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Aim:

One-forms (sections of the cotangent bundle) on the 2-sphere
have the interpretation of the direct sum of sections of two line
bundles with Chern numbers ±2.
These correspond to holomorphic and anti-holomorphic forms.
This interpretation carries over to the standard quantum or
Podleś two-spheres.
We address a question: is such an interpretation possible for
nonstandard Podleś two-spheres?
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Quantum spheres

Quantum spheres are quantum homogeneous spaces of the quantum
group SUq(2).
The noncommutative coordinate complex algebra Oq(SL(2)) is

generated by u =

(
α β
γ δ

)
and relations

αβ = qβα, αγ = qγα, αδ = δα+ (q − q−1)βγ,

βγ = γβ, γδ = qδγ, αδ − qβγ = 1.

If q is real, the ∗-structure δ = α∗, β = −qγ∗ makes Oq(SL(2)) into
Oq(SU(2)) which can be completed to a C∗-algebra if q ∈ (0,1)
[Woronowicz ’86].
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Quantum spheres

Oq(SL(2)) is a matrix-type Hopf algebra, with comultiplication and
counit

∆(uij) =
∑

k

uik ⊗ ukj , ε(uij) = δij ,

and the antipode:

Sα = δ, Sβ = −q−1β, Sγ = −qγ, Sδ = α.

This is compatible with the ∗-structure of Oq(SU(2)).
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Quantum spheres

Noncommutative coordinate algebras of quantum spheres are left
coideal subalgebras of Oq(SU(2)), i.e. subalgebras B of Oq(SU(2))
such that ∆(B) ⊆ Oq(SU(2))⊗ B.
[Podleś ’87]: Coordinate algebras of quantum spheres Oq,s(S2) are
generated by

ξ = s(q−1β2 − α2) + (1 − s2)q−1αβ, η = s(qγ2 − δ2) + (s2 − 1)γδ,

ζ = s(βδ − qαγ) + (1 − s2)qβγ,

where s ∈ [0,1].The derived algebra relations are:

ξζ = q2ζξ, ηζ = q−2ζη, ξη = (s2 − ζ)(ζ + 1),

ηξ = (s2 − q−2ζ)(q−2ζ + 1).

Oq,s(S2) are ∗-subalgebras of Oq(SU(2)) with ζ∗ = ζ and η = ξ∗.
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Quantum line bundles over Oq,s(S2)

In NCG finitely generated projective (left or right) modules E over
an algebra B are interpreted as sections of vector bundles over
the NCG space represented by B.
For a left B-module projectivity means that the action map
B ⊗ E → E has a B-linear section (splitting).
Line bundles correspond to invertible modules, i.e. such E for
which there exists right B-module F such that F ⊗B E ∼= B.
There is a specially nice construction of NCG vector bundles for
quantum homogeneous spaces.
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Quantum line bundles over Oq,s(S2)

The right ideal J of Oq(SU(2)) generated by ζ, ξ + s, η + s is a
coideal in Oq(SU(2)), i.e.

∆(J) ⊆ Oq(SU(2))⊗ J + J ⊗Oq(SU(2)).

In consequence C = Oq(SU(2))/J is a coalgebra and
π : Oq(SU(2)) → C is a coalgebra epimorphism.
In consequence Oq(SU(2)) is a right C-comodule with coaction
∆R = (id ⊗ π) ◦∆.
Crucially,

Oq,s(S2) = {a ∈ Oq(SU(2)) | ∆R(a) = a ⊗ π(1)},

[Brzeziński ’97].
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Quantum line bundles over Oq,s(S2)

Unexpectedly, C has a basis of grouplike elements cn, n ∈ Z,

cn =



π

(
n∏

k=0

(
α+ qk−1sβ

))
= π

(
n−1∏
k=0

(
α+ qksγ

))
, n > 0,

π(1), n = 0,

π

( −n∏
k=1

(
δ − q−k−1sβ

))
= π

(−n−1∏
k=0

(
δ − q−ksγ

))
, n < 0,

[Brzeziński-Majid ’00], [Müller-Schneider ’99].
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Quantum line bundles over Oq,s(S2)

There is a map ℓ : C → Oq(SU(2))⊗Oq(SU(2)), which ensures
that Oq(SU(2)) is a C-equivariantly projective Oq,s(S2)-module
and generates line bundles.
Let ℓn := ℓ(cn). Then ℓ0 = 1 ⊗ 1 and, for all n ∈ N,

