Graded Lie Groups with Examples

Jan Vysoký

Cost Action CaLISTA General Meeting 2025 Corfu, 14-22 September 2025 Supported by GAČR grant no. 24-10031K

Motivation

Lie groups

- Groups with a smooth structure, group operations smooth.
- Very well-understood smooth manifolds.
- Abstract nonsense: group objects in Man^{∞} .
- Essential for understanding symmetries in geometry and physics.

Example

Let V be a finite-dimensional real vector space.

- ① Linear automorphisms of V form a general linear group GL(V).
- ② If $g: V \times V \to \mathbb{R}$ is a metric (pseudo-scalar product), a set of A satisfying $(g^{-1}A^Tg)A = \mathbb{1}_V$ forms the **orthogonal group** O(V,g).
- ① If $\omega: V \times V \to \mathbb{R}$ is a symplectic form, one gets the **symplectic** group $\mathsf{Sp}(V,\omega)$ in the same way.

Main goal: We want these examples in \mathbb{Z} -graded geometry.

Motivation

Lie groups

- Groups with a smooth structure, group operations smooth.
- Very well-understood smooth manifolds.
- Abstract nonsense: group objects in Man^{∞} .
- Essential for understanding symmetries in geometry and physics.

Example

Let V be a finite-dimensional real vector space.

- **1** Linear automorphisms of V form a **general linear group** GL(V).
- ② If $g: V \times V \to \mathbb{R}$ is a metric (pseudo-scalar product), a set of A satisfying $(g^{-1}A^Tg)A = \mathbb{1}_V$ forms the **orthogonal group** O(V,g).
- ① If $\omega: V \times V \to \mathbb{R}$ is a symplectic form, one gets the **symplectic** group $\operatorname{Sp}(V,\omega)$ in the same way.

Main goal: We want these examples in \mathbb{Z} -graded geometry.

Motivation

Lie groups

- Groups with a smooth structure, group operations smooth.
- Very well-understood smooth manifolds.
- Abstract nonsense: group objects in Man^{∞} .
- Essential for understanding symmetries in geometry and physics.

Example

Let V be a finite-dimensional real vector space.

- **1** Linear automorphisms of V form a **general linear group** GL(V).
- ② If $g: V \times V \to \mathbb{R}$ is a metric (pseudo-scalar product), a set of A satisfying $(g^{-1}A^Tg)A = \mathbb{1}_V$ forms the **orthogonal group** O(V,g).
- ① If $\omega: V \times V \to \mathbb{R}$ is a symplectic form, one gets the **symplectic** group $\operatorname{Sp}(V,\omega)$ in the same way.

Main goal: We want these examples in \mathbb{Z} -graded geometry.

Linear algebra

Definition

- A graded vector space is a sequence $V = (V_k)_{k \in \mathbb{Z}}$ of vector spaces. We write $v \in V$ and |v| = k, if $v \in V_k$ for some $k \in \mathbb{Z}$.
- A graded linear map $A: V \to W$ of degree |A| is a sequence $A = (A_k)_{k \in \mathbb{Z}}$, where $A_k: V_k \to W_{k+|A|}$
- We say that V is finite-dimensional, if $\sum_{k \in \mathbb{Z}} V_k < \infty$.
- gVect the category of real finite-dimensional graded vector spaces and degree zero graded linear maps.
- $\underline{\text{Lin}}(V, W) \in \mathbf{gVect}$ all graded linear maps from V to W.
- We write $\mathfrak{gl}(V) := \underline{\operatorname{Lin}}(V, V)$.

Observation

 $\mathfrak{gl}(V)$ together with the graded commutator

$$[A, B] := AB - (-1)^{|A||B|}BA$$

forms a graded Lie algebra (of degree 0).

Linear algebra

Definition

- A graded vector space is a sequence $V = (V_k)_{k \in \mathbb{Z}}$ of vector spaces. We write $v \in V$ and |v| = k, if $v \in V_k$ for some $k \in \mathbb{Z}$.
- A graded linear map $A: V \to W$ of degree |A| is a sequence $A = (A_k)_{k \in \mathbb{Z}}$, where $A_k: V_k \to W_{k+|A|}$
- We say that V is finite-dimensional, if $\sum_{k \in \mathbb{Z}} V_k < \infty$.
- **gVect** the category of *real finite-dimensional* graded vector spaces and *degree zero* graded linear maps.
- $\underline{\text{Lin}}(V, W) \in \mathbf{gVect}$ all graded linear maps from V to W.
- We write $\mathfrak{gl}(V) := \underline{\operatorname{Lin}}(V, V)$.

Observation

 $\mathfrak{gl}(V)$ together with the graded commutator

$$[A, B] := AB - (-1)^{|A||B|}BA$$

forms a graded Lie algebra (of degree 0).

Linear algebra

Definition

- A graded vector space is a sequence $V = (V_k)_{k \in \mathbb{Z}}$ of vector spaces. We write $v \in V$ and |v| = k, if $v \in V_k$ for some $k \in \mathbb{Z}$.
- A graded linear map $A: V \to W$ of degree |A| is a sequence $A = (A_k)_{k \in \mathbb{Z}}$, where $A_k: V_k \to W_{k+|A|}$
- We say that V is finite-dimensional, if $\sum_{k \in \mathbb{Z}} V_k < \infty$.
- **gVect** the category of *real finite-dimensional* graded vector spaces and *degree zero* graded linear maps.
- $\underline{\text{Lin}}(V, W) \in \mathbf{gVect}$ all graded linear maps from V to W.
- We write $\mathfrak{gl}(V) := \underline{\operatorname{Lin}}(V, V)$.

Observation

 $\mathfrak{gl}(V)$ together with the graded commutator

$$[A, B] := AB - (-1)^{|A||B|}BA$$

forms a graded Lie algebra (of degree 0).

Definition

A degree ℓ metric on $V \in \mathbf{gVect}$ is bilinear $g: V \times V \to \mathbb{R}$, such that

- **3** the induced map $g: V \to V^*$ is an isomorphism.

 $V^* := \underline{\operatorname{Lin}}(V, \mathbb{R})$ and \mathbb{R} is viewed as a trivially graded GVS.

The involution

If g is a degree ℓ metric on V, we define $\tau:\mathfrak{gl}(V)\to\mathfrak{gl}(V)$ by

$$\tau(A) := (-1)^{|A|\ell} g^{-1} A^T g.$$

- \bullet τ is graded linear of degree 0;
- ② $\tau^2 = \mathbb{1}_{\mathfrak{al}(V)}$ and it thus has eigenvalues ± 1 ;
- ① Its eigenspace decomposition is $\mathfrak{gl}(V) = \operatorname{Sym}(V, g) \oplus \mathfrak{o}(V, g)$

Going from metric g to symplectic ω - add one minus in the definition and relabel $\mathfrak{o}(V,g)$ to $\mathfrak{sp}(V,\omega)$.

Definition

A degree ℓ metric on $V \in \mathbf{gVect}$ is bilinear $g: V \times V \to \mathbb{R}$, such that

- $g(v,w) = (-1)^{(|v|+\ell)(|w|+\ell)}g(w,v);$
- **1** the induced map $g: V \to V^*$ is an isomorphism.

 $V^* := \underline{\operatorname{Lin}}(V, \mathbb{R})$ and \mathbb{R} is viewed as a trivially graded GVS.

