Non-invertible defects from the Conway SCFT to K3 sigma models

Roberta Angius

IFT UAM/CSIC (Madrid)

Based on:

[hep-th:2402.08719]

[hep-th/math-qa:2504.18619]

[hep-th/math-qa:250x.xxxxx] -

[hep-th:2508.03612]

with S. Giaccari and R. Volpato

with S. Giaccari, S. Harrison and R. Volpato

with S. Giaccari

Κέρκυρα, September 11, 2025

The context

Standard Symmetries

Topological operators (→ spacetime defects) supported on codimension 1 submanifolds of spacetime, satisfying group-like and invertible fusion rules and acting on Local operators.

Higher symmetry groups

In recent years, extensive work has been done to study the categories of topological defects in **many** physical domains: **worldsheet String Theory**, String Theory [Apruzzi et al -2022,...], QFT, condensed matter [Freed et al - 2022,...], lattice models ...

State of the art in the classification of TDs in 2d CFTs:

- Invertible defects associated with standard and higherform symmetries
- → Verlinde lines in RCFTs

 [Verlinde 1988]
- Duality defects in self-orbifold constructions
 [Tambara, Yamagami 1988; Bhardwaj, Tachikawa 2017]

Main purposes:

Study topological defect lines (TDLs) in 2-dimensional SCFTs arising as supersymmetric non-linear σ -models with target space a K3 surface:

- Preserving the full $\mathcal{N}=(4,4)$ superconformal algebra with central charge $(c,\bar{c})=(6,6)$
- Invariant under the spectral flow transformations

(My talk at "Quantum Gravity, Strings and the Swampland", Corfù 2024)

Study topological defect lines (TDLs) in the 2-dimensional Conway SCFT $V^{f\natural}$ (the unique holomorphic SCFT in 2d with c=12 and no field of conformal weight 1/2):

- Commuting with the $\mathcal{N}=1$ superconformal algebra and $(-1)^F$;
- Satisfying some additional technical constraints

A mysterious relationship

A mysterious relationship between $V^{f\natural}$ and K3 NLSMs has been observed in [Duncan, Mack-Crane - 2015]

 $V^{f
abla}$

K3 NLSMs

SYMMETRIES

[Gaberdiel, Hohenegger, Volpato - 2012]

 Co_{o}

 $G_{K3} \subset Co_0$

SYMMETRY ACTION

[Duncan, Mack-Crane - 2015]

R sector ground states

RR ground states

Special "modified" partition functions ——

TWINING GENUS

[Duncan, Mack-Crane - 2015] [Cheng, Harrison, Volpato, Zimet - 2018]

$$\phi^{g}(V^{f\natural}, \tau, z) = Tr_{V_{tw}^{f\natural}} \left[g(-1)^{F} q^{L_{0} - 1/2} y^{J_{0}^{3}} \right]$$

$$\phi^{g}(V^{f\natural}, \tau, z) = Tr_{V_{tw}^{f\natural}} \left[g(-1)^{F} q^{L_{0} - 1/2} y^{J_{0}^{3}} \right] \qquad \phi^{g}(\mathscr{C}_{\Pi}, \tau, z) = Tr_{RR} \left[g(-1)^{F + \bar{F}} q^{L_{0} - 1/4} \bar{q}^{\bar{L}_{0} - 1/4} y^{J_{0}^{3}} \right]$$

Does this connection between symmetries admits a generalization at the level of generalized symmetries?

Generalities on Topological Defects in QFT

Topological Defect Lines (TDLs) in 2d QFTs

Defect Lines in a generic 2d QFT \mathcal{Q} are extended operators $\mathcal{S}\left(\gamma\right)$ supported on one-dimensional submanifolds γ (lines) of the two-dimensional spacetime \mathcal{M}_2 .

Topological = Correlators invariant under small deformations of the line γ that do not cross other insertions.

• The support manifolds for defects can be closed or open oriented lines;

• TDLs act on local operators of the theory producing new local operators.

• When the moving of \mathscr{L} across a local operator $\mathscr{O}(z)$ leaves all the correlators invariant, we say that they are transparent one to the other and that \mathscr{L} preserves the corresponding algebra.

