AN INDEX FOR FLUX VACUA

[hep-th/2405.04584] [hep-th/251x.xxxxx] (with P. Balavoine)

Severin Lüst

LPTHE
CNRS / Sorbonne Université

Workshop on Quantum Gravity and Strings
Corfu Summer Institute
September 11, 2025

EXISTENCE OF REALISTIC STRING VACUA

➤ Main problem for String Phenomenology:

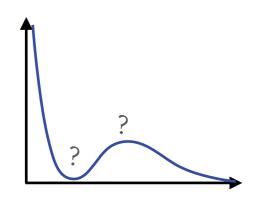
Determine the existence (and properties) of realistic string theory vacua / backgrounds.

(labeled, e.g., by a choice of compactification space, branes, fluxes, ...)

Large body of literature on the existence of *DGKT*, *KKLT*, *LVS*, *de Sitter* vacua, scale separation, non-susy AdS, $\mathcal{N} = 1$ Minkowski, ...

➤ Lower-dimensional / EFT perspective:

Minima (or critical points) of a scalar potential over a scalar field (moduli) space

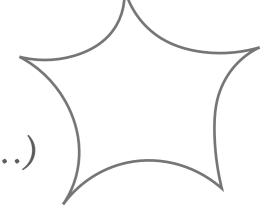


MODULI SPACES AND SUPERSYMMETRY

 \triangleright Extended ($\mathcal{N} \ge 2$) supersymmetry:

exact moduli space

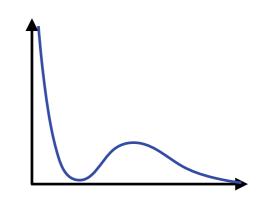
(e.g. dilaton, geometric moduli of compactification, ...)



➤ no or little ($\mathcal{N} \leq 1$) supersymmetry:

Quantum effects:

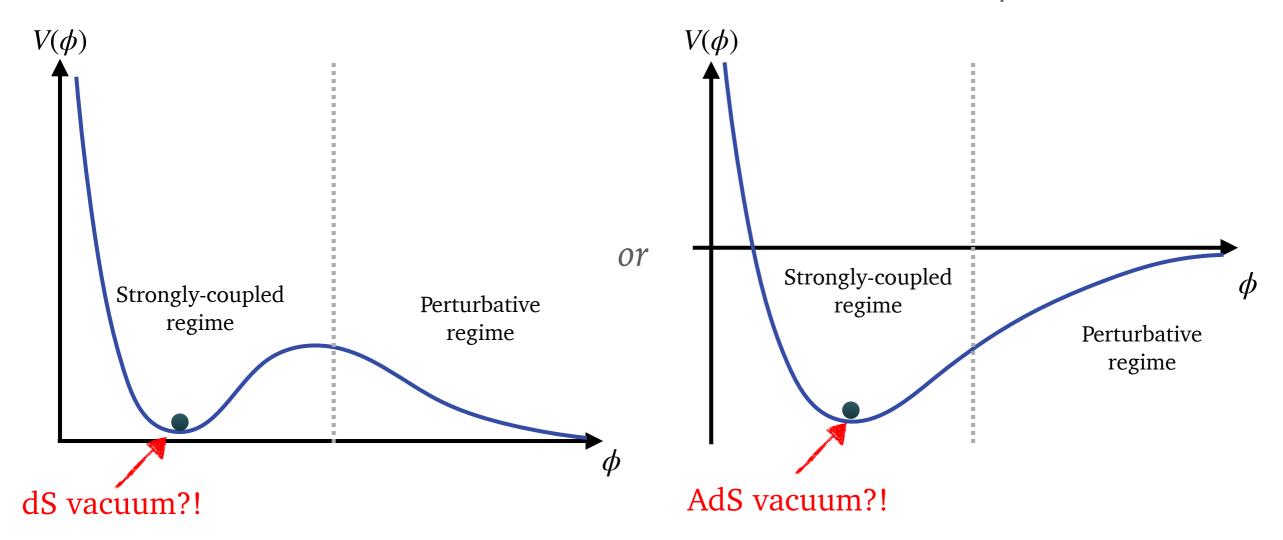
generate a potential $V(\phi)$ for moduli



- ➤ Dine-Seiberg Problem: [Dine, Seiberg '85]
 - Quantum corrections: series expansions around asymptotic boundaries at $\phi \to \infty$
 - critical points: only in the interior / strong coupling?

run-away unless one takes higher order corrections into account:

$$\lim_{\phi \to \infty} V = 0$$



at minimum of V:

higher order \approx first order corrections

strong coupling / interior!