The involution

If g is a degree ℓ metric on V, we define $\tau: \mathfrak{gl}(V) \to \mathfrak{gl}(V)$ by

$$\tau(A) := (-1)^{|A|\ell} g^{-1} A^T g.$$

- τ is graded linear of degree 0;
- ② $\tau^2 = \mathbb{1}_{\mathfrak{al}(V)}$ and it thus has eigenvalues ± 1 ;
- lacktriangledisplays Its eigenspace decomposition is $\mathfrak{gl}(V) = \mathsf{Sym}(V,g) \oplus \mathfrak{o}(V,g)$

Going from metric g to **symplectic** ω - add one minus in the definition and relabel $\mathfrak{o}(V,g)$ to $\mathfrak{sp}(V,\omega)$.

Definition

A degree ℓ metric on $V \in \mathbf{gVect}$ is bilinear $g: V \times V \to \mathbb{R}$, such that

- **3** the induced map $g: V \to V^*$ is an isomorphism.

 $V^* := \underline{\operatorname{Lin}}(V, \mathbb{R})$ and \mathbb{R} is viewed as a trivially graded GVS.

The involution

If g is a degree ℓ metric on V, we define $\tau: \mathfrak{gl}(V) \to \mathfrak{gl}(V)$ by

$$\tau(A) := (-1)^{|A|\ell} g^{-1} A^T g.$$

- τ is graded linear of degree 0;
- ② $\tau^2 = \mathbb{1}_{\mathfrak{al}(V)}$ and it thus has eigenvalues ± 1 ;
- **1** Its eigenspace decomposition is $\mathfrak{gl}(V) = \operatorname{\mathsf{Sym}}(V,g) \oplus \mathfrak{o}(V,g)$

Going from metric g to **symplectic** ω - add one minus in the definition and relabel $\mathfrak{o}(V,g)$ to $\mathfrak{sp}(V,\omega)$.

Graded manifolds

Definition

Graded manifold \mathcal{M} is a pair $(M, \mathcal{C}_{\mathcal{M}}^{\infty})$, where

- $lacksquare{1}{0}$ M is a smooth manifold (underlying manifold, body of \mathcal{M})
- ② $\mathcal{C}^{\infty}_{\mathcal{M}}$ assigns to each $U \in \mathbf{Op}(M)$ a graded commutative associative algebra $\mathcal{C}^{\infty}_{\mathcal{M}}(U)$ of functions on \mathcal{M} over U.
- \circ $\mathcal{C}^{\infty}_{\mathcal{M}}$ has to form a sheaf this is not important.
- Locally there is something happening this is not important.

Definition

There is a notion of a **graded smooth map** $\varphi : \mathcal{M} \to \mathcal{N}$.

- ① They can be associatively composed, there is the identity $1_{\mathcal{M}}$;
- ② There is an underlying smooth map $\varphi: M \to N$.
- \odot Graded manifolds form a category \mathbf{gMan}^{∞}
- **1** There is a body functor $\mathfrak{B}: \mathbf{gMan}^{\infty} \to \mathbf{Man}^{\infty}$.

Graded manifolds

Definition

Graded manifold \mathcal{M} is a pair $(M, \mathcal{C}_{\mathcal{M}}^{\infty})$, where

- lacksquare M is a smooth manifold (underlying manifold, body of \mathcal{M})
- ② $\mathcal{C}_{\mathcal{M}}^{\infty}$ assigns to each $U \in \mathbf{Op}(M)$ a graded commutative associative algebra $\mathcal{C}_{\mathcal{M}}^{\infty}(U)$ of functions on \mathcal{M} over U.
- \circ $\mathcal{C}^{\infty}_{\mathcal{M}}$ has to form a sheaf this is not important.
- Locally there is something happening this is not important.

Definition

There is a notion of a **graded smooth map** $\varphi : \mathcal{M} \to \mathcal{N}$.

- **1** They can be associatively composed, there is the identity $\mathbb{1}_{\mathcal{M}}$;
- ② There is an underlying smooth map $\varphi: M \to N$.
- **3** Graded manifolds form a category $gMan^{\infty}$.
- **1** There is a body functor $\mathfrak{B}: \mathbf{gMan}^{\infty} \to \mathbf{Man}^{\infty}$.

Diamond functor

- \mathcal{M} has a graded dimension $gdim(\mathcal{M}) = (n_k)_{k \in \mathbb{Z}}$, where n_k is a number of coordinates of degree k.
- $V \in \mathbf{gVect}$ has a graded dimension $\mathrm{gdim}(V) = (\dim(V_k))_{k \in \mathbb{Z}}$.
- For any sequence $(a_k)_{k\in\mathbb{Z}}$ write $\neg(a_k)_{k\in\mathbb{Z}}:=(a_{-k})_{k\in\mathbb{Z}}$.

Proposition

- For any $V \in \mathbf{gVect}$, there is $V_{\diamond} \in \mathbf{gMan}^{\infty}$, such that $\operatorname{gdim}(V_{\diamond}) = \neg \operatorname{gdim}(V)$.
- ② Underlying manifold is V_0 with the usual smooth structure.
- **3** To any $A: V \to W$ of degree 0, there is $A_{\diamond}: V_{\diamond} \to W_{\diamond}$.
- **9** We obtain a functor \diamond : $\mathbf{gVect} \to \mathbf{gMan}^{\infty}$.
 - To any basis $(t_{\lambda})_{\lambda=1}^{n}$ of V there are coordinates $(\mathbb{Z}^{\lambda})_{\lambda=1}^{n}$ on V_{\diamond} . One has $|\mathbb{Z}^{\lambda}| = -|t_{\lambda}|$. This explains the "flip".

Diamond functor

- \mathcal{M} has a graded dimension $gdim(\mathcal{M}) = (n_k)_{k \in \mathbb{Z}}$, where n_k is a number of coordinates of degree k.
- $V \in \mathbf{gVect}$ has a graded dimension $gdim(V) = (dim(V_k))_{k \in \mathbb{Z}}$.
- For any sequence $(a_k)_{k\in\mathbb{Z}}$ write $\neg(a_k)_{k\in\mathbb{Z}}:=(a_{-k})_{k\in\mathbb{Z}}$.

Proposition

- For any $V \in \mathbf{gVect}$, there is $V_{\diamond} \in \mathbf{gMan}^{\infty}$, such that $\operatorname{gdim}(V_{\diamond}) = \neg \operatorname{gdim}(V)$.
- ② Underlying manifold is V_0 with the usual smooth structure.
- **3** To any $A: V \to W$ of degree 0, there is $A_{\diamond}: V_{\diamond} \to W_{\diamond}$.
- **9** We obtain a functor \diamond : $\mathbf{gVect} \to \mathbf{gMan}^{\infty}$.
 - To any basis $(t_{\lambda})_{\lambda=1}^{n}$ of V there are coordinates $(\mathbb{Z}^{\lambda})_{\lambda=1}^{n}$ on V_{\diamond} . One has $|\mathbb{Z}^{\lambda}| = -|t_{\lambda}|$. This explains the "flip".

Diamond functor

- \mathcal{M} has a graded dimension $gdim(\mathcal{M}) = (n_k)_{k \in \mathbb{Z}}$, where n_k is a number of coordinates of degree k.
- $V \in \mathbf{gVect}$ has a graded dimension $gdim(V) = (dim(V_k))_{k \in \mathbb{Z}}$.
- For any sequence $(a_k)_{k\in\mathbb{Z}}$ write $\neg(a_k)_{k\in\mathbb{Z}}:=(a_{-k})_{k\in\mathbb{Z}}$.