Fusion Ring

Given the set $S = \{\mathscr{L}_i\}$ of TDLs in the 2d QFT \mathscr{Q} , we can define two different operations that endow S with the structure of a ring:

Superposition:

$$\mathscr{L}_i$$
 and \mathscr{L}_j $---->$ $\mathscr{L}_i+\mathscr{L}_j$, Associative and commutative

such that

$$\widehat{\mathcal{L}_i + \mathcal{L}_j} = \hat{\mathcal{L}}_i \oplus \hat{\mathcal{L}}_j$$

• Fusion:

In the limit in which the support line of two defects \mathcal{L}_i and \mathcal{L}_j overlap, one can define a third defect which corresponding operator is given by the **fusion algebra** of the form:

$$\mathcal{Z}_{i} \longrightarrow - \left(\mathcal{Z}_{j} = \mathcal{Z}_{i} \mathcal{Z}_{j} = \sum_{c} N_{ij}^{k} \mathcal{Z}_{k} \right)$$
 fusion coefficients

In the special case in which this fusion algebra reduces to a **group multiplication low**, the corresponding defects are called **invertible** and describe the strandard global symmetries of the theory. Otherwise we talk about **non-invertible** generalized symmetries.

State/Operator correspondence

$$\mathcal{O}_{\psi}(z) \mapsto |\psi\rangle \in \mathcal{H}$$

We can associate to each top. defect \mathcal{L} :

lacktriangle A linear operator $\hat{\mathscr{L}}:\mathcal{H}\mapsto\mathcal{H}$

The vacuum is necessary an eigenstate of $\hat{\mathscr{L}}$, we call its eigenvalue "Quantum dimension": $\hat{\mathscr{L}} | 0 \rangle = \langle \mathscr{L} \rangle | 0 \rangle$

 $^{\bullet} \ \mathsf{A} \ \mathscr{L}\text{-twisted space} \ \mathscr{H}_{\mathscr{L}}$

Still providing a representation of the preserved chiral algebra

Related by Modularity

Modular transformation

If we put the theory on the torus:

$$\tau \mapsto -1/\tau$$

Topological Defects on K3 models

Generalities on K3 models

NLSMs on K3 are **2-dimensional** $\mathcal{N}=(4,4)$ **superconformal fields theories** with central charge $c=\bar{c}=6$. They arise as the worldsheet description of perturbative type II string theory on a K3 surface.

- They contain a holomorphic and an anti-holomorphic copy of the small $\mathcal{N}=4$ superconformal algebra at central charge c=6.
- We can pack the irreducible representations of $\mathcal{N}=(4,4)$ in four different sectors:

Moduli Space

The 80-dimensional moduli space of **K3** models is the quotient:

$$\mathcal{M}_{K3} = O(4,20,\mathbb{Z}) \setminus (O(4,20,\mathbb{R})/(O(4) \times O(20)))$$

T-duality group

Automorphisms of the lattice $\Gamma^{4,20}$ of RR D-brane charges with respect to the 24 U(1) RR fields

Grassmannian

Parametrising positive 4-dim subspaces Π in $V = \Gamma^{4,20} \otimes \mathbb{R} = \mathbb{R}^{4,20}$

The choice of a specific K3 model \mathscr{C}_Π corresponds to the choice of $\Pi \subset V$.

The minimal requirements

Let Top_Π be the category of topological defects in the K3 model \mathscr{C}_Π such that:

1. The defects $\mathcal{L} \in Top_{\Pi}$ commute with the full $\mathcal{N} = (4,4)$ algebra

2. The defects $\mathcal{L} \in Top_{\Pi}$ commute with the spectral flow generators

Implications:

• We can associate to each $\mathcal{L} \in Top_{\Pi}$ a linear operator:

$$\hat{\mathscr{L}}:\mathcal{H}\mapsto\mathcal{H}$$

- (1) $\longrightarrow \mathcal{L}$ doesn't change the representation of the states;
- (2) If we know its action on a specific sector, we can recover the action also in all the other sectors.

Action on D-branes

The defects $\mathcal{L} \in Top_{\Pi}$ map $\frac{1}{2}$ BPS D-branes into $\frac{1}{2}$ BPS D-branes then we can define the homomorphism:

$$\rho: Top_{\Pi} \longmapsto End\left(\Gamma^{4,20}\right)$$

$$\mathscr{L} \longmapsto \hat{L}: \Gamma^{4,20} \mapsto \Gamma^{4,20}$$

- 1. \mathscr{L} commute with the $\mathscr{N}=(4,4)$ algebra \longrightarrow L cannot mix R-R ground states in different reps.
- 2. $\mathscr L$ is transparent to spectral flow $oldsymbol{--\!\!\!-} L$ acts on Π them in the same way as in the vacuum.

