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@ Learning from Data
(@ Tropical geometry

@ Learn to count



Learning from Data

©

Given N observations (x;,y;) € X x V,i=1,..., N (Data),
The objective is to find a function f, : X — Y (model) with § € R
(Parameters)

©

to correct predict the observation x € X' (Training data)

©

to correct predict a new previously unseen x**¥ € X’ (Testing data)

©
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Learning from Data

RGB images ( H x W pixels)

X € F(ZH<W R3)
Y= {_17 1}
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Learning from Data

1D Signal of length M.

HEEH

Sinus Bradycardia Sinus Tachycardia
[1,0,0] [0,1,0]
X € F(zZM R)

Y is the probability simplex.

A AN A AN
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Normal
10,0,1%
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Learning from Data

3D Point Cloud (M points)

[1,0,0] [0,1,0]

X € F(RM*3 R)
Y is the probability simplex.

[0,0,1]
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Learning from Data

Given N observations (x;,y;) € X x Y,i=1,..., N (Data),

The objective is to find a function fy : X — ) (model) with 6 € RY
(Parameters)

o to correct predict the observation x € X’ (Training data)

©

©

o to correct predict a new previously unseen x**¥ € X' (Testing data)

Risk of a model
The risk associated with the model fy is defined as the expectation of the
loss function loss : Y x Y — R, i.e,

risk(fy) = /loss(fg(x),y)dP(X,y)
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Learning from Data

Given N observations (x;,y;) € X x Y,i=1,..., N (Data),

The objective is to find a function fy : X — ) (model) with 6 € RY
(Parameters)

o to correct predict the observation x € X’ (Training data)

©

©

o to correct predict a new previously unseen x**¥ € X' (Testing data)

Empirical Risk of a model |

The empirical risk associated with the model fy is defined as the average
of the loss function on training data

riskenp(fy) = Zloss(fg i), Yi)
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Learning from Data

ERM principle
The empirical risk minimization principle states that the learning
algorithm should choose a model £ which minimize the empirical risk over
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Learning from Data

ERM principle
The empirical risk minimization principle states that the learning
algorithm should choose a model f;* which minimize the empirical risk over
the model class H:
f; = arg min riskeny(f 2
0 g ALY p(fo) (2)

The two main questions are:
@ Which family of functions are we going to optimize?

@ How do we perform the optimization?
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Learning from Data

empirical risk minimization principle

The empirical risk minimization principle states that the learning
algorithm should choose a model £ which minimize the empirical risk over
the model class H:

f;' = arg min riskeyp(fy) +
[Z] ng’H emp( 9)

The two main questions are:
@ How do we perform the optimization?

@ Which family of functions are we going to optimize?
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Nowdays Approach

@ Static Models: They are composed of linear functions
fg, := f; : R% — R%+1 called layers with nonlinear activation
functions applied componentwise to all the layers.

fo fi fr
XS ... 5.5y

o universal approximators (in the sense that they are dense in L?).
o they do not have many guaranteed properties besides continuity.

@ Dynamic models
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Nowdays Approach

@ Dynamic models?

x B S K
g | lgi 1&g
Yo Yi Yr

ARIMA models

Recurrent neural networks
Long short-term memory
Diffusion models

© © 0 o

L Algebraic Dynamical Systems in Machine Learning, |. Jones et al., 2024, Applied
Categorical Structures
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Static Models

o Neural Networks: fy = 0] a(0] j0(...0J o(6] x)))
Withdraws:

@ Non-convex optimization problems.

@ Generalization guarantees in the overparameterized regime.

@ Energy consuming in both training and inference.

@ Too big to fail?
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Adversarial Examples : Non-Lipschitz functions

o Given a model fy and a small perturbation &, we call x?@ an

adversarial example if there exists x, an example drawn from the
benign data distribution, such that ||fg(x) — fo(x2®)|| > & and
lx — x| < e.

o An human user would still visually consider the adversarial input x2@

similar to or the same as the benign input x

o Usually, we are interested in adversarial examples for benign samples
X, i.e., samples where the model gives a correct prediction.
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Non-Lipschitz functions

Figure: x + € = x?. For a CNN, the prediction in x is a Camel, but for x?" is a
dog
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Non symmetries

‘plastic_bag', 0.54238236
'Egyptian_cat', 0.3396838

'electric_ray', 0.8287997

‘lynx', 0.47152225

e
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Include invariances

o Translation Invariances — Convolutional version
o Symmetries — Group CNNs

o Other geometries?
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Geometric Deep Learning
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Figure: Beyond Euclid: An lllustrated Guide to Modern Machine Learning with
Geometric, Topological, and Algebraic Structures, M. Papillon et al., 2025
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Tropical Version

The adjective “tropical” was coined by French mathematicians Dominique
Perrin and Jean-Eric Pin, to honor their Brazilian colleague Imre Simon, a
pioneer of min-plus algebra as applied to finite automata in computer
science.