Proposition

- For any $V \in \mathbf{gVect}$, there is $V_{\diamond} \in \mathbf{gMan}^{\infty}$, such that $\operatorname{gdim}(V_{\diamond}) = \neg \operatorname{gdim}(V)$.
- ② Underlying manifold is V_0 with the usual smooth structure.
- **3** To any $A: V \to W$ of degree 0, there is $A_{\diamond}: V_{\diamond} \to W_{\diamond}$.
- **9** We obtain a functor \diamond : $\mathbf{gVect} \to \mathbf{gMan}^{\infty}$.
 - To any basis $(t_{\lambda})_{\lambda=1}^{n}$ of V there are coordinates $(\mathbb{Z}^{\lambda})_{\lambda=1}^{n}$ on V_{\diamond} . One has $|\mathbb{Z}^{\lambda}| = -|t_{\lambda}|$. This explains the "flip".

Graded Lie groups

Observation

 \mathbf{gMan}^{∞} has products $\mathcal{M} \times \mathcal{N}$ and a terminal object $\{*\}$.

Definition

A graded Lie group is a group object $(\mathcal{G}, \mu, \iota, e)$ in gMan^{∞}, that is $\mathcal{G} \in \mathbf{gMan}^{\infty}$ and graded smooth maps

- \bullet $\mu: \mathcal{G} \times \mathcal{G} \to \mathcal{G}$ (the multiplication)
- ② $\iota: \mathcal{G} \to \mathcal{G}$ (the inverse)
- $\bullet: \{*\} \rightarrow \mathcal{G} \text{ (the unit)}$

Operations satisfy group axioms - formulated as commutative diagrams.

Proposition

To any graded Lie group \mathcal{G} , there is an associated graded Lie algebra $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}})$, where $\mathfrak{g} \in \mathbf{gVect}$ is $T_{e}\mathcal{G}$.

Graded Lie groups

Observation

gMan^{∞} has products $\mathcal{M} \times \mathcal{N}$ and a terminal object $\{*\}$.

Definition

A graded Lie group is a group object $(\mathcal{G}, \mu, \iota, e)$ in \mathbf{gMan}^{∞} , that is $\mathcal{G} \in \mathbf{gMan}^{\infty}$ and graded smooth maps

 \bullet $\mu: \mathcal{G} \times \mathcal{G} \to \mathcal{G}$ (the multiplication)

 $\iota: \mathcal{G} \to \mathcal{G}$ (the inverse)

 $\bullet: \{*\} \rightarrow \mathcal{G}$ (the unit)

Operations satisfy group axioms - formulated as commutative diagrams.

Proposition

To any graded Lie group \mathcal{G} , there is an associated graded Lie algebra $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}})$, where $\mathfrak{g} \in \mathbf{gVect}$ is $T_{e}\mathcal{G}$.

Graded Lie groups

Observation

gMan^{∞} has products $\mathcal{M} \times \mathcal{N}$ and a terminal object $\{*\}$.

Definition

A graded Lie group is a group object $(\mathcal{G}, \mu, \iota, e)$ in \mathbf{gMan}^{∞} , that is $\mathcal{G} \in \mathbf{gMan}^{\infty}$ and graded smooth maps

- \bullet $\mu: \mathcal{G} \times \mathcal{G} \to \mathcal{G}$ (the multiplication)
- $\iota: \mathcal{G} \to \mathcal{G}$ (the inverse)
- \bullet $e: \{*\} \rightarrow \mathcal{G}$ (the unit)

Operations satisfy group axioms - formulated as commutative diagrams.

Proposition

To any graded Lie group \mathcal{G} , there is an associated graded Lie algebra $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}})$, where $\mathfrak{g} \in \mathbf{gVect}$ is $T_e \mathcal{G}$.

Functor of points

Observation

By applying the functor \mathfrak{B} , see that $(G, \mu, \underline{\iota}, \underline{e})$ is an ordinary Lie group.

- Let $\mathcal{G} \in \mathbf{gMan}^{\infty}$ be fixed.
- To each $S \in gMan^{\infty}$ assign a set $\mathfrak{P}(S) = gMan^{\infty}(S, \mathcal{G})$.
- ullet $\mathcal{S}\mapsto \mathfrak{P}(\mathcal{S})$ defines a functor of points $\mathfrak{P}:(\mathbf{gMan}^\infty)^{\mathsf{op}}\to \mathbf{Set}$
- Graded smooth maps μ , ι , e induce set maps

 - \bullet \bullet \circ : $\{*\} \rightarrow \mathfrak{P}(S);$

Proposition

 $\mathcal G$ is a graded Lie group, iff $(\mathfrak P(\mathcal S), m_{\mathcal S}, i_{\mathcal S}, e_{\mathcal S})$ is an ordinary group (object in **Set**) for all $\mathcal S \in gMan^{\infty}$.

Functor of points

Observation

By applying the functor \mathfrak{B} , see that $(G, \underline{\mu}, \underline{\iota}, \underline{e})$ is an ordinary Lie group.

- Let $\mathcal{G} \in \mathbf{gMan}^{\infty}$ be fixed.
- To each $S \in \mathbf{gMan}^{\infty}$ assign a set $\mathfrak{P}(S) = \mathbf{gMan}^{\infty}(S, \mathcal{G})$.
- $\bullet \ \mathcal{S} \mapsto \mathfrak{P}(\mathcal{S}) \ \text{defines a functor of points} \ \mathfrak{P} : (\mathbf{gMan}^{\infty})^{\mathsf{op}} \to \mathbf{Set}$
- Graded smooth maps μ , ι , e induce set maps

 - $\mathbf{0}$ $\mathbf{i}_{\mathcal{S}}:\mathfrak{P}(\mathcal{S})\to\mathfrak{P}(\mathcal{S});$

Proposition

 $\mathcal G$ is a graded Lie group, iff $(\mathfrak P(\mathcal S), \mathbf m_{\mathcal S}, \mathbf i_{\mathcal S}, \mathbf e_{\mathcal S})$ is an ordinary group (object in **Set**) for all $\mathcal S \in \mathbf{gMan}^{\infty}$.

Functor of points

Observation

By applying the functor \mathfrak{B} , see that $(G, \mu, \underline{\iota}, \underline{e})$ is an ordinary Lie group.

- Let $\mathcal{G} \in \mathbf{gMan}^{\infty}$ be fixed.
- To each $S \in \mathbf{gMan}^{\infty}$ assign a set $\mathfrak{P}(S) = \mathbf{gMan}^{\infty}(S, \mathcal{G})$.
- $\bullet \ \mathcal{S} \mapsto \mathfrak{P}(\mathcal{S}) \ \text{defines a functor of points} \ \mathfrak{P} : (\mathbf{gMan}^{\infty})^{\mathsf{op}} \to \mathbf{Set}$
- Graded smooth maps μ , ι , e induce set maps

 - $\mathbf{0}$ $\mathbf{i}_{\mathcal{S}}:\mathfrak{P}(\mathcal{S})\to\mathfrak{P}(\mathcal{S});$

Proposition

 $\mathcal G$ is a graded Lie group, iff $(\mathfrak P(\mathcal S), m_{\mathcal S}, i_{\mathcal S}, e_{\mathcal S})$ is an ordinary group (object in **Set**) for all $\mathcal S \in gMan^{\infty}$.

