A Tropical Geometry Perspective on Learning from Data: Challenges and Opportunities

Santiago VELASCO-FORERO

PSL Research University / École des Mines de Paris

September 18, 2025

Outline

Learning from Data

2 Tropical geometry

3 Learn to count

- Given N observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}, i = 1, ..., N$ (Data),
- The objective is to find a function $f_{\theta}: \mathcal{X} \to \mathcal{Y}$ (model) with $\theta \in \mathbb{R}^d$ (Parameters)
- to correct predict the observation $x \in \mathcal{X}$ (Training data)
- to correct predict a new previously unseen $x^{\text{new}} \in \mathcal{X}$ (Testing data)

RGB images ($H \times W$ pixels)

$$\mathcal{X} \in \mathcal{F}(\mathbb{Z}^{H \times W}, \mathbb{R}^3)$$

 $\mathcal{Y} = \{-1, 1\}$

1D Signal of length M.

$$\mathcal{X} \in \mathcal{F}(\mathbb{Z}^M, \mathbb{R})$$

 ${\mathcal Y}$ is the probability simplex.

3D Point Cloud (M points)

 $\mathcal{X} \in \mathcal{F}(\mathbb{R}^{M \times 3}, \mathbb{R})$ \mathcal{Y} is the probability simplex.

- Given N observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}, i = 1, ..., N$ (Data),
- The objective is to find a function $f_{\theta}: \mathcal{X} \to \mathcal{Y}$ (model) with $\theta \in \mathbb{R}^d$ (Parameters)
- to correct predict the observation $x \in \mathcal{X}$ (Training data)
- to correct predict a new previously unseen $x^{\text{new}} \in \mathcal{X}$ (**Testing data**)

Risk of a model

The **risk** associated with the model f_{θ} is defined as the expectation of the loss function loss : $\mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$, i.e,

$$risk(f_{\theta}) = \int loss(f_{\theta}(x), y) dP(x, y)$$

- Given N observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}, i = 1, ..., N$ (Data), (i.i.d)
- The objective is to find a function $f_{\theta}: \mathcal{X} \to \mathcal{Y}$ (model) with $\theta \in \mathbb{R}^d$ (Parameters)
- to correct predict the observation $x \in \mathcal{X}$ (Training data)
- to correct predict a new previously unseen $x^{\text{new}} \in \mathcal{X}$ (**Testing data**)

Empirical Risk of a model

The empirical risk associated with the model f_{θ} is defined as the average of the loss function on training data

$$ext{risk}_{ ext{emp}}(f_{ heta}) = rac{1}{N} \sum_{i=1}^{N} ext{loss}(f_{ heta}(x_i), y_i)$$

ERM principle

The **empirical risk minimization principle** states that the learning algorithm should choose a model f_{θ}^* which minimize the empirical risk over the model class \mathcal{H} :

$$f_{\theta}^* = \arg\min_{f \in \mathcal{H}} \mathrm{risk}_{\mathrm{emp}}(f_{\theta})$$
 (1)

ERM principle

The empirical risk minimization principle states that the learning algorithm should choose a model f_{θ}^* which minimize the empirical risk over the model class \mathcal{H} :

$$f_{\theta}^* = \arg\min_{f \in \mathcal{H}} \mathrm{risk}_{\mathrm{emp}}(f_{\theta})$$
 (2)

The two main questions are:

- Which family of functions are we going to optimize?
 - 2 How do we perform the optimization?

empirical risk minimization principle

The **empirical risk minimization principle** states that the learning algorithm should choose a model f_{θ}^* which minimize the empirical risk over the model class \mathcal{H} :

$$f_{ heta}^* = rg\min_{f \in \mathcal{H}} exttt{risk}_{ exttt{emp}}(f_{ heta}) + \lambda \Omega(heta)$$

The two main questions are:

- 1 How do we perform the optimization? (Not in this talk)
- 2 Which family of functions are we going to optimize?

Nowdays Approach

① Static Models: They are composed of linear functions $f_{\theta_i} := f_i : \mathbb{R}^{d_i} \to \mathbb{R}^{d_{i+1}}$ called layers with nonlinear activation functions applied componentwise to all the layers.

$$x \xrightarrow{f_0} \dots \xrightarrow{f_i} \dots \xrightarrow{f_r} y$$

- universal approximators (in the sense that they are dense in L^2).
- they do not have many guaranteed properties besides continuity.
- ② Dynamic models

Nowdays Approach

Dynamic models¹

$$\begin{array}{cccc}
x & \xrightarrow{f_0} & \dots \xrightarrow{f_i} & \dots \xrightarrow{f_K} & x_r \\
g_0 \downarrow & & \downarrow g_i & & \downarrow g_r \\
y_0 & & y_i & & y_r
\end{array}$$

- ARIMA models
- Recurrent neural networks
- Long short-term memory
- Diffusion models

¹Algebraic Dynamical Systems in Machine Learning, I. Jones et al., 2024, Applied Categorical Structures

Static Models

• Neural Networks: $f_{\theta} = \theta_r^T \sigma(\theta_{r-1}^T \sigma(\dots \theta_2^T \sigma(\theta_1^T x)))$

Withdraws:

- Non-convex optimization problems.
- ② Generalization guarantees in the overparameterized regime.
- 3 Energy consuming in both training and inference.
- Too big to fail?