Tropical geometry is a marriage between algebraic geometry and

polyhedral geometry. A piecewise-linear version of algebraic geometry.
[Maclagan and Sturmfels 2015]
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Tropical Semifield

Rmax = RU{—00} equipped with

a+ b= max(a,b) and a x b = a+ b,

0= -0 1=0

Dual semifield: R,;, = R U {+oc0}

equipped with a + b= min(a, b), instead of max.
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15

0.5

05 1 15 2
Figure: f(x)=min(max(x-0.2,0.3),max(x/2,0.7))
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(R

11

Figure: The tropical line f(x) = max(x + 1,1)
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X

—4 —2 2 4

Figure: The tropical parabola f(x) = max(1 + 2x,2 + x,0)
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Tropical Approach

@ Hybrid Static Models: They are composed of linear function followed
by tropical functions fy, := f; : RY — R+1,

f f f
P L

o universal approximators?
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Theorem
([Gorokhovik et al., 1994][Bartels et al., 1995][Ovchinnikov, 2002])

Let f be a PL function on a closed convex domain Q2 C R" and

{g1 = Pix+ a1, - ,84 = Bax + g} be the set of the d linear
components of f, with ;,a; € R". There is a family {K;};c; of subsets of
set {1,---,d} such that

f(x) = maxmin gj(x), x € Q. (3)
i€l jEK,'
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After Activation Learning Full Network Learning
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Figure: First Row: Left: Random Initialisation with (14%) of accuracy. We use a
simplified version of proposed activation min(max(ox + ag, S1x + a1, az), a3),
with initialisation max(min(max(x,0),6), —6) Centre: Training only activation
functions (92.38%), Right: Training Full Network (98,58%). Second Row:
t-SNE visualisation of last layer is the 10-classes MNIST prediction for a CNN.
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Include invariances

o Translation Invariances — Convolutional version —
Sup-convolutions

o Symmetries — Group CNNs — Group Morphology 2
o Other geometries? — Working in progress

2V. Penaud—Polge et al. Group Equivariant Morphological Networks, SIAM JOIS,
2025 (Accepted)
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Sup convolution

We study here functions f : E — R, where @ it allowed to be
extended-real-valued, i.e., to take values in R = [—00, o0]. Accordingly,
the set of all such functions is denoted by F(E,R).

Definition
The sup-convolution dy(f) of f is defined by:

dg(F)(x) := ;gg{f()/) +0(x—y)} = vsvlé%{f(x —w)+0(w)} (4)

where 0 € F(E,R) is the (additive) structuring function which determines
the effect of the operator. Here the inf-addition rule co — 0o = oo is to be
used in case of conflicting infinities. sup f and inf f refer to the supremum
(least upper bound) and infimum (greatest lower bound) of f. In the
discrete case where the function is a finite set of points, max and min are
used.
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Inf convolution

Definition |
The inf-convolution ¢y(f), is the adjoint operator to the sup-convolution
4, and it is defined as

ol F)() 1= ~03(= ) = Inf {F() = 0y = x)} = inf {F(x+w) — 0(w)
(5)
where the transposed structuring function is 6(x) = (—x).
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Vf,g € F(E,R)

@ The operators (4) and (5) are translation invariant.

@ (4) and (5) correspond to one another through the duality relation
do(f)(x) < g(x) < f(x) <eg(g)(x), called adjunction or Galois
connection.

@ An operator ¢ is called increasing if f(x) > g(x) = &(f)(x) > &(g)(x)
Vx. The sup-conv (4) and inf-conv (5) are increasing for all 6.

@ An operator ¢ is called extensive (resp. antiextensive) if
E(F)(x) > f(x) (resp. &(f)(x) < f(x)), Vx. The sup-conv (4) (resp.
erosion (5)) is extensive (resp. antiextensive) if and only if 6(0) > 0,
i.e., the structuring function evaluated at the origin is non-negative.

@ co(f)(x) < f(x) < dg(f)(x) if and only if 6(0) > 0.

@ 0p (resp. £p) does not introduce any local maxima (resp. local
minima) if # < 0 and #(0) = 0. In this case, we say that 6 is centered.
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Theorem (Maragos (1989))

Consider an upper semi-continuous operator V acting on an upper
semi-continuous function. Let Bas(V) = {g;}ic/ be its basis and

Bas(V) = {h;}jey the basis of the dual operator. If V is a Tl and
increasing operator then it can be represented as

V(F)(x) = sup(fSg)lx)=sup inf {f(x+y)—gly)} (6)

iel iel Y€
= inf (f © h))(x) = inf f(x — h; 7
inf (F@h)0) = infl sup {flx=y)+h(n)} ()
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Example of Max-Plus convolution by iterating

Example of Min-Plus convolution by iterating
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Closure and Kernel Operator

Definition |
Given a Galois connection with lower adjoint F and upper adjoint G, we
can consider the compositions G o F, known as the associated closure
operator, and F o G , known as the associated kernel operator. Both are
monotone and idempotent, and we have f < G o F(f) for all f in A and

F o G(f) < f for all b in B.
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Example of Closure Operator by changing scale parameter
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Assume a static model composed of tropical functions fy. :== f;. Then the
static model is increasing and extensive (or antiextensive). Additionally,
the adjoint operator give a closed-form for f;*k

fo fi
X/N X\
- Y

3T. Leeuwen et al, , An invertible generative model for forward and inverse problems,
2025.
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Assume a static model composed of tropical functions fy. :== f;. Then the
static model is increasing and extensive (or antiextensive). Additionally,
the adjoint operator give a closed-form for f;*k

fo fi
X/—\ X\
- Y

3 We can do something that cannot be done with plus-times convolutions?.

3T. Leeuwen et al, , An invertible generative model for forward and inverse problems,
2025.
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Three cats and two dogs

Generate image

Enter a negative prompt
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We can learn to count!