DE SITTER NO-GO

➤ Possible solution to the Dine-Seiberg problem:

Generate a potential at the classical / tree-level

Fluxes!

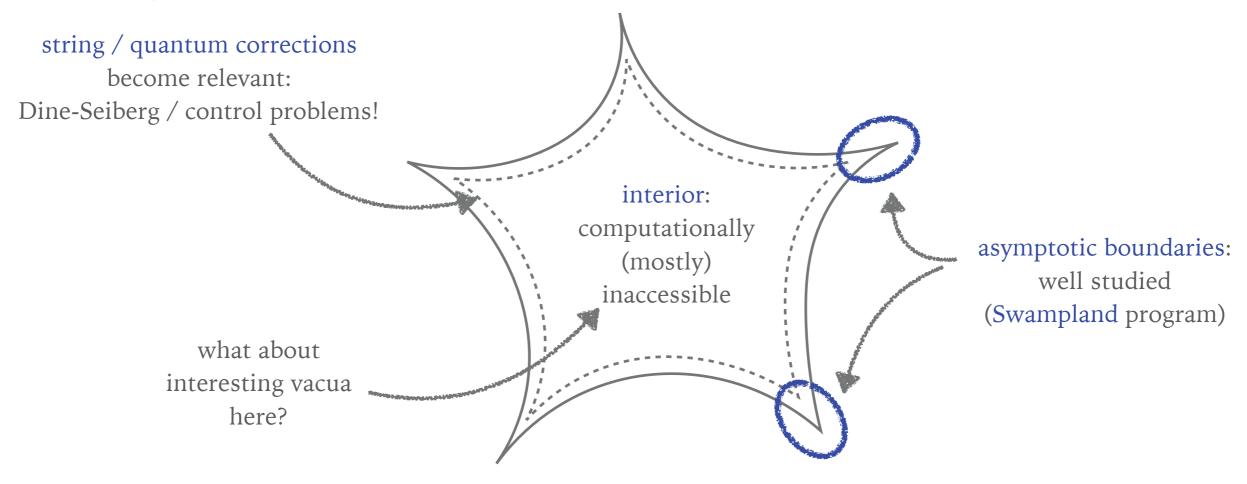
- ➤ However: [Maldacena, Nuñez '00] and many others: no smooth de Sitter compactification in two-derivative supergravity
- ➤ de Sitter vacua from String Theory must involve:
 - a) quantum effects or
 - b) stringy ingredients (higher-derivative terms, O-planes, ...)

Danger of
Dine-Seiberg like
control issues!

long standing debate on consistency and control of de Sitter (and even N=1!) solutions (KKLT, LVS, DGKT, ...)

ABSTRACT VIEW ON THE PROBLEM:

cartoon of the moduli space:



Goal / Idea:

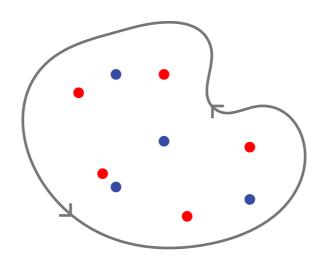
boundary behavior of $V(\phi)$

information on string vacua in the interior of moduli space?