Let $V \in \mathbf{gVect}$. $\mathrm{GL}(V_{\bullet}) := \{A \in \mathfrak{gl}(V)_0 \mid A \text{ is invertible}\}\$ is open. Let $\mathrm{GL}(V) := \mathfrak{gl}(V)_{\diamond}|_{\mathrm{GL}(V_{\bullet})}$, an open submanifold of $\mathfrak{gl}(V)_{\diamond}$.

① A map $A \otimes B \mapsto AB$ defines a degree zero linear map

$$\beta: \mathfrak{gl}(V) \otimes_{\mathbb{R}} \mathfrak{gl}(V) \to \mathfrak{gl}(V).$$

One can apply the \diamond functor to get a graded smooth map

$$eta_\diamond: \left(\mathfrak{gl}(V) \otimes_{\mathbb{R}} \mathfrak{gl}(V)
ight)_\diamond o \mathfrak{gl}(V)_\diamond$$

- ① Let $\mu := \alpha_{\diamond} \circ \beta_{\diamond}$. It restricts to the appropriate open subsets, hence

$$\mu: \mathsf{GL}(V) \times \mathsf{GL}(V) \to \mathsf{GL}(V)$$

The unit e: {*} → GL(V) is defined to correspond to the choice of a single point 1_V ∈ GL(V_•).

Let $V \in \mathbf{gVect}$. $\mathrm{GL}(V_{\bullet}) := \{A \in \mathfrak{gl}(V)_0 \mid A \text{ is invertible}\}\$ is open. Let $\mathrm{GL}(V) := \mathfrak{gl}(V)_{\diamond}|_{\mathrm{GL}(V_{\bullet})}$, an open submanifold of $\mathfrak{gl}(V)_{\diamond}$.

1 A map $A \otimes B \mapsto AB$ defines a degree zero linear map

$$\beta:\mathfrak{gl}(V)\otimes_{\mathbb{R}}\mathfrak{gl}(V)\to\mathfrak{gl}(V).$$

One can apply the \diamond functor to get a graded smooth map

$$\beta_{\diamond}: (\mathfrak{gl}(V) \otimes_{\mathbb{R}} \mathfrak{gl}(V))_{\diamond} \to \mathfrak{gl}(V)_{\diamond}$$

- ① Let $\mu := \alpha_{\diamond} \circ \beta_{\diamond}$. It restricts to the appropriate open subsets, hence

$$\mu: \mathsf{GL}(V) \times \mathsf{GL}(V) \to \mathsf{GL}(V).$$

• The unit $e: \{*\} \to \mathsf{GL}(V)$ is defined to correspond to the choice of a single point $\mathbb{1}_V \in \mathsf{GL}(V_{\bullet})$.

Let $V \in \mathbf{gVect}$. $\mathrm{GL}(V_{\bullet}) := \{A \in \mathfrak{gl}(V)_0 \mid A \text{ is invertible}\}\$ is open. Let $\mathrm{GL}(V) := \mathfrak{gl}(V)_{\diamond}|_{\mathrm{GL}(V_{\bullet})}$, an open submanifold of $\mathfrak{gl}(V)_{\diamond}$.

1 A map $A \otimes B \mapsto AB$ defines a degree zero linear map

$$\beta:\mathfrak{gl}(V)\otimes_{\mathbb{R}}\mathfrak{gl}(V)\to\mathfrak{gl}(V).$$

One can apply the \diamond functor to get a graded smooth map

$$\beta_{\diamond}: (\mathfrak{gl}(V) \otimes_{\mathbb{R}} \mathfrak{gl}(V))_{\diamond} \to \mathfrak{gl}(V)_{\diamond}$$

- $\textcircled{ There is a canonical } \alpha_{\diamond}: \mathfrak{gl}(V)_{\diamond} \times \mathfrak{gl}(V)_{\diamond} \rightarrow (\mathfrak{gl}(V) \otimes_{\mathbb{R}} \mathfrak{gl}(V))_{\diamond}$
- ① Let $\mu := \alpha_{\diamond} \circ \beta_{\diamond}$. It restricts to the appropriate open subsets, hence

$$\mu: \mathsf{GL}(V) \times \mathsf{GL}(V) \to \mathsf{GL}(V).$$

• The unit $e: \{*\} \to \mathsf{GL}(V)$ is defined to correspond to the choice of a single point $\mathbb{1}_V \in \mathsf{GL}(V_{\bullet})$.

Let $V \in \mathbf{gVect}$. $\mathrm{GL}(V_{\bullet}) := \{A \in \mathfrak{gl}(V)_0 \mid A \text{ is invertible}\}\$ is open. Let $\mathrm{GL}(V) := \mathfrak{gl}(V)_{\diamond}|_{\mathrm{GL}(V_{\bullet})}$, an open submanifold of $\mathfrak{gl}(V)_{\diamond}$.

1 A map $A \otimes B \mapsto AB$ defines a degree zero linear map

$$\beta:\mathfrak{gl}(V)\otimes_{\mathbb{R}}\mathfrak{gl}(V)\to\mathfrak{gl}(V).$$

One can apply the \diamond functor to get a graded smooth map

$$\beta_{\diamond}: (\mathfrak{gl}(V) \otimes_{\mathbb{R}} \mathfrak{gl}(V))_{\diamond} \to \mathfrak{gl}(V)_{\diamond}$$

- **1** Let $\mu := \alpha_{\diamond} \circ \beta_{\diamond}$. It restricts to the appropriate open subsets, hence

$$\mu: \mathsf{GL}(V) \times \mathsf{GL}(V) \to \mathsf{GL}(V).$$

• The unit $e: \{*\} \to \mathsf{GL}(V)$ is defined to correspond to the choice of a single point $\mathbb{1}_V \in \mathsf{GL}(V_{\bullet})$.

Let $V \in \mathbf{gVect}$. $\mathrm{GL}(V_{\bullet}) := \{A \in \mathfrak{gl}(V)_0 \mid A \text{ is invertible}\}\$ is open. Let $\mathrm{GL}(V) := \mathfrak{gl}(V)_{\diamond}|_{\mathrm{GL}(V_{\bullet})}$, an open submanifold of $\mathfrak{gl}(V)_{\diamond}$.

1 A map $A \otimes B \mapsto AB$ defines a degree zero linear map

$$\beta: \mathfrak{gl}(V) \otimes_{\mathbb{R}} \mathfrak{gl}(V) \to \mathfrak{gl}(V).$$

One can apply the \diamond functor to get a graded smooth map

$$\beta_{\diamond}: (\mathfrak{gl}(V) \otimes_{\mathbb{R}} \mathfrak{gl}(V))_{\diamond} \to \mathfrak{gl}(V)_{\diamond}$$

- **1** Let $\mu := \alpha_{\diamond} \circ \beta_{\diamond}$. It restricts to the appropriate open subsets, hence

$$\mu: \mathsf{GL}(V) \times \mathsf{GL}(V) \to \mathsf{GL}(V).$$

The unit e: {*} → GL(V) is defined to correspond to the choice of a single point 1_V ∈ GL(V_•).

- $\iota : \mathsf{GL}(V) \to \mathsf{GL}(V)$ can be constructed in coordinates.
- Abstract nonsense saves the day for lazy people. For every $\mathcal{S} \in \mathbf{gMan}^{\infty}$ consider a free $\mathcal{C}^{\infty}_{\mathcal{S}}(S)$ -module

$$\mathfrak{M}(S) := \mathcal{C}_S^{\infty}(S) \otimes_{\mathbb{R}} V$$

• Define $\mathfrak{F}(\mathcal{S}) := \operatorname{Aut}(\mathfrak{M}(\mathcal{S}))$ to be its set of module automorphisms. This is obviously a group with operations $\mathbf{m}'_{\mathcal{S}}$, $\mathbf{i}'_{\mathcal{S}}$ and $\mathbf{e}'_{\mathcal{S}}$.

