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Why extreme black holes?

Two reasons:

» They are observationally relevant:
Many black holes are found to be spinning very rapidly
» They are theoretically manageable:

Near the horizon of (near-)extreme black holes spacetime is AdS-like



Rapidly spinning black holes
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Abstract

‘The spin of a black hole is an important quantity to study, providing a
window into the processes by which a black hole was born and grew. Further-
more, spin can be a potent energy source for powering relativistic jets and
energetic particle acceleration. In this review, I describe the techniques cur-
rently used to detect and measure the spins of black holes. It is shown that:

m Tiwo well-understood techniques, X-ray reflection spectroscopy and
thermal continuum fitting, can be used to measure the spins of black
holes that are accreting at moderate rates. There is a rich set of other
electromagnetic techniques allowing us to extend spin measurements
to lower accretion rates.

m Many accreting supermassive black holes are found to be rapidly
spinning, although a population of more slowly spinning black holes
emerges at masses above M > 3 x 107 Mg as expected from recent
structure formation models.

m Many accreting stellar-mass black holes in X-ray binary systems are
rapidly spinning and must have been born in this state.

m The advent of gravitational wave astronomy has enabled the detection
of spin effects in merging binary black holes. Most of the premerger



Rapidly spinning black holes

Many accreting black holes are found to be spinning very rapidly
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Figure 6

SMBH spins as a function of mass for the 32 objects in Table 1 that have available mass estimators. All spin
measurements reported here are from the X-ray reflection method. Lower limits are reported in red, and
measurements that include a meaningful upper bound (distinct from @ = 1) are reported in blue. Following
the convention of the relevant primary literature, error bars in spin show the 90% confidence range. The
error bars in mass are the 1o errors from 'Table 1 or, where that is not available, we assume a 50% error.
Abbreviation: SMBH, supermassive black hole.



Rapidly spinning black holes

Gravitational wave event GW231123 also rapidly spinning
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GW231123: a Binary Black Hole Merger with Total Mass 190-265 A,

THE LIGO SCIENTIFIC COLLABORATION, THE VIRGO COLLABORATION, AND THE KAGRA COLLABORATION

(Compiled: 14 July 2025)

ABSTRACT

On 2023 November 23 the two LIGO observatories both detected GW231123, a grav ltatl()ndl wave
signal consistent with the merger of two black holes with masses 137722 A 0

J), at luminosity distance 0.7-4.1 Gpe and redshift of 0.397027, and a networl
Both black holes exhibit high spins, 0.9070:1% and 0.80%02) respectively.
e black hole remnant is supported by an independent ringdown ana

credible intervals
to-noise ratio of ~22.5.
A m
of GW231123 are subject to large
parameters between signal model

gap where black holes between G0-13(
the

0.51
Some properties

ematic uncertainties, as indicated by differences in inferred
. The primary black hole lies within or above the theorized mass
should be rare due to pair instability mechanisms, while
ondary spans the gap. The observation of GW231123 therefore

suggests the formation of black

holes from channels beyond standard stellar collapse, and that intermediate-mass black holes of mass

~200 M,

1. INTRODUCTION

From 2015 to 2020 the LIGO-Virgo-KAGRA Collab-
oration identified 69 gravitational-wave

ignals from bi-

nary black hole mergers with false alarm rates below

one per year (Aasi et al. 2015; Acernese et al. 2015;

form through gravitational-wave driven mergers.

tal masses (Abbott et al. 2023a;

none have false alarm rates I

Wadekar et al. 2023),
han 1 per year; in ad-
dition, GW231123 has both a large signal-to-noise ratio
and high statisti

ical significance. Such high masses and
spins pose a challenge to our most accurate waveform



AdS> and near-extreme black holes

Near the horizon of (near-)extreme black holes spacetime is AdS.-like

e Extreme Reissner-Nordstrom; Bertotti-Robinson: [Bertotti, Robinson (1959)]

ar?

