), ms,is,es) is a group, then so is (GL(V), i, ¢, €).
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@ ¢ : GL(V) — GL(V) can be constructed in coordinates.
@ Abstract nonsense saves the day for lazy people. For every
S € gMan™ consider a free CZ(S)-module
M(S) :=C(S) ®r V.

o Define F(S) := Aut(M(S)) to be its set of module automorphisms.
This is obviously a group with operations m’, i's and €.

S — F(S) defines a functor naturally isomorphic to .
Under this isomorphism mgs induced by . corresponds to m's.

Proposition

Define is : B(S) — P(S) to correspond to ils. Yoneda lemma makes is
induced by a unique ¢ : GL(V) — GL(V).
Since (P(S), ms,is,es) is a group, then so is (GL(V), i, ¢, €).

@ The Lie algebra associated to GL(V) is identified with (gl(V), [, ]).
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Graded orthogonal group

Main goal: for any metric g of degree ¢, construct a graded Lie group
O(V,g) and j: O(V,g) — GL(V).

@ , is a closed embedding and a morphism of GLG's.

@ lts Lie algebra can be identified with o(V/, g) C gl(V).

The construction closely follows the classical construction, albeit using
maybe more abstract wording.
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Graded orthogonal group

Main goal: for any metric g of degree ¢, construct a graded Lie group
O(V,g) and j: O(V,g) — GL(V).

@ , is a closed embedding and a morphism of GLG's.

@ lts Lie algebra can be identified with o(V/, g) C gl(V).

The construction closely follows the classical construction, albeit using
maybe more abstract wording.

@ Recall 7: gl(V) — gl(V). The induced map 7, restricts to a map
7% GL(V) = GL(V).

This map is an anti-automorphism of GL(V). Classically this
corresponds to 7(AB) = 7(B)7(A).
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Graded orthogonal group

Main goal: for any metric g of degree ¢, construct a graded Lie group
O(V,g) and j: O(V,g) — GL(V).

@ , is a closed embedding and a morphism of GLG's.

@ lts Lie algebra can be identified with o(V/, g) C gl(V).

The construction closely follows the classical construction, albeit using
maybe more abstract wording.

@ Recall 7: gl(V) — gl(V). The induced map 7, restricts to a map
7% GL(V) = GL(V).

This map is an anti-automorphism of GL(V). Classically this
corresponds to 7(AB) = 7(B)7(A).

@ There is a closed embedded submanifold Sym™(V/, g) of GL(V).
Unit of GL(V) induces e* : {x} — Sym™(V, g).
This is just a submanifold of invertible symmetric matrices. 1y is
symmetric and invertible.
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e —
© Consider a map ™ := po (7%, Lgy(v)) : GL(V) — GL(V). It lifts as

Sym*(V,g)

X

GL(V) —2— GL(V)

6

S}

Classicaly p*(A) = 7(A)A = (g 1Ag)A is invertible and symmetric.
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e —
© Consider a map ™ := po (7%, Lgy(v)) : GL(V) — GL(V). It lifts as

Sym*(V,g)

X

GL(V) —2— GL(V)

6

S}

Classicaly p*(A) = 7(A)A = (g 1Ag)A is invertible and symmetric.
@ o is transversal to X : {x} — Sym™(V, g) so we can form a
pullback diagram

Transversality means that 1 is a regular value of ¢, we can thus
form the level set submanifold

O(V.g) = {A€GL(V) | (g Ag)A = Lv}.
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© Group operations (1, 1/, ') are constructed using the universal
property of pullback. The fact that 7 is anti-automorphism is
utilized. Group axioms are inherited from GL(V). Hence
(O(V,g), 1,/ €' forms a graded orthogonal group.

One has 7(AB)(AB) = 1y and 7(A"1)A~! = 1y for any
A BeO(V,g).
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© Group operations (1, 1/, ') are constructed using the universal
property of pullback. The fact that 7 is anti-automorphism is
utilized. Group axioms are inherited from GL(V). Hence
(O(V,g), 1,/ €' forms a graded orthogonal group.
One has 7(AB)(AB) = 1y and 7(A"1)A~! = 1y for any
A BeO(V,g).

@ One has T/ (0O(V, g)) = ker(Tep) C Te(GL(V)). Under the
identification gl(V) = T.(GL(V)), this corresponds to

{Acal(V)|7(A) = -A}=0o(V,g).

Tangent map to p(A) = 7(A)Ais (Tap)(X) = 7(X)A+ 7(A)X.
Evaluate at A= 1y and look at its kernel.
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© Group operations (1, 1/, ') are constructed using the universal
property of pullback. The fact that 7 is anti-automorphism is
utilized. Group axioms are inherited from GL(V). Hence
(O(V,g), 1,/ €' forms a graded orthogonal group.
One has 7(AB)(AB) = 1y and 7(A"1)A~! = 1y for any
A BeO(V,g).