Proposition

 $\mathcal{S}\mapsto \mathfrak{F}(\mathcal{S})$ defines a functor naturally isomorphic to $\mathfrak{P}.$ Under this isomorphism $\mathbf{m}_{\mathcal{S}}$ induced by μ corresponds to $\mathbf{m}_{\mathcal{S}}'$

Proposition

Define $i_{\mathcal{S}}: \mathfrak{P}(\mathcal{S}) \to \mathfrak{P}(\mathcal{S})$ to correspond to $i_{\mathcal{S}}'$. Yoneda lemma makes $i_{\mathcal{S}}$ induced by a unique $\iota: \mathsf{GL}(V) \to \mathsf{GL}(V)$. Since $(\mathfrak{P}(\mathcal{S}), \mathbf{m}_{\mathcal{S}}, \mathbf{i}_{\mathcal{S}}, \mathbf{e}_{\mathcal{S}})$ is a group, then so is $(\mathsf{GL}(V), \mu, \iota, e)$.

- $\iota : \mathsf{GL}(V) \to \mathsf{GL}(V)$ can be constructed in coordinates.
- Abstract nonsense saves the day for lazy people. For every $\mathcal{S} \in \mathbf{gMan}^{\infty}$ consider a free $\mathcal{C}^{\infty}_{\mathcal{S}}(S)$ -module

$$\mathfrak{M}(\mathcal{S}) := \mathcal{C}^{\infty}_{\mathcal{S}}(S) \otimes_{\mathbb{R}} V.$$

• Define $\mathfrak{F}(\mathcal{S}) := \operatorname{Aut}(\mathfrak{M}(\mathcal{S}))$ to be its set of module automorphisms. This is obviously a group with operations $\mathbf{m}'_{\mathcal{S}}$, $\mathbf{i}'_{\mathcal{S}}$ and $\mathbf{e}'_{\mathcal{S}}$.

Proposition

 $\mathcal{S}\mapsto \mathfrak{F}(\mathcal{S})$ defines a functor naturally isomorphic to $\mathfrak{P}.$ Under this isomorphism $\mathbf{m}_{\mathcal{S}}$ induced by μ corresponds to $\mathbf{m}_{\mathcal{S}}'$

Proposition

Define $i_S : \mathfrak{P}(S) \to \mathfrak{P}(S)$ to correspond to i_S' . Yoneda lemma makes i_S induced by a unique $\iota : \mathsf{GL}(V) \to \mathsf{GL}(V)$. Since $(\mathfrak{P}(S), \mathbf{m}_S, \mathbf{i}_S, \mathbf{e}_S)$ is a group, then so is $(\mathsf{GL}(V), \mu, \iota, e)$.

- $\iota : \mathsf{GL}(V) \to \mathsf{GL}(V)$ can be constructed in coordinates.
- Abstract nonsense saves the day for lazy people. For every $\mathcal{S} \in \mathbf{gMan}^{\infty}$ consider a free $\mathcal{C}^{\infty}_{\mathcal{S}}(S)$ -module

$$\mathfrak{M}(S) := \mathcal{C}_{S}^{\infty}(S) \otimes_{\mathbb{R}} V.$$

• Define $\mathfrak{F}(S) := \operatorname{Aut}(\mathfrak{M}(S))$ to be its set of module automorphisms. This is obviously a group with operations \mathbf{m}_S' , \mathbf{i}_S' and \mathbf{e}_S' .

Proposition

 $\mathcal{S}\mapsto \mathfrak{F}(\mathcal{S})$ defines a functor naturally isomorphic to $\mathfrak{P}.$ Under this isomorphism $\mathbf{m}_{\mathcal{S}}$ induced by μ corresponds to $\mathbf{m}_{\mathcal{S}}'$

Proposition

Define $i_S : \mathfrak{P}(S) \to \mathfrak{P}(S)$ to correspond to i_S' . Yoneda lemma makes i_S induced by a unique $\iota : \mathsf{GL}(V) \to \mathsf{GL}(V)$. Since $(\mathfrak{P}(S), \mathbf{m}_S, \mathbf{i}_S, \mathbf{e}_S)$ is a group, then so is $(\mathsf{GL}(V), \mu, \iota, e)$.

- $\iota : \mathsf{GL}(V) \to \mathsf{GL}(V)$ can be constructed in coordinates.
- Abstract nonsense saves the day for lazy people. For every $\mathcal{S} \in \mathbf{gMan}^{\infty}$ consider a free $\mathcal{C}^{\infty}_{\mathcal{S}}(S)$ -module

$$\mathfrak{M}(\mathcal{S}) := \mathcal{C}^{\infty}_{\mathcal{S}}(S) \otimes_{\mathbb{R}} V.$$

• Define $\mathfrak{F}(\mathcal{S}) := \operatorname{Aut}(\mathfrak{M}(\mathcal{S}))$ to be its set of module automorphisms. This is obviously a group with operations $\mathbf{m}_{\mathcal{S}}'$, $\mathbf{i}_{\mathcal{S}}'$ and $\mathbf{e}_{\mathcal{S}}'$.

Proposition

 $\mathcal{S}\mapsto \mathfrak{F}(\mathcal{S})$ defines a functor naturally isomorphic to \mathfrak{P} . Under this isomorphism $\mathbf{m}_{\mathcal{S}}$ induced by μ corresponds to $\mathbf{m}'_{\mathcal{S}}$.

Proposition

Define $i_{\mathcal{S}}: \mathfrak{P}(\mathcal{S}) \to \mathfrak{P}(\mathcal{S})$ to correspond to $i_{\mathcal{S}}'$. Yoneda lemma makes $i_{\mathcal{S}}$ induced by a unique $\iota: \mathsf{GL}(V) \to \mathsf{GL}(V)$. Since $(\mathfrak{P}(\mathcal{S}), \mathbf{m}_{\mathcal{S}}, \mathbf{i}_{\mathcal{S}}, \mathbf{e}_{\mathcal{S}})$ is a group, then so is $(\mathsf{GL}(V), \mu, \iota, e)$.

- $\iota : \mathsf{GL}(V) \to \mathsf{GL}(V)$ can be constructed in coordinates.
- Abstract nonsense saves the day for lazy people. For every $\mathcal{S} \in \mathbf{gMan}^{\infty}$ consider a free $\mathcal{C}^{\infty}_{\mathcal{S}}(S)$ -module

$$\mathfrak{M}(\mathcal{S}) := \mathcal{C}^{\infty}_{\mathcal{S}}(S) \otimes_{\mathbb{R}} V.$$

• Define $\mathfrak{F}(\mathcal{S}) := \operatorname{Aut}(\mathfrak{M}(\mathcal{S}))$ to be its set of module automorphisms. This is obviously a group with operations $\mathbf{m}_{\mathcal{S}}'$, $\mathbf{i}_{\mathcal{S}}'$ and $\mathbf{e}_{\mathcal{S}}'$.

