Simple harmonic oscillators from non-semisimple Walled Brauer algebras.

S. Ramgoolam

Queen Mary, University of London

Corfu, 2025.

Based on:

"Simple harmonic oscillators from non-semisimple walled Brauer algebras," S. Ramgoolam, M. Studzinski, https://arxiv.org/abs/2509.04234

Introduction: Representation theory of U(N)

- Motivating applications : AdS/CFT correspondence, quantum information theory.
- Gauge symmetry group in gauge theory, group of unitary transformations preserving inner product in a Hilbert space.
- $V_N^{\otimes n}$, $N \geq n$: Schur-Weyl duality

$$V_N^{\otimes n} = \bigoplus_{Y \vdash n} V_Y^{U(N)} \otimes V_Y^{S_n}$$

 $\mathbb{C}(S_n) \in \operatorname{End}(V_N^{\otimes n})$ is the commutant of U(N).

Change of basis

$$|i_1,\cdots,i_n\rangle \rightarrow |Y,M_Y,m_Y\rangle$$

Introduction: Multiplicities from Young diagrams

$$d_Y = \frac{n!}{\prod_{a \in Y} \text{hook lengths}(a)}$$
$$= \frac{n!}{H(Y)}$$

Example:

$$V_N^{\otimes 3} = V_{\square \square} \oplus 2V_{\square} \oplus V_{\square}$$

Introduction : N < n - simple cut-off on Young diagrams

$$V_N^{\otimes n} = igoplus_{ht(Y) \leq N} V_Y^{U(N)} \otimes V_Y^{\mathcal{S}_n}$$

Introduction: The mixed tensor case

$$N \geq (m+n)$$
:

$$V_N^{\otimes m} \otimes \overline{V}_N^{\otimes n} = \bigoplus_{\gamma} V_{\gamma}^{U(N)} \otimes V_{\gamma}^{B_N(m,n)}$$

Brauer Representation triples, BRT(m, n): $\gamma = (k, \gamma_+, \gamma_-)$ $0 \le k \le \min(m, n)$ γ_+ is a Young diagram with (m - k) boxes γ_- is a Young diagram with (n - k) boxes

 $\Gamma(\gamma, N)$ - mixed Young diagram ; highest weight of $V_{\gamma}^{U(N)}$

$$R_i(\gamma) = r_i(\gamma_+)$$
 for $1 \le i \le c_1(\gamma_+)$
 $R_{N-i+1}(\gamma) = -r_i(\gamma_-)$ for $1 \le i \le c_1(\gamma_-)$

For N = 7, $(k = 0, \square, \square)$.

Introduction: The mixed tensor case

In this range $N \geq (m+n)$, $\dim(V_{\gamma}^{B_N(m,n)})$ is independent of N:

$$\dim(V_{\gamma}^{B_N(m,n)}) = d_{m,n}(\gamma) = \frac{m! n!}{k! H(\gamma_+) H(\gamma_-)}$$

Large N regime, or stable regime, where the algebra $B_N(m, n)$ is semi-simple, i.e. has a non-degenerate trace form.

Introduction : The mixed tensor case - $B_N(m, n)$ is a diagram algebra.

Figure: Example of graphical composition of two diagrams $b_1, b_2 \in B_N(4, 4)$. Identifying a closed loop (in red) results in multiplying the diagram by a scalar $N \in \mathbb{C}$. We see that the composition $b_1 \circ b_2$ remains within $B_N(4, 4)$.

Introduction : The mixed tensor case for N < (m+n)

- $B_N(m, n)$ is no longer a semi-simple algebra.
- The map representing the diagrams as operators in tensor space, which associates the lines to contractions δ_{ij} , has a non-trivial kernel.
- The quotient is a semi-simple algebra $\widehat{B}_{m,n}(N)$.
- There is SW duality

$$V_N^{\otimes m} \otimes \overline{V}_N^{\otimes n} = \bigoplus_{\substack{\gamma \in \mathrm{BRT}(m,n) \\ \mathrm{height}(\gamma) = c_1(\gamma_+) + c_1(\gamma_-) \leq N}} V_\gamma^{U(N)} \otimes V_\gamma^{\widehat{B}_N(m,n)},$$

But in general

$$d_{m,n,N} = \dim(V_{\gamma}^{\widehat{B}_N(m,n)}) = d_{m,n} - \delta_{m,n,N}$$

where $\delta_{m,n,N} \ge 0$ and has a description in terms of Bratteli diagrams (Stoll and Werth, 2016 + earlier math papers).

Introduction : The mixed tensor case for N < (m+n).

