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-~ Quantization of space time
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-~ Quantization of space time

<~ Gelfand Naimark theorem:
Manifold equivalent to commutative C* algebra
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~ Quantization of space time

-~ Geland Naimark theorem:
Manifold equivalent to commutative C* algebra

~ Quantum version: Noncommutative C* algebra
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Definitions

* Algebra :

An algebra (A, +, x) equipped with an involutive antihomomorpshim {: A — A
Banach * algebra:

Banach space (A, ||.||) such that

It is an x-algebra for a given product x and involution f

Its norm satisfies |[fg[| < ||| |lgl|, Vf.g€B
t is an isometry for the norm: ||fT|| = || /]|

A Banach x-algebra is called a C'x-algebra if

WFFH = 11717, VfeA
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-~ Deformed Minkowski space-time and Poincaré symmetry Hopf algebra

~ Well known examples: r/p-Minkowski Lukierski, Ruegg, Nowicki, Tolstoy. 1991 [Majid, Ruegg 199411

Dimitrijevic, Konjik,Samsarov,2018]

7
[xo0, 5] = = %5 [0, 1] = px2, [T0,T2] = —p21

Zakrzewski

Lukierski,Woronowicz Mercati

von Neumann
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Context

Deformed Minkowski space-time and Poincaré symmetry Hopf algebra

Well known examples: r/p-Minkowski
)
[$071']'] = E‘rﬁ [I07I1} = pT2, [.ZL‘[),$2] = =/pen

Classification of deformed Poisson structures of the Poincaré group

Deformed Minkowski space-time
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Context

Deformed Minkowski space-time and Poincaré symmetry Hopf algebra

Well known examples: r/p-Minkowski
)
[$071']'] = E‘rﬁ [I07I1} = pT2, [.ZL‘[),$2] = =/pen

Classification of deformed Poisson structures of the Poincaré group
Deformed Minkowski space-time

Lie algebraic deformations:
[I//,QZ‘U] _ Z-f;)u/xp

Convolution algebra and Weyl quantization map
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-~ Start from Lie algebra g with locally compact Le group G.
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-~ Start from Lie algebra g with locally compact Le group G.

-~ Derive its (right and left) Haar measures and its convolution algebra

C(9) = (L'(9)(,0))
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Construction of *-algebra

Start from Lie algebra g with locally compact Le group G.

Derive its (right and left) Haar measures and its convolution algebra
C(G) = (L'(9)(,0))

Study and characterize representations of the convolution algebra
m: C(G) — B(H)
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Construction of *-algebra

Start from Lie algebra g with locally compact Le group G.

Derive its (right and left) Haar measures and its convolution algebra

C(9) = (L'(9)(;°))

Study and characterize representations of the convolution algebra
m: C(G) — B(H)

Define quantization map, ) := m o F, where F is the Fourier transform of the
convolution algebra.

Maris.V. (LPENSL/IJCLab) Lie-algebraic *-products 5/13



Construction of *-algebra

Start from Lie algebra g with locally compact Le group G.

Derive its (right and left) Haar measures and its convolution algebra
C(G) = (L'(9)(,0))

Study and characterize representations of the convolution algebra
m: C(G) — B(H)

Define quantization map, ) := m o F, where F is the Fourier transform of the
convolution algebra.

Define star product * as Q(f * g) = Q(f)Q(g) and involution Q(f)* = Q(f1),

where x is involution of 7(B(H)
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Convolution algebra and Weyl quantization map (1)

General structure of Lie groups :

[ G =H xR®,

where H C GL(n,R) one parameter abelian subgroup.
(a(pM),p) € G = Hx R3 = (pM,p) e R x R3
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Convolution algebra and Weyl quantization map (1)

General structure of Lie groups :

[ G =H xR®,

where H C GL(n,R) one parameter abelian subgroup.
(a(pM),p) € G = Hx R3 = (pM,p) e R x R3
The group laws of G are given by:

(a1,p1)(az,p2) = (araz, pi + aip2),
(a7m71 = (ailv _a71m7 ]Ig = (HH,O)
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Convolution algebra and Weyl quantization map (II)

Right and left invariante Haar measures and modular function for (a,p) € G:
dc((a, 7)) = &% | det(a)| " dpuse(a)
_ = —1
dl/g((aaﬁ) —Ag(((l,./ﬁ') )dﬂg((aﬁ') Ag((a.,ﬁ')) — \det(a)rl AH(O,)

=1, H abelian

where Ag is a group homomorphism from G in R
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Convolution algebra and Weyl quantization map (II)

Right and left Haar measures and modular function for (a,p) € G:
dig((a, 7)) = &*F | det(a)| " dyuse(a)
_ =
dvg((a,p) = Ag((a,p) )dug((a, p) Ag((a,p)) = |det(a)| ™! An(a)
=1, H abel

where Ag is a group homomorphism from G in R

Expression of the convolution product and involution on (L'(G, o, *):

(FoG)(s) = / dvg(t)F(st™")G(t), t,s€G
g

F*(s) = F(s ") Ag(s)

This convolution algebra can be completed to a C'* algebra, with C* norm ||.||c«
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Convolution algebra and Weyl quantization map (II)

Right and left Haar measures and modular function for (a,p) € G:
dyig((a,7)) = d*F | det(@) ™" dyusr (a)
= Ag((a,p) " -
dvg((a,p) = Ag((a,p) " )dug((a, p) Ag((a, 7)) = |det(a)|™* Ax(a)

——
=1, H abelian

where Ag is a group homomorphism from G in R

Derivation of x-product and involution :

Inverse

(FoG)(s) = / drg(OF (st )G() 25 £y g = F7U(FF o F)
g

F*(s) = F(s HAg(s) === ft=FY(Fs")

Inverse
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Explicit formulation of star product and involution

: . d Md M MM ; i o
(f*g)(l?”.;z?):/%e PRV fae™ 4+ M D) gz, a(@™)x)

(5)

oMo Mo
70 = [ Lol e " Ty )
™

where z = (zM,7) € R x R?
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Explicit formulation of star product and involution

: . d Md M i M, M i N
(f*g)(l’”.;z?):/%e PRV fae™ 4+ M D) gz, a(@™)x)

(5)

oMo Mo
70 = [ Lol e " Ty )
™

where z = (zM,7) € R x R?