Proposition

 $\mathcal{S}\mapsto \mathfrak{F}(\mathcal{S})$ defines a functor naturally isomorphic to $\mathfrak{P}.$ Under this isomorphism $\mathbf{m}_{\mathcal{S}}$ induced by μ corresponds to $\mathbf{m}_{\mathcal{S}}'.$

Proposition

Define $i_S : \mathfrak{P}(S) \to \mathfrak{P}(S)$ to correspond to i_S' . Yoneda lemma makes i_S induced by a unique $\iota : \mathsf{GL}(V) \to \mathsf{GL}(V)$. Since $(\mathfrak{P}(S), \mathbf{m}_S, \mathbf{i}_S, \mathbf{e}_S)$ is a group, then so is $(\mathsf{GL}(V), \mu, \iota, e)$.

- $\iota : \mathsf{GL}(V) \to \mathsf{GL}(V)$ can be constructed in coordinates.
- Abstract nonsense saves the day for lazy people. For every $\mathcal{S} \in \mathbf{gMan}^{\infty}$ consider a free $\mathcal{C}^{\infty}_{\mathcal{S}}(S)$ -module

$$\mathfrak{M}(\mathcal{S}) := \mathcal{C}^{\infty}_{\mathcal{S}}(S) \otimes_{\mathbb{R}} V.$$

• Define $\mathfrak{F}(\mathcal{S}) := \operatorname{Aut}(\mathfrak{M}(\mathcal{S}))$ to be its set of module automorphisms. This is obviously a group with operations $\mathbf{m}_{\mathcal{S}}'$, $\mathbf{i}_{\mathcal{S}}'$ and $\mathbf{e}_{\mathcal{S}}'$.

Proposition

 $\mathcal{S}\mapsto \mathfrak{F}(\mathcal{S})$ defines a functor naturally isomorphic to $\mathfrak{P}.$ Under this isomorphism $\mathbf{m}_{\mathcal{S}}$ induced by μ corresponds to $\mathbf{m}_{\mathcal{S}}'.$

Proposition

Define $\mathbf{i}_{\mathcal{S}}: \mathfrak{P}(\mathcal{S}) \to \mathfrak{P}(\mathcal{S})$ to correspond to $\mathbf{i}_{\mathcal{S}}'$. Yoneda lemma makes $\mathbf{i}_{\mathcal{S}}$ induced by a unique $\iota: \mathsf{GL}(V) \to \mathsf{GL}(V)$. Since $(\mathfrak{P}(\mathcal{S}), \mathbf{m}_{\mathcal{S}}, \mathbf{i}_{\mathcal{S}}, \mathbf{e}_{\mathcal{S}})$ is a group, then so is $(\mathsf{GL}(V), \mu, \iota, e)$.

Graded orthogonal group

Main goal: for any metric g of degree ℓ , construct a graded Lie group O(V,g) and $j:O(V,g)\to GL(V)$.

- $oldsymbol{0}$ j is a closed embedding and a morphism of GLG's.
- ② Its Lie algebra can be identified with $\mathfrak{o}(V,g) \subseteq \mathfrak{gl}(V)$.

The construction closely follows the classical construction, albeit using maybe more abstract wording.

① Recall $\tau: \mathfrak{gl}(V) \to \mathfrak{gl}(V)$. The induced map τ_{\diamond} restricts to a map

$$\tau^{\times}: \mathsf{GL}(V) \to \mathsf{GL}(V).$$

This map is an anti-automorphism of GL(V). Classically this corresponds to $\tau(AB) = \tau(B)\tau(A)$.

② There is a closed embedded submanifold $\operatorname{Sym}^{\times}(V,g)$ of $\operatorname{GL}(V)$. Unit of $\operatorname{GL}(V)$ induces $e^{\times}: \{*\} \to \operatorname{Sym}^{\times}(V,g)$. This is just a submanifold of invertible symmetric matrices. $\mathbb{1}_V$ is symmetric and invertible.

Graded orthogonal group

Main goal: for any metric g of degree ℓ , construct a graded Lie group O(V,g) and $j:O(V,g)\to GL(V)$.

- $oldsymbol{0}$ j is a closed embedding and a morphism of GLG's.
- ② Its Lie algebra can be identified with $\mathfrak{o}(V,g) \subseteq \mathfrak{gl}(V)$.

The construction closely follows the classical construction, albeit using maybe more abstract wording.

1 Recall $\tau: \mathfrak{gl}(V) \to \mathfrak{gl}(V)$. The induced map τ_{\diamond} restricts to a map

$$\tau^{\times}: \mathsf{GL}(V) \to \mathsf{GL}(V).$$

This map is an **anti-automorphism** of GL(V). Classically this corresponds to $\tau(AB) = \tau(B)\tau(A)$.

② There is a closed embedded submanifold $\operatorname{Sym}^\times(V,g)$ of $\operatorname{GL}(V)$. Unit of $\operatorname{GL}(V)$ induces $e^\times: \{*\} \to \operatorname{Sym}^\times(V,g)$. This is just a submanifold of invertible symmetric matrices. $\mathbb{1}_V$ is symmetric and invertible.

Graded orthogonal group

Main goal: for any metric g of degree ℓ , construct a graded Lie group O(V,g) and $j:O(V,g)\to GL(V)$.

- $oldsymbol{0}$ j is a closed embedding and a morphism of GLG's.
- ② Its Lie algebra can be identified with $\mathfrak{o}(V,g) \subseteq \mathfrak{gl}(V)$.

The construction closely follows the classical construction, albeit using maybe more abstract wording.

Q Recall $\tau : \mathfrak{gl}(V) \to \mathfrak{gl}(V)$. The induced map τ_{\diamond} restricts to a map

$$\tau^{\times}: \mathsf{GL}(V) \to \mathsf{GL}(V).$$

This map is an **anti-automorphism** of GL(V). Classically this corresponds to $\tau(AB) = \tau(B)\tau(A)$.

② There is a closed embedded submanifold $\operatorname{Sym}^\times(V,g)$ of $\operatorname{GL}(V)$. Unit of $\operatorname{GL}(V)$ induces $e^\times: \{*\} \to \operatorname{Sym}^\times(V,g)$. This is just a submanifold of invertible symmetric matrices. $\mathbb{1}_V$ is symmetric and invertible.

② Consider a map $\varphi^{\times} := \mu \circ (\tau^{\times}, \mathbb{1}_{\mathsf{GL}(V)}) : \mathsf{GL}(V) \to \mathsf{GL}(V)$. It lifts as

$$\operatorname{\mathsf{Sym}}^{ imes}(V,g) \ \stackrel{\varphi}{\stackrel{}{\longrightarrow}} \ \operatorname{\mathsf{GL}}(V) \stackrel{\varphi}{\stackrel{}{\longrightarrow}} \operatorname{\mathsf{GL}}(V)$$

Classically $\varphi^{\times}(A) = \tau(A)A = (g^{-1}Ag)A$ is invertible and symmetric.