Chosing an orthonormal basis for V compatible with the decomposition $V = \Pi \oplus \Pi^{\perp}$, the linear operators L are represented in this basis:

- (1) \longrightarrow As 24×24 block-diagonal matrices;
- (2) The 4×4 block is a multiple of the **identity**, and d is the **quantum dimension** of \mathcal{L} ;
- (ρ) Integrality conditions.

$$\hat{L} = \begin{pmatrix} d \cdot \mathbf{1}_{4 \times 4} & 0 \\ 0 & b_{20 \times 20} \end{pmatrix}$$

General Results

Claim:

The quantum dimension $\langle \mathscr{L} \rangle$ of a defect $\mathscr{L} \in Top_{\Pi}$ is an algebraic integer of degree at most 6.

If $\Pi \cap \Gamma^{4,20} \neq 0$, then $\langle \mathscr{L} \rangle$ is an integer for all the $\mathscr{L} \in Top_{\Pi}$.

---- Attractor points of the moduli space with respect to some brane configurations.

Claim:

For a generic K3 sigma-model \mathscr{C}_Π , the only defects in Top_Π are integral multiple of the identity.

Elliptic genus

The elliptic genus is a special function in K3 models that is independent on the B-field and the metric of the target manifold, but it is dependent on his topology.

$$\phi(\tau, z) = Tr_{RR} \left[q^{L_0 - \frac{c}{24}} \overline{q}^{\overline{L}_0 - \frac{\overline{c}}{24}} (-1)^{F + \overline{F}} y^{J_0^3} \right]$$

with $q = e^{2\pi i \tau}$ and $y = e^{2\pi i z}$.

It counts states that are R ground states on the right-moving sector and unconstrained on the left-moving one.

For each topological defect \mathscr{L} we can construct two new genera:

The twining genus

$$\phi^{\mathcal{L}}(\tau,z) = Tr_{RR} \left[\hat{\mathcal{L}} q^{L_0 - \frac{c}{24}} \overline{q}^{\overline{L}_0 - \frac{\overline{c}}{24}} (-1)^{F + \overline{F}} y^{J_0^3} \right] =$$

The twisted genus

$$\phi_{\mathcal{L}}(\tau,z) = Tr_{RR,\hat{\mathcal{L}}} \left[q^{L_0 - \frac{c}{24}} \overline{q}^{\overline{L}_0 - \frac{\overline{c}}{24}} (-1)^{F + \overline{F}} y^{J_0^3} \right] =$$

Topological Defects on $V^{f atural}$

The Conway SCFT $V^{\dagger \Box}$

[Frenkel, Lepowsky, Meurman - 1988] [Duncan - 2007]

- ▶ 12 holomorphic free bosons (u(1) currents)
- The holomorphic vertex operators with

$$D_{12}^{+} = D_{12} \cup (D_{12} + s)$$

$$\text{root lattice of } so(24)_1$$
spinorial rep of $so(24)_1$

- of weight 1 and standard OPE
- momenta in the odd unimodular lattice

The stress-energy tensor is
$$T(z) = \frac{1}{2} \sum_{i=1}^{n} : \partial X^i \partial X^i$$
: at central charge $c = 12$; In terms of $so(24)_1$ reppresentations:

NS Sector

$$V^{f\natural} = V_0 \oplus V_s$$

$$(-1)^F + 1 - 1$$

$$V_{tw}^{f\natural} = V_{v} \oplus V_{c}$$

$$(-1)^{F} + 1 - 1$$

 $V_{tw}^{f\natural}(1/2)$ = 24 ground states of conformal weight 1/2.

 $i\partial X^{i}(z) = \sum_{n=0}^{\infty} \alpha_{n}^{i} z^{-n-1}, \qquad i = 1,...,12$

 $\mathcal{V}_k(z) = c_k : e^{ik \cdot X(z)} : , \qquad k = (k^1, k^2, \dots, k^{12})$

The twisted and the twined partition functions in $V^{f abla}$

Witten index

Bosons - Fermions in the R ground states sector

Main objects

\mathscr{L} -twined partition function

$$Z_{R}^{\mathcal{L},-} = \underbrace{\qquad \qquad \qquad \qquad }_{\mathcal{L}}$$

$$= Tr_{V_{tw}^{f\natural}} \left[q^{L_0 - 1/2} (-1)^F \hat{\mathcal{L}} \right]$$

\mathscr{L} -twisted partition function

$$Z_{\mathcal{L},R}^{-} = \underbrace{\qquad \qquad \qquad }_{\mathcal{L}_{tw,\mathcal{L}}} \left[q^{L_0 - 1/2} (-1)^F \right]$$

$$= Tr_{V_{tw,\mathcal{L}}^{f\natural}} \left[q^{L_0 - 1/2} (-1)^F \right]$$

The minimal requirements

Let Top be the category of topological defects in $V^{f\natural}$ such that:

1. Each defect in Top commute with the $\mathcal{N}=1$ $sVir_{c=12}$ algebra

- 2. Each defect in Top well behave with respect to $(-1)^F$
- 3. For every defect \mathscr{L} we can define an \mathscr{L} -twined $\mathscr{L}^{\mathscr{L}}$ and an \mathscr{L} -twisted $\mathscr{L}_{\mathscr{L}}$ partition functions related by a modular S-transformation:

$$\mathcal{Z}_{\mathcal{L}}(-1/\tau) = \rho(S)\mathcal{Z}^{\mathcal{L}}(\tau)$$

Main implication:

All the \mathscr{L} -twined partition function on the torus with fully periodic conditions for the fermions are equal to the \mathscr{L} -twisted partition functions and they are integer numbers

$$Tr_{V_{tw}^{f\natural}(1/2)}\left[(-1)^F\hat{\mathcal{L}}_g\hat{\mathcal{L}}\right] \in \mathbb{Z}, \forall g \in Co_0$$

The main Theorem

Theorem

Let Top be a tensor category of topological defects $\mathscr L$ of $V^{f\natural}$ containing all the invertible defects $\mathscr L_g$, with $g\in Co_0$, and such that all the objects $\mathscr L$ satisfy properties (1), (2) and

(3). There is an embedding of the Leech lattice Λ_{Leech} in the 24 dimensional space of R-ground states $V_{tw}^{f\natural}(1/2)$, such that for every $\mathscr{L} \in Top$, we can construct a \mathbb{C} -linear map

$$\hat{\mathcal{Z}}|_{V_{tw}^{f\natural}(1/2)}:V_{tw}^{f\natural}\left(\frac{1}{2}\right)\mapsto V_{tw}^{f\natural}\left(\frac{1}{2}\right)$$

that it is contained in $End\left(\Lambda_{Leech}\right)$:

$$\rho: Top \longmapsto End \left(\Lambda_{Leech}\right)$$

$$\mathscr{L} \longmapsto \rho(\mathscr{L}) = \hat{\mathscr{L}}|_{V_{tw}^{f\natural}(1/2)}$$

This defines a surjective, non-injective ring-homomorphism.

Unique 24 dimensional unimodular lattice without roots,

Automorphism group = Co_0

Topological defects satisfying properties (1), (2), (3) act on Λ_{Leech} via endomorphism

Corollaries

Corollary 1

If \mathscr{L} preserves any field in $V_{tw}^{f\natural}(1/2)$ then the quantum dimension $\langle \mathscr{L} \rangle$ must be an algebraic integer of degree at most 24.

If $\mathscr{L} \in Top$ preserves a field $\lambda \in \Lambda_{Leech} \subset {}^{\mathbb{R}}V^{f\natural}_{tw}(1/2)$, namely \mathscr{L} acts by $\hat{\mathscr{L}} \mid \lambda \rangle = \langle \mathscr{L} \rangle \mid \lambda \rangle$, then necessarily $\langle \mathscr{L} \rangle \in \mathbb{Z}_{\geq 1}$.

Corollary 2

Suppose \mathscr{L} acts trivially on some $\psi \in V_{tw}^{f\natural}(1/2)$ (i.e. $\hat{\mathscr{L}}\psi = \langle \mathscr{L}\rangle\psi$) such that $\psi^{\perp} \cap \left(\Lambda_{Leech} \otimes \overline{\mathbb{Q}}\right) = \emptyset$. Then, \mathscr{L} is multiple of the identity defect, i.e. $\mathscr{L} = dI$, $d \in \mathbb{N}$ (and in particular $\langle \mathscr{L} \rangle = d$ is integral).

Conclusions

The connection between K3 models and $V^{f\natural}$ extend at the level of generalized symmetries

Conjecture

Each defect $\mathcal{L} \in Top$ fixing a 4-plane $\Pi^{\natural} \subset {}^{\mathbb{R}}V_{tw}^{f\natural}(1/2)$

- (i) Corresponds to a defect $\mathscr{L} \in Top_{\Pi^{\natural}}$ in the K3 model $\mathscr{C}_{\Pi^{\natural}}$;
- (ii) The \mathscr{L} -twining partition function $\phi^{\mathscr{L}}(V^{f\natural}, \tau, z)$ computed in $V^{f\natural}$ coincides with the corresponding \mathscr{L} -twining elliptic genus $\phi^{\mathscr{L}}(\mathscr{C}, \tau, z)$ in the K3 model

Tested in many examples:

- \mathbb{Z}_k duality defects
- $\mathbb{Z}_{k_1} \times \mathbb{Z}_{k_2}$ duality defects
- Fibonacci defects

Thank you for your attention!