Construction of 10 such x product x-algebras M,
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Commutators

Commutators of lie algebra of coordinates g reads:

2™ can be a:

timelike coordinate
spacelike coordinate

lightlike coordinate
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Commutators

Commutators of lie algebra of coordinates g reads:

[ [:17‘”,x“]* =aMxzt — " %™ = —i [apma(pM)\pM:O}u -z7, (6) ]

2™ can be a:

timelike coordinate
spacelike coordinate

lightlike coordinate

Rescaling p™ — Ap™ and thus (6) become

[;z;‘”,xﬂ = —iA [apMa(/\pM”pM:O]M oz”
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Ag(M) = e~ Ag, modular function

G nonunimodular = 2™ =z% M s timelike

tr(fxg) =tr((c>g)* f), tr:= [dz" twisted trace

Poulain,Wallet
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Nonunimodular group and twisted trace

Ag(p™) = e~me Ag, modular function

G nonunimodular = oM = 2% M is timelike

tr(fxg) =tr((o>g)* f), tr:= [dz" twisted trace

where the twist o € Aut(M ) reads:

[ (o> g)(2°, &) = (e > g) (2, 7) = g(z° + in), T)

() ]

note that such twist already appear in k Minkowski
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With (7) we can define a one-parameter group of x-automorphisms of M y:

{o0 == €™ %} er, ©)
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KMS weight

With (7) we can define a one-parameter group of x-automorphisms of M:

[ {Ut o= eitnz\@g }teR7

{0t }+er modular group for the KMS weight given by the twisted trace
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KMS weight

With (7) we can define a one-parameter group of x-automorphisms of M:

[ {0} := "™} g, (8) ]

{0t }+er modular group for the KMS weight given by the twisted trace

A KMS weight w on a * algebra A for a modular group of x-automorphism {o¢ }icr

A weight w : A — R densely define and lower semi-continuous.
{0+ }icr admit analytic extension {o.}.cc

It exist a function F' : C — C holomorphic on the strip {0 < Z(z) < B}.ec,
£ > 0 which satisfy:

F(t) =w(foi(g)), F(t+if)=w(oi(g)f), VIR
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~ Why KMS weight w?

Connes,Rovelli
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~ Why KMS weight w?

~ Equilibrium in thermodynamic — time flow on the algebra of observable
a(A) = 7t Ae=H* where A is an observable.

Connes,Rovelli
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KMS weight

Why KMS weight w?

Equilibrium in thermodynamic = time flow on the algebra of observable
ai(A) = e Ae= " where A is an observable.

Cx algebra: Tomita/modular flow «; given by the Tomita-Takesaki theorem and
acting on the GNS representation 7, of the x-algebra

as(mu(f)) = AP, (f)AY

where A Tomita operator.
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KMS weight

Why KMS weight w?

Equilibrium in thermodynamic = time flow on the algebra of observable
ai(A) = e Ae= " where A is an observable.

Cx algebra: Tomita/modular flow «; given by the Tomita-Takesaki theorem and
acting on the GNS representation 7, of the x-algebra

as(mu(f)) = AP, (f)AY

where A Tomita operator.

as = —opt and w = tr
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KMS weight

Why KMS weight w?

Equilibrium in thermodynamic = time flow on the algebra of observable
ai(A) = e Ae= " where A is an observable.

Cx algebra: Tomita/modular flow «; given by the Tomita-Takesaki theorem and
acting on the GNS representation 7, of the x-algebra

as(mu(f)) = A7 ma (f)A™
where A Tomita operator.
as = —opt and w = tr
Thermal times hypothesis:

The physical time depends on the state. When the system is in a state w, the
physical time is given by the modular group o of w.
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KMS weight

Why KMS weight w?

Equilibrium in thermodynamic = time flow on the algebra of observable
ai(A) = e Ae= " where A is an observable.

Cx algebra: Tomita/modular flow «; given by the Tomita-Takesaki theorem and
acting on the GNS representation 7, of the x-algebra

as(mu(f)) = A7 ma (f)A™
where A Tomita operator.
as = —opt and w = tr
Thermal times hypothesis:

The physical time depends on the state. When the system is in a state w, the
physical time is given by the modular group o of w.

Time translation (o; > f)(2°, &) = f(z° + itAt, &), f € My
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Conclusion and Outlook

What we did:

Construction of several C*-algebras
Investigation of nonunimodular groups and KMS weights. Derivation of
a natural time flow.

What we want to do:

Construction of associated Poincaré symmetry Hopf algebra (already
done for half of them)
Implementation of gauge theory
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Conclusion and Outlook

What we did:

Construction of several C*-algebras
Investigation of nonunimodular groups and KMS weights. Derivation of
a natural time flow.

What we want to do:

Construction of associated Poincaré symmetry Hopf algebra (already
done for half of them)
Implementation of gauge theory

Thank you for your attention
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