 \odot φ is transversal to $e^{\times}: \{*\} \to \mathsf{Sym}^{\times}(V,g)$ so we can form a pullback diagram

$$\begin{array}{ccc}
\mathsf{O}(V,g) & & & & \{*\} \\
\downarrow^{j} & & & \downarrow_{e^{\times}} \\
\mathsf{GL}(V) & \xrightarrow{\varphi} & \mathsf{Sym}^{\times}(V,g)
\end{array}$$

Transversality means that $\mathbb{1}_V$ is a regular value of φ , we can thus form the level set submanifold

$$O(V,g) = \{A \in GL(V) \mid (g^{-1}Ag)A = \mathbb{1}_V\}.$$

ullet Consider a map $\varphi^{\times}:=\mu\circ(\tau^{\times},\mathbb{1}_{\mathsf{GL}(V)}):\mathsf{GL}(V)\to\mathsf{GL}(V).$ It lifts as

$$\begin{array}{c}\operatorname{\mathsf{Sym}}^\times(V,g)\\ &\stackrel{\varphi}{\longrightarrow}\end{array} \downarrow \\ \operatorname{\mathsf{GL}}(V) \stackrel{\varphi^\times}{\longrightarrow} \operatorname{\mathsf{GL}}(V) \end{array}.$$

Classically $\varphi^{\times}(A) = \tau(A)A = (g^{-1}Ag)A$ is invertible and symmetric.

ullet φ is transversal to $e^{\times}: \{*\} \to \operatorname{Sym}^{\times}(V,g)$ so we can form a pullback diagram

$$\begin{array}{ccc}
\mathsf{O}(V,g) & & & & \{*\} \\
\downarrow^{j} & & & \downarrow_{e^{\times}} \\
\mathsf{GL}(V) & \xrightarrow{\varphi} & \mathsf{Sym}^{\times}(V,g)
\end{array}$$

Transversality means that $\mathbb{1}_V$ is a regular value of φ , we can thus form the level set submanifold

$$O(V,g) = \{ A \in GL(V) \mid (g^{-1}Ag)A = \mathbb{1}_V \}.$$

• Group operations (μ', ι', e') are constructed using the universal property of pullback. The fact that τ^{\times} is anti-automorphism is utilized. Group axioms are inherited from GL(V). Hence $(O(V, g), \mu', \iota', e')$ forms a **graded orthogonal group**.

One has $\tau(AB)(AB)=\mathbb{1}_V$ and $\tau(A^{-1})A^{-1}=\mathbb{1}_V$ for any $A,B\in \mathrm{O}(V,g)$.

⊙ One has $T_{e'}(O(V,g)) \cong \ker(T_e \varphi) \subseteq T_e(GL(V))$. Under the identification $\mathfrak{gl}(V) \cong T_e(GL(V))$, this corresponds to

$$\{A \in \mathfrak{gl}(V) \mid \tau(A) = -A\} \equiv \mathfrak{o}(V, g).$$

Tangent map to $\varphi(A) = \tau(A)A$ is $(T_A\varphi)(X) = \tau(X)A + \tau(A)X$ Evaluate at $A = \mathbb{1}_V$ and look at its kernel.

Observation

By replacing g with a symplectic form ω , the whole construction works in the same way to give a **graded symplectic group** $\operatorname{Sp}(V,\omega)$ with a graded Lie algebra $\operatorname{\mathfrak{sp}}(V,\omega)$.

• Group operations (μ', ι', e') are constructed using the universal property of pullback. The fact that τ^{\times} is anti-automorphism is utilized. Group axioms are inherited from GL(V). Hence $(O(V, g), \mu', \iota', e')$ forms a **graded orthogonal group**.

One has
$$\tau(AB)(AB) = \mathbb{1}_V$$
 and $\tau(A^{-1})A^{-1} = \mathbb{1}_V$ for any $A, B \in O(V, g)$.

• One has $T_{e'}(O(V,g)) \cong \ker(T_e\varphi) \subseteq T_e(GL(V))$. Under the identification $\mathfrak{gl}(V) \cong T_e(GL(V))$, this corresponds to

$${A \in \mathfrak{gl}(V) \mid \tau(A) = -A} \equiv \mathfrak{o}(V, g).$$

Tangent map to $\varphi(A) = \tau(A)A$ is $(T_A\varphi)(X) = \tau(X)A + \tau(A)X$. Evaluate at $A = \mathbb{1}_V$ and look at its kernel.

Observation

By replacing g with a symplectic form ω , the whole construction works in the same way to give a **graded symplectic group** $\operatorname{Sp}(V,\omega)$ with a graded Lie algebra $\operatorname{\mathfrak{sp}}(V,\omega)$.

• Group operations (μ', ι', e') are constructed using the universal property of pullback. The fact that τ^{\times} is anti-automorphism is utilized. Group axioms are inherited from $\operatorname{GL}(V)$. Hence $(\operatorname{O}(V,g),\mu',\iota',e')$ forms a **graded orthogonal group**.

One has
$$\tau(AB)(AB) = \mathbb{1}_V$$
 and $\tau(A^{-1})A^{-1} = \mathbb{1}_V$ for any $A, B \in O(V, g)$.

⊙ One has $T_{e'}(O(V,g)) \cong \ker(T_e \varphi) \subseteq T_e(GL(V))$. Under the identification $\mathfrak{gl}(V) \cong T_e(GL(V))$, this corresponds to

$${A \in \mathfrak{gl}(V) \mid \tau(A) = -A} \equiv \mathfrak{o}(V, g).$$

Tangent map to $\varphi(A) = \tau(A)A$ is $(T_A\varphi)(X) = \tau(X)A + \tau(A)X$. Evaluate at $A = \mathbb{1}_V$ and look at its kernel.

Observation

By replacing g with a symplectic form ω , the whole construction works in the same way to give a **graded symplectic group** $\operatorname{Sp}(V,\omega)$ with a graded Lie algebra $\operatorname{\mathfrak{sp}}(V,\omega)$.

ullet For any $\mathcal{S} \in \mathbf{gMan}^{\infty}$, a metric g induces a $\mathcal{C}^{\infty}_{\mathcal{S}}(S)$ -bilinear form

$$\langle\cdot,\cdot\rangle_{\mathsf{g}}:\mathfrak{M}(\mathcal{S}) imes\mathfrak{M}(\mathcal{S}) o\mathcal{C}^\infty_{\mathcal{S}}(\mathcal{S}).$$

It has degree ℓ and it is graded symmetric.

• We can thus consider a subset $\mathfrak{F}'(\mathcal{S}) \subseteq \operatorname{Aut}(\mathfrak{M}(\mathcal{S}))$ given by

$$\mathfrak{F}'(\mathcal{S}) = \{F \in \mathsf{Aut}(\mathfrak{M}(\mathcal{S})) \mid \langle F(\psi), F(\psi) \rangle_{\mathsf{g}} = \langle \psi, \psi' \rangle_{\mathsf{g}} \}$$

This agains defines a functor $\mathfrak{F}':(\mathbf{gMan}^{\infty})^{\mathrm{op}}\to\mathbf{Set}.$

Proposition

Let $\mathfrak{P}'(\mathcal{S}) := \mathbf{gMan}^{\infty}(\mathcal{S}, \mathcal{O}(V, g))$ be the functor of points associated to $\mathcal{O}(V, g)$. Then there is a canonical natural isomorphism $\mathfrak{P}' \cong \mathfrak{F}'$.

ullet For any $\mathcal{S} \in \mathbf{gMan}^{\infty}$, a metric g induces a $\mathcal{C}^{\infty}_{\mathcal{S}}(S)$ -bilinear form

$$\langle\cdot,\cdot\rangle_{\mathsf{g}}:\mathfrak{M}(\mathcal{S}) imes\mathfrak{M}(\mathcal{S}) o\mathcal{C}^\infty_{\mathcal{S}}(\mathcal{S}).$$

It has degree ℓ and it is graded symmetric.

