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Type IIB matrix model  

: 10D Lorentz vector
: 10D Majorana-Weyl spinor

Hermitian matrices

Proposed as a nonperturbative formulation of superstring theory

Space-time does not exist a priori, 
but emerges from the degrees of freedom of matrices.

Ishibashi Kawai, Kitazawa, AT (1996)

The action takes the form of the dimensional reduction of 10D N=1 SYM 
to zero dimension

SO(9,1) symmetry

Dimensionality of space-time can be predicted



Crucial properties: 10D N=2 SUSY

The space-time is represented as the eigenvalue distribution of      .  

dimensional reduction of 
10D N=1 SUSY

The fact that the model has maximal SUSY suggests strongly that the model 
includes gravity.

10D N=2 SUSY if       is identified     
with momentum, which generates shift of     



Crucial properties: connection to the world sheet action 
Green-Schwarz action of Schild-type for type IIB superstring with κ symmetry fixed       

type IIB matrix model

multi strings
2nd quantized

matrix regularization



Crucial properties   (cont’d)
 Long distance behavior of interaction between D-branes is reproduced.      

 Light-cone string field theory for type IIB superstring is reproduced   
from SD equations for Wilson loops under reasonable assumptions.       

Fukuma-Kawai-Kitazawa-AT  (1997)

Hartnoll-Liu (2024)

Komatsu-Martina-Penedones-Vuignier-Zhao (2024)
Ciceri-Samtleben (2025)

 Holographic correspondence to type IIB sugra (Eucledean)      



Crucial properties   (cont’d)
 The model has manifest connection to type IIB 

superstring. However, in order to describe the theory 
underlying the string duality web, we expect to start 
from anywhere in the web with a formulation enabling to 
tract strong coupling regime as this model. Het SO(32)
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Plan of the present talk
1. Introduction

2. Lorentzian vs Euclidean

3. How to investigate the model

4. Results of numerical simulations

5. Summary and outlook
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Lorentzian vs Euclidean



Euclidean model

: positive semi-definite

: complex           sign problem

SO(10) symmetry

The Euclidean model is well-defined without cutoff.
Krauth, Nicolai, Staudacher (’98)   Austing, Wheater (’01)

Numerical simulations showed SSB of SO(10) to SO(3) due to less 
fluctuations of the complex phase of Pfaffian for lower dimensions

Anagnostopoulos, Azuma, Ito, Nishimura, Okubo, Papadoudis (2020)Nishimura, Vernizzi (2000)

3D space emerges, but time does not emerge                 study the Lorentzian model

connection to worldsheet theory
: Dirac operator



Partition function of Lorentzian model

phase factor

polynomial in      ,  real
connection to 
worldsheet theory

Kim-Nishimura-AT (2011)

sign problem

gauge-volume of Lorentz symmetry is infinite 
Gauge-fixing of Lorentz symmetry

Asano, Piensuk, Nishimura, Yamamori (2024)



How to investigate the model



Complex Langevin method

complexify      and

We make a change of variables to introduce a time-ordering preserving holomorphy

: Langevin time ~discretized in practice                  
: Gaussian noises

complex Langevin equation

Nishimura, AT (2019)

Parisi (1983),  Klauder (1984)

zero eigenvalue of 
singular drift problem

expectation value of holomorphic 
observables can be calculated by taking 
samples around sufficiently large 

We use the complex Langevin method to overcome the sign problem.

We take the gauge in which      is diagonal.



To avoid the singular drift problem, we add a mass term to the fermionic action.

Avoiding the singular drift problem

Break SUSY

should be as small as possible

The effect of fermions is weakened for finite 

Break SO(9,1) to SO(6,1)xSO(3)

unique mass term



For large    , the bosonic degrees of freedom reduces effectively to (6+1)-
dimensional one.

Controlling the quantum fluctuation of 
bosonic matrices

: parameters that can control the quantum fluctuations of bosonic matrices

By choosing    and    appropriately, we can expect to realize a situation in 
which the effects of fluctuations of bosons and fermions are balanced

Eventually, we want to take target theory

Keep SO(6,1)xSO(3)

We add a bosonic mass term to control the quantum fluctuation of bosonic 
matrices, because the fermionic mass term weakens the effect of the quantum 
fluctuations of fermionic matrices



Supersymmetric deformation     

SO(9,1) SO(6,1)xSO(3)

SUSY 
deformation

16 SUSY 
preserved

Bonelli (2002)

Our present deformation (        ) is akin to SUSY deformation



Extracting the time evolution

small

small

We take the gauge in which      is diagonal.

has band-diagonal structure, which is
nontrivial dynamical property.
locality of time is guaranteed. 
~ emergence of time evolution

definition of time

The state of 
the universe 
at time 

Kim-Nishimura-AT (2011)



Results of numerical simulations



Set-up

Important questions Is real spacetime obtained?

Spacetime dimensionality?

weight       is complex

with various initial conditions:
(2+1)d, (3+1)d, (4+1)d configurations

bosonic model with (d+1) bosonic matrices

CLM cannot sample all the relevant saddle 
points in one simulation.

See what happens when we change 
initial configs.



Emergence of real spacetime

complex phase of space
Emergence of real spacetime

eigenvalues of 

real space 
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starting with (3+1)d initial config.

We obtain similar results in the cases in which 
we start with (2+1)d and (4+1)d configs



small

small

Band-diagonal structure
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Emergence of (3+1)-dimensional expanding space-time
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: eigenvalues of ~analog of moment 
of inertia tensor 

Initial configuration: (3+1)d space-time

expansion of
3-dim. space

After a critical time, 3 out of 6 directions 
are expanding ~ SSB of SO(6) occurs

6 EVs

3 EVs

SO(6)xSO(3)



Emergence of (3+1)-dimensional expanding space-time
: eigenvalues of ~analog of moment 

of inertia tensor 

Initial configuration: (2+1)d space-time
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Emergence of (3+1)-dimensional expanding space-time
: eigenvalues of ~analog of moment 

of inertia tensor 

Initial configuration: (4+1)d space-time
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Thermalization is under the way



Speculation on mechanism of SSB

if there are only two nonzero       at

For sufficiently small      , it is expected that spacetimes with at least 3 expanding 
directions are enhanced

Krauth, Nicolai, Staudacher (1998) 



Conclusion and outlook



 We found that the SO(6) rotational symmetry is spontaneously broken and 
(3+1)d expanding spacetime appears at some point in time  

 In order to investigate whether the (3+1)–dimensional spacetime emerges in the 
original model, we need to take the limits of                                                  
eventually 

 We observed independence of initial configurations. Namely, we observed (3+1)d 
expanding space-time starting with (2+1)d, (3+1)d and (4+1)d initial configs.

 We would like to perform simulations of the SUSY deformed model and 
take                          limit 

 We performed complex Langevin simulations of the Lorentzian type IIB 
matrix model

 We introduced a mass term for fermions to avoid the singular drift problem

 We introduced the mass term for bosons with     and     to balance the 
effects of fluctuations of bosons and fermions        

 This deformation breaks SO(9,1) to SO(6,1)xSO(3) and is akin to SUSY deformation
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