NON-HOLOMORPHIC CONTOUR INTEGRALS

CAUCHY'S ARGUMENT PRINCIPLE

 $ightharpoonup f\colon \mathbb{C} \to \mathbb{C}$ meromorphic function, C closed contour



> count zeros and poles inside C by contour integral:

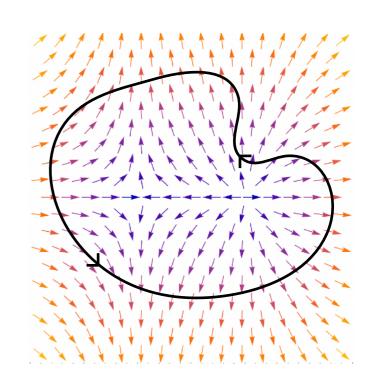
$$\frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} dz = \# zeros - \# poles$$
 (including multiplicities)

what about non-holomorphic / real functions?

INDEX FOR REAL VECTOR FIELDS

- ➤ $\overrightarrow{X} = (X^1, X^2)$ vector field on $U \subseteq \mathbb{R}^2$ (differentiable; finitely many, isolated zeros / poles)
- ightharpoonup C closed curve in U $(\overrightarrow{X} \text{ non-zero and well-defined on } C)$
- ➤ Define the index:

$$I_C = \frac{1}{2\pi} \oint_C \frac{\epsilon_{ij} X^i dX^j}{\left\| \overrightarrow{X} \right\|^2}$$



➤ Relation to complex functions:

$$z = x^{1} + ix^{2}$$

$$f(z, \bar{z}) = X^{1} + iX^{2}$$

$$\Rightarrow I_{C} = \frac{1}{2\pi i} \oint_{C} \frac{\partial_{z} f dz + \partial_{\bar{z}} f d\bar{z}}{f(z)}$$

INDEX FOR REAL VECTOR FIELDS

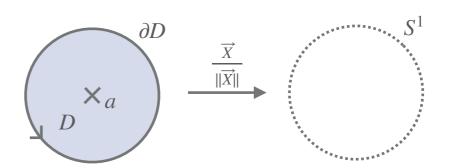
Counting of zeros / poles:

(see also Poincaré-Hopf theorem)

$$I_C = \sum_{i} ind_{x_i}(\overrightarrow{X}) \in \mathbb{Z}$$

$$x_i: zeros / poles of \overrightarrow{X} encircled by C$$

- ➤ Index of a point:
 - $D \subset U$ small disc with center a (no other zeros / poles within D)



- ind_a(\overrightarrow{X}): degree (= winding number) of the map $\frac{\overrightarrow{X}}{\|\overrightarrow{X}\|}$: $\partial D \to S^1$
- ➤ Remark: Does not distinguish between zeros and poles!
- ➤ Higher-dimensional generalisation:

$$I_C = \frac{1}{\operatorname{vol}(S^n)} \oint \frac{\epsilon_{i_1 \dots i_n} X^{i_1} dX^{i_2} \wedge \dots \wedge dX^{i_n}}{\|\overrightarrow{X}\|^n} = \sum_i \operatorname{ind}_{x_i}(\overrightarrow{X})$$

- ➤ Idea: apply to the gradient of the potential, $\overrightarrow{X} = \overrightarrow{\nabla} V$ but: critical points can be minima / maxima / saddle points
- ➤ better: N=1 SUGRA F-term potential:

$$V = e^{K} \left(g^{i\bar{j}} D_{i} W \overline{D}_{\bar{j}} \overline{W} - 3 |W|^{2} \right)$$

$$DW = 0 \Leftrightarrow$$

supersymmetric minimum (stable in the BF sense) of V

ightharpoonup Compute index I_C for X=DW (as real vector field)