@ One has T/ (0O(V, g)) = ker(Tep) C Te(GL(V)). Under the
identification gl(V) = T.(GL(V)), this corresponds to

{Acal(V)|7(A) = -A}=0o(V,g).

Tangent map to p(A) = 7(A)Ais (Tap)(X) = 7(X)A+ T(A)X.
Evaluate at A= 1y and look at its kernel.

Observation

By replacing g with a symplectic form w, the whole construction works in
the same way to give a graded symplectic group Sp(V,w) with a
graded Lie algebra sp(V,w).
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Functor of points Il

e For any S € gMan™, a metric g induces a CZ(S)-bilinear form
(5 )g - M(S) x M(S) — C(5).

It has degree ¢ and it is graded symmetric.
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Functor of points Il

e For any S € gMan™, a metric g induces a CZ(S)-bilinear form
(5 )g - M(S) x M(S) — C(5).

It has degree ¢ and it is graded symmetric.
@ We can thus consider a subset §F'(S) C Aut(9(S)) given by

§'(8) = {F € Aut(M(S)) | (F(¢), F(v))g = (¥, ¢")g}

This agains defines a functor § : (gMan®)°P — Set.

Jan Vysoky Graded Lie Groups with Examples



Functor of points Il

e For any S € gMan™, a metric g induces a CZ(S)-bilinear form
(5 )g - M(S) x M(S) — C(5).

It has degree ¢ and it is graded symmetric.
@ We can thus consider a subset §F'(S) C Aut(9(S)) given by

§'(8) = {F € Aut(M(S)) | (F(¢), F(v))g = (¥, ¢")g}
This agains defines a functor § : (gMan®)°P — Set.

Let P'(S) := gMan®°(S,0(V, g)) be the functor of points associated to
O(V,g). Then there is a canonical natural isomorphism B3’ = §'.
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Functor of points Il

e For any S € gMan™, a metric g induces a CZ(S)-bilinear form
(5 )g - M(S) x M(S) — C(5).

It has degree ¢ and it is graded symmetric.
@ We can thus consider a subset §F'(S) C Aut(9(S)) given by

§'(8) = {F € Aut(M(S)) | (F(¢), F(v))g = (¥, ¢")g}
This agains defines a functor § : (gMan®)°P — Set.

Let P'(S) := gMan®°(S,0(V, g)) be the functor of points associated to
O(V,g). Then there is a canonical natural isomorphism B3’ = §'.

@ This is how orthogonal supergroups are defined in the literature
(Manin). It is simple and elegant, but it takes a lot more effort to
extract explicit formulas.
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Isomorphisms

Q If M:V — W is a degree |M| isomorphism, the map
n(A) = (-1)MIAImapm—1

is a degree 0 linear isomorphism 7 : gl(V) — gl(V). n, restricts to
an isomorphism n* : GL(V) — GL(W).
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Isomorphisms

Q If M:V — W is a degree |M| isomorphism, the map
n(A) = (-1)MIAImapm—1

is a degree 0 linear isomorphism 7 : gl(V) — gl(V). n, restricts to
an isomorphism n* : GL(V) — GL(W).

@ If [M] is even, a degree ¢ metric g and £ — 2| M| metric g’ can be
related by M in the sense

g(v,w) = g'(M(v), M(w)).

7 restricts to an isomorphism 1’ : O(V,g) — O(W, g’).
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Isomorphisms

Q If M:V — W is a degree |M| isomorphism, the map
n(A) = (-1)MIAImapm—1

is a degree 0 linear isomorphism 7 : gl(V) — gl(V). n, restricts to
an isomorphism n* : GL(V) — GL(W).

@ If [M] is even, a degree ¢ metric g and £ — 2| M| metric g’ can be
related by M in the sense

g(v,w) = g'(M(v), M(w)).

7 restricts to an isomorphism 1’ : O(V,g) — O(W, g’).
@ If [M] is odd, g can be related to a degree £ — 2|M| symplectic form
w’ in the sense

g(v,w) = (=1)MI"HEDS (M(v), M(w)).

N restricts to an isomorphism 7' : O(V, g) — Sp(W,w").
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Outlooks etc.

@ Soon to be published including the excruciatingly interesting
technical details.

@ To complete the classical collection, we need a special linear group
SL(V) or something similar. There is no det : GL(V) — R*, nor the
Berenzinian (as is in the supergeometry) yet.

o It will be nice to utilize O(V, g) to define orthogonal frame bundles,
sphere bundles (or even spheres!).
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Outlooks etc.

@ Soon to be published including the excruciatingly interesting
technical details.

@ To complete the classical collection, we need a special linear group
SL(V) or something similar. There is no det : GL(V) — R*, nor the
Berenzinian (as is in the supergeometry) yet.

o It will be nice to utilize O(V, g) to define orthogonal frame bundles,
sphere bundles (or even spheres!).

Thank you for your attention!
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