- General formulae for $\delta_{m,n,N}$ not available.
- We introduced a simplification of Bratteli diagrams, restricted Bratteli diagrams (RBD), which uses information from the stable regime to calculate rep. theory data in the non-semi-simple regime.
- Find that for N = m + n l, these only depend on l for $m, n \ge (2l 3)$.
- For $l \in \{1, 2, 3, 4\}$, and general m, n we calculate the dimension modifications.
- Found surprising connections to a partition function for an infinite tower of harmonic oscillators

$$\mathcal{Z}_{\text{univ}}(x) = \frac{x}{(1-x)(1-x^2)} \prod_{i=1}^{\infty} \frac{1}{(1-x^i)^2}$$

Outline

- Explain the Bratteli diagrams for $B_N(m, n)$ and the known algorithm.
- Define the RBD
- Relations between RBD and oscillator partition function.
- Motivations and future directions.

Bratteli diagrams in the large N regime: Example $B_{N>4}(2,2)$

The set of mixed Young diagrams in the bottom row corresponds to the set BRT(2,2). The set at intermediate levels:

 $BRT(0,0) \rightarrow BRT(1,0) \rightarrow BRT(2,0) \rightarrow BRT(2,1) \rightarrow BRT(2,2)$

Bratteli paths and $d_{m,n}(\gamma)$

For each $\gamma \in BRT(m, n)$:

number of paths starting from the level 0 diagram and ending at γ $= d_{m,n}(\gamma)$

In this example 1 path for $(k = 0, \gamma_+ = \square, \gamma_- =, \square)$, and 4 paths for $(k = 1, \gamma_+ = \square, \gamma_- = \square)$.

Colored Bratteli diagrams for N < (m+n): Excluded triples $\operatorname{height}(\gamma) > N$ are coloured red.

Example $B_{N=2}(2,2)$. $\gamma \in BRT(2,2)$ with $height(\gamma) > 2$ are coloured red.

Irreps of $\widehat{B}_N(m, n)$ correspond to green nodes in the last layer.

Colored Bratteli diagrams for N < (m+n): Admissible paths

Some green nodes in the last layer have a subset of paths going through red nodes in earlier layers.

 $\widehat{d}_{m,n}(\gamma)$ is equal to the number admissible paths, i.e. paths going through green nodes only, i.e. not passing through any red nodes.

In this case, $(k = 1, \gamma_+ = \bigsqcup, \gamma_- = \bigsqcup)$ has one path going through a red diagram,

$$\widehat{d}_{m,n,N}(\gamma) = 4-1$$

Restricted Bratteli diagrams: simplified versions of the CBD

- Only contain at the last layer, the green nodes with a modified dimension.
- Only contain red nodes in the earlier layers which admit paths to the above green nodes, i.e. nodes relevant to the dimension modification

$$d_{m,n}(\gamma) \rightarrow d_{m,n,N}(\gamma) = d_{m,n}(\gamma) - \delta_{m,n,N}(\gamma)$$

- Only contain green nodes in earlier layers which appear in paths from the red nodes to the green nodes in the final layer.
- In the example:

- The dimension modification is 1 because for the red

$$\gamma = (k = 0, \gamma_+ = \square, \gamma_- = \square \in BRT(2, 1))$$

$$d_{2.1}(\gamma) = 1$$

Restricted Bratteli diagrams: code and stability.

Based on the above characterisation, we wrote the mathematica-code for RBD. By modifying - with the help of ChatGPT- code written by Quantum information theorists for the standard Bratteli diagrams. (Dmitry Grinko, Adam Burchardt, and Maris Ozols, 2023)

Study N = (m + n - I), with I small compared to m, n. We find from the code, and prove, stability of the RBD for m, $n \ge (2I - 3)$.

Restricted Bratteli diagrams : Stability example l = 3 ..

Reds in the RBD : excess Δ and depth d

The red diagrams have $c_1(\gamma_+) + c_1(\gamma_-) > (m+n-l)$. Let

$$c_1(\gamma_+)+c_1(\gamma_-)=(m+n-l)+\Delta$$

where Δ is defined as the excess total height of $\gamma:\Delta\geq 1$. Consider diagrams at depth d, irreps of $B_N(m,n-d)$, with labels (k,γ_+,γ_-) . Let $|\gamma_+|$ and $|\gamma_-|$ be the number of boxes in γ_+,γ_- respectively.

$$\begin{aligned} |\gamma_+| &= m-k = c_1(\gamma_+) + |\gamma_+ \setminus c_1| \\ |\gamma_-| &= n-k-d = c_1(\gamma_-) + |\gamma_- \setminus c_1| \end{aligned}$$

Can use to derive

$$d + 2k + |\gamma_+ \setminus c_1| + |\gamma_- \setminus c_1| + \Delta = I$$

Immediately get, for red node,

$$d \leq (I-1)$$

RBD have maximal depth (I-1).