(if DW is non-singular)

$$I_C = \sum_i ind_{x_i}(DW) \neq 0$$
 $DW = 0$ (somewhere in the interior of the moduli space)

sufficient condition for susy minimum of V

APPLICATION: FLUX VACUA

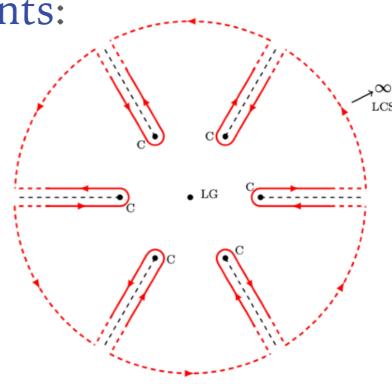
CLASSICAL FLUX VACUA OF M-THEORY

- ➤ M-theory on Calabi-Yau 4-fold $M_{11} = M_4 \times CY_4$ [Becker, Becker '96]
- ➤ Flux compactification: (completely analogous to IIB on 3-fold & related via F-theory)

$$h^{3,1}$$
 complex str. moduli (volumes of 4-cycles) stabilized by $G_4 \neq 0$ (4-form flux)

- Superpotential: $W = \int_{CY_4} G_4 \wedge \Omega$ [Gukov, Vafa, Witten '99]
- F-term condition: $D_iW=0 \Leftrightarrow \star G_4=G_4$ classical stabilization of c.s. moduli moduli
 - (*) $D_iW = 0$ does not include Kähler moduli, and does not yet guarantee vacuum of the full quantum theory (see, e.g., [Kachru, Kallosh, Linde, Trivedi '03], [Balasubramanian, Berglund, Conlon, Quevedo '05])

- Example: Flux vacua on the Fermat mirror sextic CY 4-fold
- Moduli space geometry: Period integrals: $\Pi^I = \int_{A^I} \Omega$ [Grimm, Ha, Klewers '09] [van de Heisteeg '24]
- ➤ There are 3 critical locii / degeneration points:
 - $\psi = \infty$: large complex structure point
 - $\psi^6 = 1$: conifold point
 - $\psi = 0$: Landau-Ginzburg / Fermat point
- Periods $\Pi(\psi)$ exhibit monodromies around these points \longrightarrow branch cuts
- ➤ Integration contour for index: encircle all singular points and branch cuts



$$I(g^{I}) = \sum_{i=1}^{6} \left(I_{i}^{b.c.} + I_{i}^{C} + I_{i}^{LCS} \right)$$

➤ Large complex structure:

• Expand periods in $t = x + iy \sim \log \psi$ for large y:

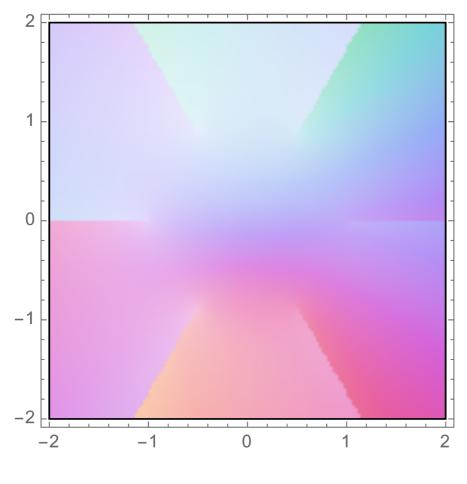
$$D_t W = -\frac{i}{2} g^1 y^3 + \left(g^2 - xg^1\right) y^2 - \left(x^3 + \frac{15x}{4} - \frac{525\zeta(3)i}{16\pi^3}\right) g^1 + \left(3x^2 - 3x + \frac{3}{4}\right) g^2 + \left(6x - 3\right) g^3 - g^4 + \mathcal{O}\left(y^{-1}\right)$$

- LCS contour: $x \in (0,1)$ at $y \to \infty$
- Using $D_{\psi}W \sim \psi^{-1}D_{t}W$: $I_{0}^{LCS} = -\frac{1}{3}$ unless $g^{1} = g^{2} = 0$

> conifold:

- Similar procedure: $I_0^C = 0$ unless $g^I \sim (1,0,0,0,1)$
- ➤ branch cuts:
 - $I_0^{b.c.}$ probes interior of moduli space
 - requires evaluation of full periods