Adversarial Examples : Non-Lipschitz functions

- Given a model f_{θ} and a small perturbation δ , we call \mathbf{x}^{adv} an adversarial example if there exists \mathbf{x} , an example drawn from the benign data distribution, such that $||f_{\theta}(\mathbf{x}) f_{\theta}(\mathbf{x}^{adv})|| > \delta$ and $||\mathbf{x} \mathbf{x}^{adv}|| \le \epsilon$.
- An human user would still visually consider the adversarial input \mathbf{x}^{adv} similar to or the same as the benign input x
- Usually, we are interested in adversarial examples for benign samples
 x, i.e., samples where the model gives a correct prediction.

Non-Lipschitz functions

Figure: $\mathbf{x} + \epsilon = \mathbf{x}^{adv}$. For a CNN, the prediction in \mathbf{x} is a **Camel**, but for \mathbf{x}^{adv} is a **dog**

Non symmetries

'Egyptian_cat', 0.3396838

'lynx', 0.47152225

'jay', 0.96423554

VGG19

plastic_bag', 0.54238236

'electric_ray', 0.8287997

Include invariances

- ullet Translation Invariances o Convolutional version
- ullet Symmetries o Group CNNs
- Other geometries?

Geometric Deep Learning

Figure: Beyond Euclid: An Illustrated Guide to Modern Machine Learning with Geometric, Topological, and Algebraic Structures, M. Papillon et al., 2025

Tropical Version

The adjective "tropical" was coined by French mathematicians Dominique Perrin and Jean-Eric Pin, to honor their Brazilian colleague Imre Simon, a pioneer of min-plus algebra as applied to finite automata in computer science.

Tropical geometry is a marriage between algebraic geometry and polyhedral geometry. A piecewise-linear version of algebraic geometry. [Maclagan and Sturmfels 2015]

Tropical Semifield

```
\mathbb{R}_{max} = \mathbb{R} \cup \{-\infty\} equipped with a+b=max(a,b) and a\times b=a+b, 0=-\infty 1=0 Dual semifield: \mathbb{R}_{min} = \mathbb{R} \cup \{+\infty\} equipped with a+b=min(a,b), instead of max.
```


Figure: f(x) = min(max(x-0.2,0.3), max(x/2,0.7))

Figure: The tropical line f(x) = max(x+1,1)

Figure: The tropical parabola f(x) = max(1 + 2x, 2 + x, 0)

Tropical Approach

1 Hybrid Static Models: They are composed of linear function followed by **tropical functions** $f_{\theta_i} := f_i : \mathbb{R}^{d_i} \to \mathbb{R}^{d_{i+1}}$.

$$x \xrightarrow{f_0} \dots \xrightarrow{f_i} \dots \xrightarrow{f_r} y$$

universal approximators?

Theorem

([Gorokhovik et al., 1994][Bartels et al., 1995][Ovchinnikov, 2002])

Let f be a PL function on a closed convex domain $\Omega \subset \mathbb{R}^n$ and $\{g_1 = \beta_1 x + \alpha_1, \cdots, g_d = \beta_d x + \alpha_d\}$ be the set of the d linear components of f, with $\beta_i, \alpha_i \in \mathbb{R}^n$. There is a family $\{K_i\}_{i \in I}$ of subsets of set $\{1, \cdots, d\}$ such that

$$f(x) = \max_{i \in I} \min_{j \in K_i} g_j(x), \quad x \in \Omega.$$
 (3)

Figure: First Row: Left: Random Initialisation with (14%) of accuracy. We use a simplified version of proposed activation $\min(\max(\beta_0x+\alpha_0,\beta_1x+\alpha_1,\alpha_2),\alpha_3)$, with initialisation $\max(\min(\max(x,0),6),-6)$ Centre: Training only activation functions (92.38%), Right: Training Full Network (98,58%). Second Row: t-SNE visualisation of last layer is the 10-classes MNIST prediction for a CNN.