dsZ:Mz[ Pd? + +d92] Fos = Msin

e Extreme Kerr; NHEK: [Bardeen, Horowitz (1999)]

ds? = 2M2r(9)[ 2d + 9 4 do? 4 N(0)2(d¢ + r di) ]

» Applies for a wide class of theories in any D [Kunduri, Lucietti, Reall (2007)]

Kinematics of extremal horizon — scaling symmetry
Einstein equations — SL(2)

» Near-horizon approximations and Exact solutions



Gravitational dynamics of AdS, in 4D

» Backreaction in asymptotically AdS, spacetimes is problematic.
[“Anti-de Sitter fragmentation,” Maldacena, Michelson, Strominger (1999)]

[“No dymamics in the extremal Kerr throat,” Amsel, Horowitz, Marolf, Roberts (2009)]

® Q: Starting with a linear solution for a scalar ¢ on AdS, x S2,
does it extend to a non-linear solution of Einstein-Maxwell-Scalar?

® A: Not if we insist on an asymptotically AdS, solution.

» Backreaction in asymptotically flat spacetimes makes perfect sense.

® Q: Starting with a linear solution for a scalar ¢ ~ /e on ERN,
does it extend to a non-linear solution of Einstein-Maxwell-Scalar?

® A:Yes. Generically the fully backreacted nonlinear endpoint is
a near-extreme RN with Q/M = /1 — O(€). [Murata, Reall, Tanahashi (2013)]

Anabasis: Backreaction that destroys the AdS, boundary and builds the
asymptotically flat region of (near-)extreme BHs.



Anabasis perturbations of Bertotti-Robinson

> Backgound:
2 2 2 2, OF 2 .
ds? = M?| — a2 + = + dQ?|,  Fpy = Msino
r
> Spherically symmetric SL{2) perturbations characterized by gauge-invariant:

heg = ar+brt+cr(t2 - 1/r2)
> (a, b, c) get rotated by SL(2) transformations, but:
= b?—4dac is  SL(2)-invariant

» Anabasis off BR leads to RN with:

— Q/M=1 when backreacting p = 0 perturbations
— Q/M=./1—u/4 when backreacting 1 > 0 perturbations



BR arises from two physically distinct near-horizon near-extremality scaling limits of RN

»

d52:<1 2M O)d?2+< M Q:> dr? + $2d02
r r

Fgp = Qsinf, re =M+ VM2 — Q2

Limit #1: Begin with Q = M and put the BH horizonat r =0 (set M = 1):

t=t/x, P=1+42xr

> At O(1) we get BR in Poincare coordinates
a 2
ds? = —r2di® + %2 + d0?
> At O(\) we get, by definition, a linear solution around the above.

heo = 2r

This is an SL(2)-breaking 1 = 0 solution



Limit #2: Begin with Q = M+/1 — X\2x2 and put the BH horizon at p = 0 (set M = 1):

t=71/\, P=r.(1+Xp)

» This produces BR and its perturbations in Rindler coordinates:

d2

4 2
o) : ds?® = —p(p+2k)dr? + ——— +dQ
plp + 2K)
O(}\) : hgg = 2(p + fi)
> Rindler to Poincare transformation:
=1 (B-1/7)
2K
p=—r(1+rt)
Transforms solution+perturbation to
2 2 0 dr° 2
o) : ds® = —r<dt® + — +dQ
r

O(/\) : hgg = —2krt

This is an SL(2)-breaking i = 4?2 solution

Note: The above transformation is singular for x = 0.




Accidental Symmetry:

Coordinate transformation that acts on the perturbative
solutions of Einstein equation near extreme black hole horizon
and maps them among themselves.