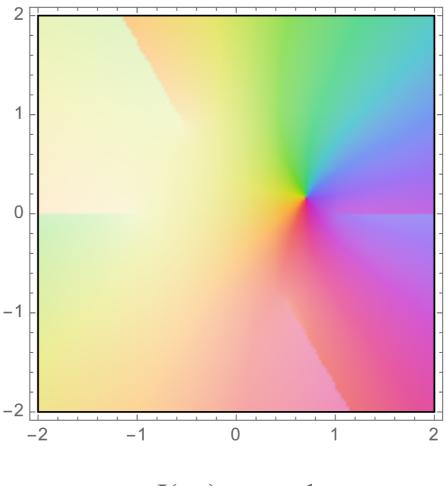
$$g_a = (1,2,1,1,0)$$

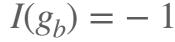


$$I(g_a) = 0$$

is consistent with the absence of flux vacua!

$$g_b = (1,2,2,1,0)$$



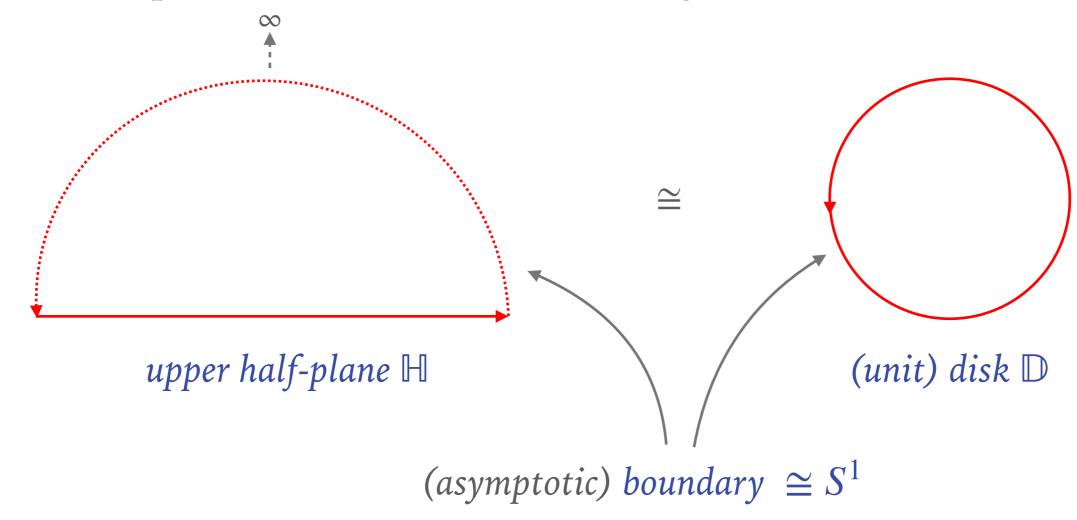


predicts flux vacuum in the interior of moduli space

THE BOUNDARY OF THE COVERING SPACE

- > Problem: branch cuts probe the interior of the moduli space!
- ➤ Solution: work on the (universal) covering space.

 (c.f. marked moduli space [Raman, Vafa '24][Delgado, van de Heisteeg, Raman, Torres, Vafa, Xu '24])
- ➤ For one-parameter CY manifolds (e.g., mirror sextic):



ACTION OF THE MONODROMY GROUP:

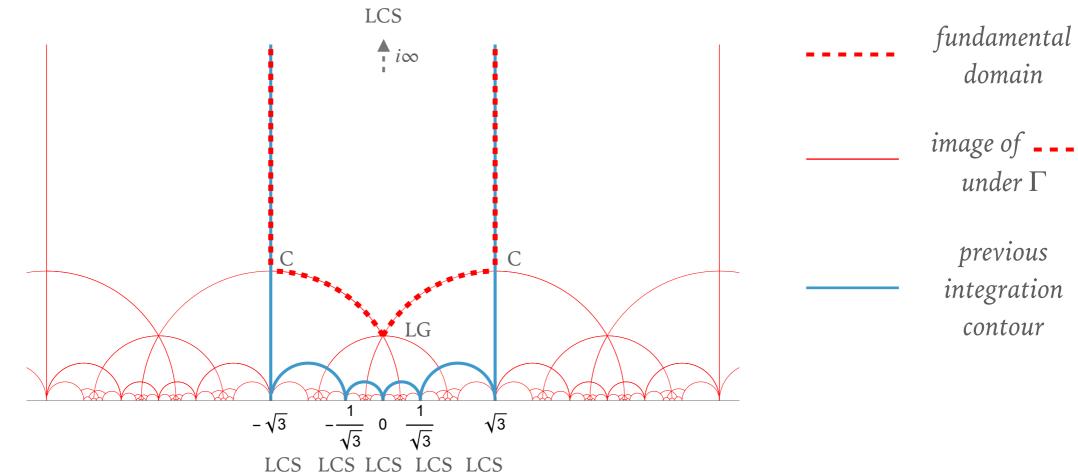
[P. Balavoine, SL, to appear]