ℓn+1 =
(qγ + q−nsδ)ℓn(−β + q−nsα) + (α+ q−n−1sβ)ℓn(δ − q−nsγ)

1 + q−2ns2

ℓ−n−1 =
(δ − qn+1sγ)ℓ−n(α+ qnsβ) + (αqns − q−1β)ℓ−n(qnsδ + γ)

1 + q2ns2 ;

[Brzeziński-Majid ’00]
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Quantum line bundles over Oq,s(S2)

Let ℓn =
∑

i∈I ℓ
′
n,i ⊗ ℓ′′n,i .

For all n, ∑
i∈I

ℓ′n,iℓ
′′
n,i = 1, [Brzeziński-Majid ’00].

For all n, i , j ,

ℓ′′n,iℓ
′
n,j ∈ Oq,s(S2), [Brzeziński-Hajac ’03].

Hence, {ℓ′′n,i}i∈I generate projective left Oq,s(S2)-modules En,
while {ℓ′−n,i}i∈I generate projective right Oq,s(S2)-modules Ẽn.
Each of these modules can be interpreted as a line bundle
(viewed as a left or right module, correspondingly) of the
topological charge n ∈ Z.
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Bundles of charges ±2

E2 is generated by:

e+
1 = β2−s(1+q−2)αβ+q−1s2α2, e+

3 = −qδ2+s(q+q−1)γδ−s2γ2,

e+
2 = qβδ − qs(1 + (q + q−1)βγ) + s2αγ.

Ẽ−2 is generated by:

e−
1 = q2γ2 + s(q + q−1)γδ + q−1s2δ2,

e−
2 = −q2αγ − qs(1 + (q + q−1)βγ)− q−1s2βδ,

e−
3 = −qα2 − s(1 + q−2)αβ − q−2s2β2.

Note e−
i = e+∗

i .
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The case of the standard sphere

The case s = 0 or the standard quantum sphere Oq(S2) is very
different from other cases.
Make C a Hopf algebra with the product cncm = cm+n and
antipode Scn = c−n, i.e. C = O(U(1)) = C[z, z−1].
Then π is a Hopf algebra map and consequently ∆R is an algebra
map.
This makes Oq(SU(2)) a strongly Z-graded algebra, En = Ẽn and

Oq(SU(2)) =
⊕
n∈Z

En, EnEm = Em+n.

There is a natural covariant 2D-calculus (no such calculus if s ̸= 0,
[Podleś ’89]).
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Oq(SU(2)) =
⊕
n∈Z

En, EnEm = Em+n.

There is a natural covariant 2D-calculus (no such calculus if s ̸= 0,
[Podleś ’89]).
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2D calculus on Oq(S2)

By a 1-st order differential calculus on an algebra B we mean a
B-bimodule Ω together with a map d : B → Ω such that

d(ab) = d(a)b + ad(b), Ω = {
∑

i

aid(bi) | ai ,bi ∈ B}.

[Woronowicz ’89] There is a unique 3D calculus on Oq(SU(2))
compatible with the Z-grading.
Ω is a free left Oq(SU(2))-module gen. by ω0, ω± with degrees

|ω0| = 0, |ω±| = ±2.

It descends to a calculus Γ on Oq(S2) generated by e+
i ω−,e−

i ω+,
so that Γ ∼= E2 ⊕ Ẽ−2.
The calculus splits into antiholomorphic and holomorphic parts

∂̄ : Oq(S2) → E2, ∂ : Oq(S2) → Ẽ−2.
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The case of Oq,s(S2)

Want to construct (anti)holomorphic calculi on Oq,s(S2) with forms
E2, Ẽ−2.
Podleś’ “no-go” theorem tells us the above method will not work.
Idea: use the action of the universal enveloping algebra Uq(sl2) on
Oq(SU(2)).
This will help to construct calculi on Oq,s(S2)

∂̄(ξi) = e+
i , ∂(x) = ∂̄(x∗)∗,

where ξi = ξ, ζ, η and x ∈ Oq,s(S2).
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E2, Ẽ−2.
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Brzeziński (Swansea & Białystok) Quantum spheres Corfu, September 2025 14 / 20



The case of Oq,s(S2)

Want to construct (anti)holomorphic calculi on Oq,s(S2) with forms
E2, Ẽ−2.
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Uq(sl2) and its action on Oq(SU(2))

Uq(sl2) is generated by K±1, E , F with relations:

KE = q2EK , KF = q−2FK , [E ,F ] =
K − K−1

q − q−1 ,

and Hopf algebra structure, K is grouplike and

∆E = E ⊗ K + 1 ⊗ E , ∆F = F ⊗ 1 + K−1 ⊗ F ,

S(E) = −EK−1, S(F ) = −KF .