• We can thus consider a subset $\mathfrak{F}'(\mathcal{S}) \subseteq \mathsf{Aut}(\mathfrak{M}(\mathcal{S}))$ given by

$$\mathfrak{F}'(\mathcal{S}) = \{ F \in \mathsf{Aut}(\mathfrak{M}(\mathcal{S})) \mid \langle F(\psi), F(\psi) \rangle_{\mathsf{g}} = \langle \psi, \psi' \rangle_{\mathsf{g}} \}$$

This agains defines a functor $\mathfrak{F}':(\mathbf{gMan}^\infty)^{\mathsf{op}}\to\mathbf{Set}.$

Proposition

Let $\mathfrak{P}'(\mathcal{S}) := \mathbf{gMan}^{\infty}(\mathcal{S}, \mathcal{O}(V, g))$ be the functor of points associated to $\mathcal{O}(V, g)$. Then there is a canonical natural isomorphism $\mathfrak{P}' \cong \mathfrak{F}'$.

ullet For any $\mathcal{S} \in \mathbf{gMan}^{\infty}$, a metric g induces a $\mathcal{C}^{\infty}_{\mathcal{S}}(S)$ -bilinear form

$$\langle\cdot,\cdot\rangle_{\mathsf{g}}:\mathfrak{M}(\mathcal{S}) imes\mathfrak{M}(\mathcal{S}) o\mathcal{C}^\infty_{\mathcal{S}}(\mathcal{S}).$$

It has degree ℓ and it is graded symmetric.

• We can thus consider a subset $\mathfrak{F}'(\mathcal{S}) \subseteq \mathsf{Aut}(\mathfrak{M}(\mathcal{S}))$ given by

$$\mathfrak{F}'(\mathcal{S}) = \{ F \in \mathsf{Aut}(\mathfrak{M}(\mathcal{S})) \mid \langle F(\psi), F(\psi) \rangle_{\mathsf{g}} = \langle \psi, \psi' \rangle_{\mathsf{g}} \}$$

This agains defines a functor $\mathfrak{F}':(\mathbf{gMan}^\infty)^{\mathsf{op}}\to \mathbf{Set}.$

Proposition

Let $\mathfrak{P}'(\mathcal{S}) := \mathbf{gMan}^{\infty}(\mathcal{S}, O(V, g))$ be the functor of points associated to O(V, g). Then there is a canonical natural isomorphism $\mathfrak{P}' \cong \mathfrak{F}'$.

ullet For any $\mathcal{S} \in \mathbf{gMan}^{\infty}$, a metric g induces a $\mathcal{C}^{\infty}_{\mathcal{S}}(S)$ -bilinear form

$$\langle \cdot, \cdot \rangle_{g} : \mathfrak{M}(\mathcal{S}) \times \mathfrak{M}(\mathcal{S}) \to \mathcal{C}^{\infty}_{\mathcal{S}}(\mathcal{S}).$$

It has degree ℓ and it is graded symmetric.

• We can thus consider a subset $\mathfrak{F}'(\mathcal{S}) \subseteq \operatorname{Aut}(\mathfrak{M}(\mathcal{S}))$ given by

$$\mathfrak{F}'(\mathcal{S}) = \{ F \in \mathsf{Aut}(\mathfrak{M}(\mathcal{S})) \mid \langle F(\psi), F(\psi) \rangle_{\mathsf{g}} = \langle \psi, \psi' \rangle_{\mathsf{g}} \}$$

This agains defines a functor $\mathfrak{F}':(\mathbf{gMan}^\infty)^{\mathrm{op}}\to\mathbf{Set}.$

Proposition

Let $\mathfrak{P}'(\mathcal{S}) := \mathbf{gMan}^{\infty}(\mathcal{S}, O(V, g))$ be the functor of points associated to O(V, g). Then there is a canonical natural isomorphism $\mathfrak{P}' \cong \mathfrak{F}'$.

Isomorphisms

4 If $M: V \to W$ is a degree |M| isomorphism, the map

$$\eta(A) := (-1)^{|M||A|} MAM^{-1}$$

is a degree 0 linear isomorphism $\eta: \mathfrak{gl}(V) \to \mathfrak{gl}(V)$. η_{\diamond} restricts to an isomorphism $\eta^{\times}: \mathsf{GL}(V) \to \mathsf{GL}(W)$.

② If |M| is even, a degree ℓ metric g and $\ell-2|M|$ metric g' can be related by M in the sense

$$g(v,w) = g'(M(v), M(w)).$$

 η^{\times} restricts to an isomorphism $\eta': \mathrm{O}(V,g) \to \mathrm{O}(W,g')$.

① If |M| is odd, g can be related to a degree $\ell-2|M|$ symplectic form ω' in the sense

$$g(v,w) = (-1)^{|M|(|v|+\ell+1)} \omega'(M(v), M(w)).$$

 η^{\times} restricts to an isomorphism $\eta': \mathsf{O}(V,g) \to \mathsf{Sp}(W,\omega')$

Isomorphisms

• If $M: V \to W$ is a degree |M| isomorphism, the map

$$\eta(A) := (-1)^{|M||A|} MAM^{-1}$$

is a degree 0 linear isomorphism $\eta: \mathfrak{gl}(V) \to \mathfrak{gl}(V)$. η_{\diamond} restricts to an isomorphism $\eta^{\times}: \mathsf{GL}(V) \to \mathsf{GL}(W)$.

② If |M| is even, a degree ℓ metric g and $\ell-2|M|$ metric g' can be related by M in the sense

$$g(v, w) = g'(M(v), M(w)).$$

 η^{\times} restricts to an isomorphism $\eta': \mathrm{O}(V,g) \to \mathrm{O}(W,g')$.

① If |M| is odd, g can be related to a degree $\ell-2|M|$ symplectic form ω' in the sense

$$g(v,w) = (-1)^{|M|(|v|+\ell+1)} \omega'(M(v), M(w)).$$

 η^{\times} restricts to an isomorphism $\eta': O(V,g) \to Sp(W,\omega')$.

Isomorphisms

• If $M: V \to W$ is a degree |M| isomorphism, the map

$$\eta(A) := (-1)^{|M||A|} MAM^{-1}$$

is a degree 0 linear isomorphism $\eta: \mathfrak{gl}(V) \to \mathfrak{gl}(V)$. η_{\diamond} restricts to an isomorphism $\eta^{\times}: \mathsf{GL}(V) \to \mathsf{GL}(W)$.

② If |M| is even, a degree ℓ metric g and $\ell-2|M|$ metric g' can be related by M in the sense

$$g(v, w) = g'(M(v), M(w)).$$

 η^{\times} restricts to an isomorphism $\eta': \mathrm{O}(V,g) \to \mathrm{O}(W,g')$.

1 If |M| is odd, g can be related to a degree $\ell-2|M|$ symplectic form ω' in the sense

$$g(v, w) = (-1)^{|M|(|v|+\ell+1)}\omega'(M(v), M(w)).$$

 η^{\times} restricts to an isomorphism $\eta': O(V,g) \to Sp(W,\omega')$.

Outlooks etc.

- Soon to be published including the excruciatingly interesting technical details.
- To complete the classical collection, we need a special linear group SL(V) or something similar. There is no det : $GL(V) \to \mathbb{R}^{\times}$, nor the Berenzinian (as is in the supergeometry) yet.
- It will be nice to utilize O(V,g) to define orthogonal frame bundles, sphere bundles (or even spheres!).

Thank you for your attention!

Outlooks etc.

- Soon to be published including the excruciatingly interesting technical details.
- To complete the classical collection, we need a special linear group SL(V) or something similar. There is no det : $GL(V) \to \mathbb{R}^{\times}$, nor the Berenzinian (as is in the supergeometry) yet.
- It will be nice to utilize O(V, g) to define orthogonal frame bundles, sphere bundles (or even spheres!).

Thank you for your attention!