=121, h,:lb
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Reconstruction®

Definition

Vf,g € F(E,R), the reconstruction of f from g is defined as :

YEQyEelyy, zey

REC(f,g)(x) = max <f(y) A min g(z)) . (8)
where [, denotes the set of path between x and y.

Note that REC(f, g)(x) is increasing and antiextensive operator.

*Blusseau, S. et al(2025). Cell counting with trainable h-maxima and connected
component layers. JMIV 67(3), 1-27.
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— f—nh
—— HMAXx(f)

(a)
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Example of Reconstruction by Max-plus with different parameters of
dynamic

Example of Reconstruction by Min-plus with different parameters of
dynamic

I SEEEES VEUASCOFORERO(PS)]  Tropical Geometiy on Learning September 18,2025 40/45



Example of Reconstruction by Max-plus with different parameters of
dynamic
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Predicted Dynamics

resize(256,256) 4
E—— 1
M8 Preprocessing HMAX b
Original RGB
CCCt, hi RMAX(HMAX;, )

Predicted Cell Counting _

CCC(EMAX;, )

. . . ) Predicted Cell Location
LY =aLli.. + BLipunt = ﬁnmmxh; (I) — HMAX;, (I)[|5 + B|CCCT — CCC(EMAX;, ) EMAX:

ht
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[ Dataset | Method | #Param [ Aer(%) | Terw(%) | MAE [ MPE(%) |
Lazard et al [3] 1,760,000 9.28 8.72 - -
Joint loss, (MB,-1) 16,675 12.6 £0.6 10.4 £0.5 5.82 £0.3 | -5.47 £0.8
TRP1 [3] Joint loss, (MB,N=50) 16,675 13.6 £1.2 11.1 £0.8 6.21 £0.45 | -7.15 +1.8
Count. loss (MB, -1) 16,675 13.7 £1.3 11.0 £1.1 6.2 0.6 -8.60 £1.8
Count. loss (MB, N=50) 16,675 12.9 £0.36 | 10.4 £0.38 | 5.84 £0.2 | -7.76 +0.81
Morelli et al [4] 888,977 - - 3.09 5.13
Fluorescent Joint loss (MB, -1) 16,675 344 £2.6 | 28.6 £0.4 | 2.89 £0.04 -9.1 £5.6
Neuronal Joint loss (MB, N=50) 16,675 33.0 £2.1 | 28.1 £0.7 | 2.84 £0.07 | -6.05 +3.5
Cells [4] Count. loss (MB, -1) 16,675 31.7 £1.2 | 281 +0.7 | 2.84 £0.08 712 £1.6
Count. loss (MB, N=50) 16,675 32.1 +£1.2 | 25.3 £0.8 | 2.56 +0.08 | -7.17 £3.3
Unet [22] 7,852,033 | 12.1 £2.1 11.8 £1.9 6.31 £1.0 11.2 £2.5
Joint loss (MB, -1) 16,675 6.98 £0.7 | 8.09 £0.6 | 4.34 £0.33 | 0.25 £14
Cellpose [20] Joint loss (MB, N=50) 16,675 7.01 £0.93 | 7.97 £0.82 | 4.28 £0.44 | 1.35 +£1.34
Count. loss (MB, -1) 16,675 7.10 £1.2 | 7.47 £1.7 | 4.01 +0.89 0.94 £1.2
Count. loss (MB, N=50) 16,675 8.87 £1.2 10.3 £1.3 5.52 £0.7 4.75 £2.3
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Thanks!

Collaborators:
@ Valentin Penaud—Polge
@ Mihaela Dimitrova
@ Samy Blusseau
@ Gustavo Angulo
® Xiahu Liu
® Marco Valle (Campinas University)
ANR: Deep Ordering for Vector-Valued Operators and Neural

’ > >
Networks — DEEPORDER u
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[4 Bartels, S. G., Kuntz, L., and Scholtes, S. (1995).
Continuous selections of linear functions and nonsmooth critical point
theory.
Nonlinear Analysis: Theory, Methods & Applications, 24(3):385—-407.

[4 Gorokhovik, V. V., Zorko, O. I., and Birkhoff, G. (1994).
Piecewise affine functions and polyhedral sets.
Optimization, 31(3):209-221.

[4 Ovchinnikov, S. (2002).
Max—min representations of piecewise linear functions.
Beitrage Algebra Geom., 43:297-302.
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