Hopf algebra dual pairing ⟨−,−⟩ : Uq(sl2)×Oq(SL(2)) → C is:

⟨K , α⟩ = q−1, ⟨K , δ⟩ = q, ⟨E , γ⟩ = ⟨F , β⟩ = 1.
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Uq(sl2) and its action on Oq(SU(2))

The left action of Uq(sl2) on Oq(SL(2)), which is given by

X ▷x = x (1)⟨X , x (2)⟩, for all X ∈ Uq(sl2), x ∈ Oq(SL(2)),

comes out as

E ▷α = β, E ▷β = 0, E ▷γ = δ, E ▷δ = 0,

K ▷α = q−1α, K ▷β = qβ, K ▷γ = q−1γ, K ▷δ = qδ,

F ▷α = 0, F ▷β = α, F ▷γ = 0, F ▷δ = γ.

Uq(su2) is a ∗-Hopf algebra with K ∗ = K ,E∗ = KF .The pairing is
compatible with the ∗-structure in the sense that,

⟨K , x∗⟩ = ⟨K−1, x⟩, ⟨E , x∗⟩ = −q⟨F , x⟩, ⟨F , x∗⟩ = −q−1⟨E , x⟩.
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Differential structures on Oq,s(S2)

By construction of the left action Uq(sl2) on Oq(SU(2)),
X ▷(xy) = (X (1) ▷x)(X (2) ▷y).
Since K is grouplike, σ = K ▷− is an algebra auto of Oq(SU(2)).
If we find X such that

∆(X ) = X ⊗ K + 1 ⊗ X and X ▷ξi = e+
i ,

then X ▷− : Oq,s(S2) → E2 ⊆ Oq(SU(2)) will satisfy σ-skew
Leibniz rule.
This will give a derivation ∂̄ : Oq,s(S2) → Ω(0,1) = E2σ(Oq,s(S2)).
[Noumi-Mimachi ’90] Any such X is necessarily a linear

combination of E ,K − 1 and KF , but do they exist?
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Brzeziński (Swansea & Białystok) Quantum spheres Corfu, September 2025 17 / 20



Main theorem

Theorem (with R Ó Buachalla)
For any a, c ∈ C, let

Es = aE +
s(a − c)
q − q−1 (K − 1) + s2qcKF .

Then ∆(Es) = Es ⊗ K + 1 ⊗ Es, and

Es ▷ξ = (a − cs2)e+
1 , Es ▷ζ = (a − cs2)e+

2 , Es ▷η = (a − cs2)e+
3 .

Hence, if a ̸= s2c, then Ω(0,1) = E2σ(Oq,s(S2)), together with

∂̄ : Oq,s(S2) → Ω(0,1), x 7→ (a − s2c)−1Es ▷x ,

is a first order differential calculus on Oq,s(S2).
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Main theorem (cd)

Theorem (with R Ó Buachalla)

Let σ̄ = K−1 ▷− and

F s = −qāF +
s(ā − c̄)
q − q−1 (K

−1 − 1)− s2c̄K−1E .

Then Ω(1,0) = σ̄(Oq,s(S2))Ẽ−2 together with

∂ : Oq,s(S2) → Ω(1,0), x 7→ (ā − s2c̄)−1F s ▷x ,

is a first order differential calculus on Oq,s(S2).
Furthermore,Ω(1,0)∗ = Ω(0,1), and, for all x ∈ Oq,s(S2),

∂̄(x∗) = ∂(x)∗.
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Conclusions

Theorems show how (suitably enriched) sections of line bundles
over Oq,s(S2) with topological charges ±2 can be interpreted as
holomorphic/antiholomorphic forms.
One can set d = ∂ + ∂̄ and this will generate the ful bimodule of
one-forms Ω1 ⊆ Ω(1,0) ⊕ Ω(0,1).
Open question: Is Ω1 = Ω(1,0) ⊕ Ω(0,1)?
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