Include invariances

- Translation Invariances \rightarrow Convolutional version \rightarrow Sup-convolutions
- Symmetries → Group CNNs → Group Morphology ²
- Other geometries? → Working in progress

²V. Penaud–Polge et al. Group Equivariant Morphological Networks, SIAM JOIS, 2025 (Accepted)

Sup convolution

We study here functions $f: E \to \overline{\mathbb{R}}$, where $\overline{\mathbb{R}}$ it allowed to be extended-real-valued, i.e., to take values in $\overline{\mathbb{R}} = [-\infty, \infty]$. Accordingly, the set of all such functions is denoted by $\mathcal{F}(E, \overline{\mathbb{R}})$.

Definition

The **sup-convolution** $\delta_{\theta}(f)$ of f is defined by:

$$\delta_{\theta}(f)(x) := \sup_{y \in E} \{f(y) + \theta(x - y)\} = \sup_{w \in E} \{f(x - w) + \theta(w)\}$$
 (4)

where $\theta \in \mathcal{F}(E,\overline{\mathbb{R}})$ is the (additive) structuring function which determines the effect of the operator. Here the inf-addition rule $\infty - \infty = \infty$ is to be used in case of conflicting infinities. $\sup f$ and $\inf f$ refer to the *supremum* (least upper bound) and $\inf f$ infimum (greatest lower bound) of f. In the discrete case where the function is a finite set of points, max and min are used.

Inf convolution

Definition

The **inf-convolution** $\varepsilon_{\theta}(f)$, is the adjoint operator to the sup-convolution 4. and it is defined as

$$\varepsilon_{\theta}(f)(x) := -\delta_{\check{\theta}}(-f)(x) = \inf_{y \in E} \left\{ f(y) - \theta(y - x) \right\} = \inf_{w \in E} \left\{ f(x + w) - \theta(w) \right\}$$
(5)

where the transposed structuring function is $\check{\theta}(x) = \theta(-x)$.

$\forall f, g \in \mathcal{F}(E, \overline{\mathbb{R}})$

- 1 The operators (4) and (5) are translation invariant.
- ② (4) and (5) correspond to one another through the duality relation $\delta_{\theta}(f)(x) \leq g(x) \iff f(x) \leq \varepsilon_{\theta}(g)(x)$, called **adjunction** or **Galois** connection.
- 3 An operator ξ is called *increasing* if $f(x) \ge g(x) \Rightarrow \xi(f)(x) \ge \xi(g)(x)$ $\forall x$. The sup-conv (4) and inf-conv (5) are increasing for all θ .
- **4** An operator ξ is called *extensive* (resp. *antiextensive*) if $\xi(f)(x) \geq f(x)$ (resp. $\xi(f)(x) \leq f(x)$), $\forall x$. The sup-conv (4) (resp. erosion (5)) is extensive (resp. antiextensive) if and only if $\theta(0) \geq 0$, *i.e.*, the structuring function evaluated at the origin is non-negative.
- ⑤ $\varepsilon_{\theta}(f)(x) \leq f(x) \leq \delta_{\theta}(f)(x)$ if and only if $\theta(0) \geq 0$.
- **6** δ_{θ} (resp. ε_{θ}) does not introduce any local maxima (resp. local minima) if $\theta \leq 0$ and $\theta(0) = 0$. In this case, we say that θ is *centered*.

Theorem (Maragos (1989))

Consider an upper semi-continuous operator Ψ acting on an upper semi-continuous function. Let $Bas(\Psi) = \{g_i\}_{i \in I}$ be its basis and $Bas(\bar{\Psi}) = \{h_j\}_{j \in J}$ the basis of the dual operator. If Ψ is a TI and increasing operator then it can be represented as

$$\Psi(f)(x) = \sup_{i \in I} (f \ominus g_i)(x) = \sup_{i \in I} \inf_{y \in \mathbb{R}^n} \{f(x+y) - g_i(y)\}$$
(6)
$$= \inf_{j \in J} (f \oplus \check{h}_j)(x) = \inf_{j \in J} \sup_{y \in \mathbb{R}^n} \{f(x-y) + \check{h}_j(y)\}$$
(7)

Example of Max-Plus convolution by iterating

Example of Min-Plus convolution by iterating

Example of plus-times convolution by iterating

Closure and Kernel Operator

Definition

Given a Galois connection with lower adjoint F and upper adjoint G, we can consider the compositions $G \circ F$, known as the associated **closure operator**, and $F \circ G$, known as the associated **kernel operator**. Both are monotone and idempotent, and we have $f \leq G \circ F(f)$ for all f in A and $F \circ G(f) \leq f$ for all g in g.