The linearized Einstein equation

Schematic notation:
» Background geometry g —e.g. the Bertotti-Robinson spacetime
> Metric perturbation h  —e.g. an (a, b, ¢) solution
> The linearized Einstein equation as a linear differential operator

E(g,h)=0
Consider a finite diffeomorphism
(t,r) = (6,0 + 2 (€1t ), €7t 7))
By general covariance:
E(g(N), h(\)) = 0 for arbitrary X and &£¥

Expanding in A,

£(9(0), H(0)) + A-E(G(N), H(O)) + A= £(g(0), h(N) + O(?) =0



Accidental symmetry: definition

Starting with a solution around the original background, £(g(0), h(0)) = 0, we have:

lim [02€(g(A), h(0)) + 92£(g(0), h(A))] = O M

> 1St term: hold perturbation fixed, act with a linearized diffeo on the background
» 2" term: on fixed background, transform perturbation using linearized diffeo

Equation (1) is valid for any diffeo, i.e. for any &.



Accidental symmetry: definition

Starting with a solution around the original background, £(g(0), h(0)) = 0, we have:
Jim [OAE(9(A), h(0)) + DE(9(0), h(X))] = 0 (1)

> 1St term: hold perturbation fixed, act with a linearized diffeo on the background
» 2" term: on fixed background, transform perturbation using linearized diffeo

Equation (1) is valid for any diffeo, i.e. for any &.

What if we impose the strong requirement that each term in (1) vanishes individually?

lim OAE(9(0), () =0 @)

» Trivial solutions: Isometries of the background g(\) = g(0)
> Other solution: accidental symmetry —transforms solns h among themselves



Accidental symmetry: electrovacuum case

£ : linearized Einstein-Maxwell equations (electrovacuum)
g(0) : Bertotti-Robinson
h(0) : hgg = ar (n = 0 solution)

The solution of limy_, 9x£(g(0), h(X)) = 0 & £(9(0), Lh(0)) = 0 is given by

(1) SEAUIPS

] O — {re’(t)

&= [EU)JF 2r2 2r

where,
€(t) =e1+ eyt +e_q B + e,2t3.

> &o,+1: SL(2) Killing vectors of AdS;

1
§&1 =0, §=1t0—ror, &_4= <f2+rj) O — 2rt o,

> ¢_o: non-trivial accidental symmetry

1
2= <t3+ %) O — 3r (tz— I’iz) Or



Accidental symmetry: electrovacuum case
Question: What does £_» do?
Answer: Relates ¢ = 0to i # 0. Indeed, we have

Ap = —4alc = —12X\e_oa&

Accidental symmetries enlarge the possible mappings among solutions to
include those beyond the SL(2) isometries, thereby allowing to move from
one p orbit to another.



Accidental symmetry: electrovacuum case

Question: What does £_» do?

Answer: Relates ;o = 0 to x # 0. Indeed, we have

Ap = —4alc = —12X\e_oa&

Accidental symmetries enlarge the possible mappings among solutions to
include those beyond the SL(2) isometries, thereby allowing to move from
one p orbit to another.

Question: Whatdo £_3,&_4,...do?
Answer: They move the perturbations off-shell. Collectively, for arbitrary e(t) = t—"+1,

we have the Virasoro algebra [¢m, £n] = (M — N)Emtn.

Accidental symmetries of the Einstein equation around AdS, may be usefully
thought of as on-shell large diffeomorphisms (asymptotic symmetries).



Accidental symmetry as on-shell large diffeo of AdS»
Putting on-shell the large diffeomorphisms of AdS, in JT gravity
» The large diffeomorphisms of AdS,, in FG gauge, are given by

2 (£)F (1) 4r2f (1)2 — (1)
t— () + BANLISS M HE LV
IO sepme e T T am(e
5 5 Sch(f,t)\2 , dr? v(t)
ds; — —r (1 + o2 ) dt + " and b — Po(t)r + -

with o (1) = [a-+ bF(1) + cf(£)2]//(t) and v(t) = —[4{/(t) + Sch(f, )po(1)]/2.