Reds in the RBD: Counting formula

$$d+2k+|\gamma_+\setminus c_1|+|\gamma_-\setminus c_1|+\Delta=I$$

This boxed equation along with structure of Bratteli moves :

$$\Delta(d) \leq \min(I-d,d)$$

Counting of red nodes as a function of I and d - sum over partitions $|\gamma_+ \setminus c_1|$ and $|\gamma_- \setminus c_1|$ with specified number of nodes.

$$\mathcal{R}(I,d) = \sum_{\Delta=1}^{\min(I-d,d)} \sum_{k=0}^{\lfloor \frac{(I-d-\Delta)}{2} \rfloor} \sum_{I_1=0}^{I-d-2k-\Delta} p(I_1) p(I-d-2k-\Delta-I_1)$$

Reds in the RBD: two simplidications and oscillators

$$\mathcal{Z}_{\text{univ}}(x) = \sum_{s=0}^{\infty} x^s \ \mathcal{Z}(s) = \frac{x}{(1-x)(1-x^2)} \prod_{i=1}^{\infty} \frac{1}{(1-x^i)^2}$$

For d near l and d small we have two simplifications of the inequality $\Delta \leq \min(l-d,d)$.

$$\mathcal{R}(I,d) = \left\{ \begin{array}{ll} \mathcal{Z}_{\mathsf{univ}}(I-d) - \mathcal{Z}_{\mathsf{univ}}(I-2d) & \text{for } 1 \leq d \leq \left\lfloor \frac{I}{2} \right\rfloor \\ \mathcal{Z}_{\mathsf{univ}}(I-d) & \text{for } \left\lceil \frac{I}{2} \right\rceil \leq d \leq (I-1) \end{array} \right.$$

Green nodes: Bijection and oscillator partition function.

Lemma There is a bijection between green nodes at d = 0 and reds with $\Delta = 1$ at $d \ge 1$.

$$\mathcal{G}(I, d=0) = \mathcal{Z}_{\text{univ}}(I-1)$$

Physics motivations and future directions: AdS/CFT

- Orthogonal basis of polynomial matrix invariant functions of Z, Z^{\dagger} in free-QFT-inner product is obtained from the matrix-basis (Artin-Wedderburn basis) for the $S_m \times S_n$ invariant subpspace of $\widehat{B}_N(m,n)$, labelled by γ

$$Q_{\mathit{r}_{1},\mathit{r}_{2},\mu
u}^{\gamma}$$

Kimura, Ramgoolam, 2007

Physics motivations and future directions: AdS/CFT

Holomorphic invariants – are mapped to giant gravitons using the orthogonal basis in free QFT labelled by Young diagrams (Corley, Jevicki, Ramgoolam, 2001).

The non-holomorphic invariants should contain the physics of something like brane-anti-brane systems (continued from the geometrical strong yang-Mills coupling limit to the weak coupling limit).

Explicit construction of the Artin-Wedderburn matrix basis for $\widehat{B}_N(m,n)$ and the $S_m \times S_n$ invariant subpsace, in the region m+n-l=N with l small should have an interpretation in terms of fluctuations of brane/anti-branes).

Physics motivations and future directions : Quantum Information

In the quantum teleportation context, N is the dimension of a Hilbert space H; Alice and Bob share m entangled pairs in $(H \otimes H)^{\otimes m}$ and they use this as a resource to teleport states in $H^{\otimes n}$. The fidelity of quantum teleportation is expressed in terms of an appropriate trace of an element in $B_N(m,n)$.

Marek Mozrzymas, Michal Studzinski, and Piotr Kopszak. Optimal multi-port-based teleportation schemes. Quantum, 5:477, 2021.

Artin-Wedderburn basis also important in the QI calculations.

Addtional technical slide

- Matrix invariants and walled-Brauer algebra elements :

$$\mathit{trZZ}^\dagger = Z_{i_2}^{i_1}(Z^\dagger)_{i_1}^{i_2} = \mathrm{tr}_{V_N^{\otimes 2}}(Z \otimes Z^\dagger \sigma)$$

Matrices as linear operators, σ is the permutation operator on tensor space :

$$\begin{aligned} Z|e_i\rangle &= Z_i^{j_1}|e_j\rangle \\ \sigma(|e_{i_1}\rangle \otimes |e_{i_2}\rangle) &= |e_{i_2}\rangle \otimes |e_{i_1}\rangle \end{aligned}$$

$$\mathit{trZZ}^\dagger = Z_{i_2}^{i_1}(\overline{Z})_{i_2}^{i_1} = \mathrm{tr}_{V_N \otimes ar{V}_N}(Z \otimes \overline{Z})b$$

$$b|e_{i_1}\rangle\otimes|e_{i_2}\rangle=\delta_{i_1i_2}|e_k\rangle\otimes|e_k\rangle$$