- ightharpoonup Identify the monodromy group Γ as a subgroup of $PSL(2,\mathbb{R})$:
- ➤ Mirror sextic:

(see [Candelas, de la Ossa, Green, Parkes '91] for mirror quintic)

$$\gamma_{LCS} = \begin{pmatrix} 1 & 2\sqrt{3} \\ 0 & 1 \end{pmatrix}$$
 $\gamma_{LG} = \frac{1}{2} \begin{pmatrix} \sqrt{3} & 1 \\ -1 & \sqrt{3} \end{pmatrix}$
 $\gamma_C = \gamma_{LG} \cdot \gamma_{LCS} = \frac{1}{2} \begin{pmatrix} \sqrt{3} & 7 \\ -1 & -\sqrt{3} \end{pmatrix}$

➤ Action on the covering space and fundamental domain:



 \blacktriangleright Monodromy group Γ : map periods from fundamental region onto full upper half-plane:

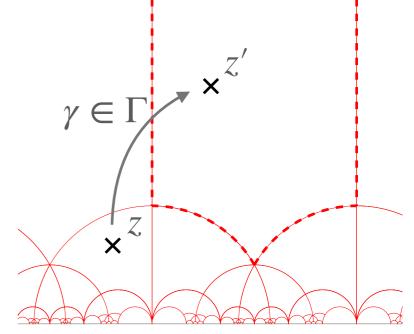
$$\Pi^{i}(z) = M(\gamma)^{i}{}_{j}\Pi^{j}(z')$$

➤ Problem: Periods diverge at LCS

for
$$\frac{\log \psi}{2\pi i} \sim t \to i\infty$$
: $\Pi^n \sim t^n$ $(n = 0,...,4)$

➤ Normalized periods:

$$\overline{\Pi}^n \equiv \frac{\Pi^n}{\Pi^0}$$



- meromorphic on (open) upper half-plane
- continuous on closed upper half-plane (including boundary / real axis!)

 \triangleright Γ : Fuchsian group of first kind:

maps LCS point at $i\infty$ densely onto the real line

➤ Periods on the boundary $\partial \mathbb{H} \cong S^1$:

defined purely algebraically in terms of:

- a) monodromy group Γ
- b) asymptotic periods at LCS $(\prod^n \sim t^n)$
- ➤ Index as contour integral along $\partial \mathbb{H} = i \infty \cup \mathbb{R}$:

$$I(\partial \mathbb{H}) = ind_{i\infty}(DW) + \sum_{x \in \mathbb{R}: DW(x)=0} ind_x(DW)$$

$$= \max_{x \in \mathbb{R}: DW(x)=0} ind_x(DW)$$

$$= \min_{x \in \mathbb{R}: DW(x)=0} ind_x(DW)$$

$$= \min$$

CONCLUSIONS

- ➤ Index defined by contour integral:

 Sufficient condition for critical points of effective potentials
- ➤ Particularly well-suited for N=1 F-term vacua (critical points of W are minima of V)
- Example: classical flux vacua on mirror sextic
 - on fundamental domain:
 branch cuts probe interior of the moduli space
 - on the covering space: purely algebraic evaluation of the contour integral in terms of LCS boundary information possible

THANK YOU!