> For arbitrary f(t), this ¢o(t) satisfies the Schwarzian eom

] -

> |f one imposes that ¢g(t) = constant, before as well as after acting with the large
diffeo, then for infinitesimal diffeo f(t) = ¢ + €(t), the Schwarzian eom reduces to

E////(t) — O

with its cubic solution e(t) = ey + et + e_112 + e_ot3. v



Accidental symmetry: turning on propagating d.o.f.

lim 9x€(g(0), h(N)) =T )
A—0
Source T must satisfy equations of motion. We consider Klein-Gordon scalar
Op=0 = o=~Ff(v)+rf(v) (u=t—1/r,v=t+1/r)

Can get solution to (3) from the electrovacuum hyy = r using the transformation

¢t = %[Fjr(v) + FL(u)] - %[Fi’(‘/) — FZ(u)]

v [ et [ e

e+ (i-1)
r3// dbdp

¢ =rlFL(v) = FL(u)] = [FL(v) + FZ(u)],

where F1"/(v) = [f(v)]2 and F"""(u) = [f" (u)]2.



Accidental symmetries: a method for identifying them

> Begin with
9™RN = gBR L X h+ O(A%) = hisan u = 0 anabasis soln, E(gR, h) =0
Previously we defined accidental symmetry ¢ as soln of: £(gBR, L¢h) = 0.

> Let ¢ generate a linearized diffeo of size p: h — h+ p Leh+ O(p?)
For & = £_, this produces a soln that is an anabasis soln off BR whose back
reaction builds the exterior asymptotically flat region of near-extreme RN:

gRN:gBR+/\(h+M£§72h>+..,

Method: Obtain £_» by finding an appropriate one-parameter family of coordinates to
write an RN spacetime, of charge-to-mass ratio controlled by ., as a double series of
the above form. Advantage: No need to solve the linearized Einstein equation.



Accidental symmetries: a method for identifying them

Derivation of electrovacuum £_»
> Recall: for ERN, Q = M, Limit #1

t=t/\, P=1+rr
produces BR in Poincare coords: gFRN = gBR + X\ h 4 O()?).
> For near-extreme RN, Q = M\/1 — A2x2, instead of Limit #2, follow up above by:
t— t+r2ENL ), r—r+ K20t r)
i.e. apply on RN
L

A
P=14Ar+2Ac2(t,r),

2

~ K

t= =t r
+A£(,)

and expand in both A and « :
FN=gPR 4 2G+ A+ AP H 4.

> Setting x = 0 = £(gBR, h) = 0. Setting A = 0 = £(g®R, G) = 0 for arbitrary ¢.



Accidental symmetries: a method for identifying them

Derivation of electrovacuum &_»
PN =g"R 4+ R2G+ A+ AP H+ - .
> We can make H also a soln, £(gBR, H) = 0, if we choose ¢ such that G = 0:
RN __ . BR 2
MN=g +/\(h+n H) oo
The most general soln is:
1
G=0= &= ﬁffz + 6o + e1é1 +e—181.

» Thus we have: h is a u = 0 anabasis off BR that builds ERN,
h+ «x?H is a u = 4x? anabasis off BR that builds RN.

Question: IsH= L, ,h?
Answer: Yes, provided we align the gauges for h and H appropriately.



Summary

Accidental Symmetry: Coordinate transformation that acts on the
perturbative solutions of Einstein equation near extreme black hole horizon
and maps them among themselves.

» BR—RN: turn on deviation from extremality. Similarly for NHEK—Kerr.

» Combine neatly with isometries inside a Virasoro.

> May be thought of as on-shell large diffeomorphisms of AdS,

» In spherical symmetry, can turn on arbitrary propagating KG matter sources

» What's next? WIP: Work out accidental symmetries turning on axisymmetric
gravitational waves in NHEK.



Summary

Accidental Symmetry: Coordinate transformation that acts on the
perturbative solutions of Einstein equation near extreme black hole horizon
and maps them among themselves.

BR—RN: turn on deviation from extremality. Similarly for NHEK—Kerr.
Combine neatly with isometries inside a Virasoro.

>
>
> May be thought of as on-shell large diffeomorphisms of AdS,
>

In spherical symmetry, can turn on arbitrary propagating KG matter sources

» What's next? WIP: Work out accidental symmetries turning on axisymmetric
gravitational waves in NHEK.

The end
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