Example of Closure Operator by changing scale parameter

Example of Kernel Operator by changing scale parameter

Assume a static model composed of tropical functions $f_{\theta_i} := f_i$. Then the static model is increasing and extensive (or antiextensive). Additionally, the adjoint operator give a closed-form for f_i^* k

3

 $^{^3\}text{T.}$ Leeuwen et al, , An invertible generative model for forward and inverse problems, 2025

Assume a static model composed of tropical functions $f_{\theta_i} := f_i$. Then the static model is increasing and extensive (or antiextensive). Additionally, the adjoint operator give a closed-form for f_i^* k

$$X \underbrace{f_0}_{f_0^*} \dots \underbrace{f_i^*}_{f_i^*} Y$$

³ We can do something that cannot be done with plus-times convolutions?.

 $^{^3\}mathsf{T}.$ Leeuwen et al, , An invertible generative model for forward and inverse problems, 2025

We can learn to count!

Reconstruction⁴

Definition

 $\forall f,g\in\mathcal{F}(E,\overline{\mathbb{R}})$, the reconstruction of f from g is defined as :

$$REC(f,g)(x) = \max_{y \in \Omega, \gamma \in \Gamma_{xy}} \left(f(y) \wedge \min_{z \in \gamma} g(z) \right). \tag{8}$$

where Γ_{xy} denotes the set of path between x and y.

Note that REC(f,g)(x) is increasing and antiextensive operator.

⁴Blusseau, S. et al(2025). Cell counting with trainable h-maxima and connected component layers. JMIV 67(3), 1-27.

Example of Reconstruction by Max-plus with different parameters of dynamic

Example of Reconstruction by Min-plus with different parameters of dynamic

Example of Reconstruction by Max-plus with different parameters of dynamic

Dataset	Method	#Param	$A_{err}(\%)$	$\mathcal{T}_{err}(\%)$	MAE	MPE(%)
	Lazard et al [3]	1,760,000	9.28	8.72	-	-
	Joint loss, (MB,-1)	16,675	12.6 ± 0.6	10.4 ± 0.5	5.82 ± 0.3	-5.47 ±0.8
TRP1 [3]	Joint loss, (MB,N=50)	16,675	13.6 ± 1.2	11.1 ± 0.8	6.21 ± 0.45	-7.15 ± 1.8
	Count. loss (MB, -1)	16,675	13.7 ± 1.3	11.0 ± 1.1	6.2 ± 0.6	-8.60 ± 1.8
	Count. loss (MB, N=50)	16,675	12.9 ± 0.36	10.4 ± 0.38	5.84 ± 0.2	-7.76 ±0.81
	Morelli et al [4]	888,977	-	-	3.09	-5.13
Fluorescent	Joint loss (MB, -1)	16,675	34.4 ± 2.6	28.6 ± 0.4	2.89 ± 0.04	-9.1 ± 5.6
Neuronal	Joint loss (MB, N=50)	16,675	33.0 ± 2.1	28.1 ± 0.7	2.84 ± 0.07	-6.05 ± 3.5
Cells [4]	Count. loss (MB, -1)	16,675	31.7 ±1.2	28.1 ± 0.7	2.84 ± 0.08	7.12 ± 1.6
	Count. loss (MB, N=50)	16,675	32.1 ± 1.2	25.3 ± 0.8	2.56 ± 0.08	-7.17 ±3.3
Cellpose [20]	Unet [22]	7,852,033	12.1 ± 2.1	11.8 ± 1.9	6.31 ± 1.0	11.2 ± 2.5
	Joint loss (MB, -1)	16,675	6.98 ±0.7	8.09 ± 0.6	4.34 ± 0.33	0.25 ± 1.4
	Joint loss (MB, N=50)	16,675	7.01 ± 0.93	7.97 ± 0.82	4.28 ± 0.44	1.35 ± 1.34
	Count. loss (MB, -1)	16,675	7.10 ± 1.2	7.47 ±1.7	4.01 ±0.89	0.94 ± 1.2
	Count. loss (MB, N=50)	16.675	8.87 ± 1.2	10.3 ± 1.3	5.52 ± 0.7	4.75 ± 2.3

Thanks!

Collaborators:

- Use Valentin Penaud-Polge
- 2 Mihaela Dimitrova
- Samy Blusseau
- 4 Gustavo Angulo
- Siahu Liu
- Marco Valle (Campinas University)

ANR: Deep Ordering for Vector-Valued Operators and Neural

Networks - DEEPORDER

Bartels, S. G., Kuntz, L., and Scholtes, S. (1995).
Continuous selections of linear functions and nonsmooth critical point theory.

Nonlinear Analysis: Theory, Methods & Applications, 24(3):385-407.

Gorokhovik, V. V., Zorko, O. I., and Birkhoff, G. (1994). Piecewise affine functions and polyhedral sets. *Optimization*, 31(3):209–221.

Ovchinnikov, S. (2002). Max-min representations of piecewise linear functions. *Beiträge Algebra Geom.*, 43:297–302.