
Symmetries near extreme black hole horizons

Achilleas P. Porfyriadis

ITCP, University of Crete

[JHEP 2103, 223] with S. Hadar, A. Lupsasca
[JHEP 2203, 107] with G. Remmen
[JHEP 2303, 125] with G. Remmen
[JHEP 2504, 149] with A. Banerjee, G. Remmen

Workshop on Quantum Gravity and Strings, Corfu, Sept 2025



Why extreme black holes?

Two reasons:

▶ They are observationally relevant:

Many black holes are found to be spinning very rapidly

▶ They are theoretically manageable:

Near the horizon of (near-)extreme black holes spacetime is AdS-like



Rapidly spinning black holes



Rapidly spinning black holes
Many accreting black holes are found to be spinning very rapidly



Rapidly spinning black holes

Gravitational wave event GW231123 also rapidly spinning



AdS2 and near-extreme black holes

Near the horizon of (near-)extreme black holes spacetime is AdS2-like

• Extreme Reissner-Nordstrom; Bertotti-Robinson: [Bertotti, Robinson (1959)]

ds2 = M2
[
− r 2dt2 +

dr 2

r 2 + dΩ2
]
, Fθϕ = M sin θ

• Extreme Kerr; NHEK: [Bardeen, Horowitz (1999)]

ds2 = 2M2Γ(θ)
[
− r2dt2 +

dr2

r2
+ dθ2 + Λ(θ)2(dϕ+ r dt)2

]

▶ Applies for a wide class of theories in any D [Kunduri, Lucietti, Reall (2007)]

Kinematics of extremal horizon → scaling symmetry
Einstein equations → SL(2)

▶ Near-horizon approximations and Exact solutions



Gravitational dynamics of AdS2 in 4D

▶ Backreaction in asymptotically AdS2 spacetimes is problematic.
[“Anti-de Sitter fragmentation,” Maldacena, Michelson, Strominger (1999)]

[“No dymamics in the extremal Kerr throat,” Amsel, Horowitz, Marolf, Roberts (2009)]

• Q: Starting with a linear solution for a scalar ϕ on AdS2 × S2,
does it extend to a non-linear solution of Einstein-Maxwell-Scalar?

• A: Not if we insist on an asymptotically AdS2 solution.

▶ Backreaction in asymptotically flat spacetimes makes perfect sense.
• Q: Starting with a linear solution for a scalar ϕ ∼

√
ϵ on ERN,

does it extend to a non-linear solution of Einstein-Maxwell-Scalar?
• A: Yes. Generically the fully backreacted nonlinear endpoint is

a near-extreme RN with Q/M =
√

1 −O(ϵ). [Murata, Reall, Tanahashi (2013)]

Anabasis: Backreaction that destroys the AdS2 boundary and builds the
asymptotically flat region of (near-)extreme BHs.



Anabasis perturbations of Bertotti-Robinson

▶ Backgound:

ds2 = M2
[
− r2dt2 +

dr2

r2
+ dΩ2

]
, Fθϕ = M sin θ

▶ Spherically symmetric���SL(2) perturbations characterized by gauge-invariant:

hθθ = a r + b r t + c r
(

t2 − 1/r2
)

▶ (a, b, c) get rotated by SL(2) transformations, but:

µ = b2 − 4ac is SL(2)-invariant

▶ Anabasis off BR leads to RN with:

→ Q/M = 1 when backreacting µ = 0 perturbations
→ Q/M =

√
1 − µ/4 when backreacting µ > 0 perturbations



BR arises from two physically distinct near-horizon near-extremality scaling limits of RN

ds2 = −
(

1 −
2M
r̂

+
Q2

r̂2

)
d̂t2 +

(
1 −

2M
r̂

+
Q2

r̂2

)−1

dr̂2 + r̂2dΩ2

Fθϕ = Q sin θ , r± = M ±
√

M2 − Q2

Limit #1: Begin with Q = M and put the BH horizon at r = 0 (set M = 1):

t̂ = t/λ, r̂ = 1 + λr

▶ At O(1) we get BR in Poincare coordinates

ds2 = −r2dt2 +
dr2

r2
+ dΩ2

▶ At O(λ) we get, by definition, a linear solution around the above.

hθθ = 2r

This is an SL(2)-breaking µ = 0 solution



Limit #2: Begin with Q = M
√

1 − λ2κ2 and put the BH horizon at ρ = 0 (set M = 1):

t̂ = τ/λ, r̂ = r+(1 + λρ)

▶ This produces BR and its perturbations in Rindler coordinates:

O(1) : ds2 = −ρ(ρ+ 2κ)dτ2 +
dρ2

ρ(ρ+ 2κ)
+ dΩ2

O(λ) : hθθ = 2(ρ+ κ)

▶ Rindler to Poincare transformation:

τ = −
1

2κ
ln
(

t2 − 1/r2
)

ρ = −κ(1 + rt)

Transforms solution+perturbation to

O(1) : ds2 = −r2dt2 +
dr2

r2
+ dΩ2

O(λ) : hθθ = −2κ r t

This is an SL(2)-breaking µ = 4κ2 solution

Note: The above transformation is singular for κ = 0.

t = 0

r =
0

r
=

0

r
=

∞

ρ
=

0

ρ
=

0

ρ
=

∞



Accidental Symmetry:

Coordinate transformation that acts on the perturbative
solutions of Einstein equation near extreme black hole horizon

and maps them among themselves.



The linearized Einstein equation

Schematic notation:
▶ Background geometry g —e.g. the Bertotti-Robinson spacetime
▶ Metric perturbation h —e.g. an (a, b, c) solution
▶ The linearized Einstein equation as a linear differential operator

E(g, h) = 0

Consider a finite diffeomorphism

(t , r) → (t , r) + λ
(
ξt (t , r), ξr (t , r)

)
By general covariance:

E(g(λ), h(λ)) = 0 for arbitrary λ and ξµ

Expanding in λ,

E(g(0), h(0)) + λ
δ

δλ
E(g(λ), h(0)) + λ

δ

δλ
E(g(0), h(λ)) +O(λ2) = 0



Accidental symmetry: definition

Starting with a solution around the original background, E(g(0), h(0)) = 0, we have:

lim
λ→0

[∂λE(g(λ), h(0)) + ∂λE(g(0), h(λ))] = 0 (1)

▶ 1st term: hold perturbation fixed, act with a linearized diffeo on the background
▶ 2nd term: on fixed background, transform perturbation using linearized diffeo

Equation (1) is valid for any diffeo, i.e. for any ξµ.

What if we impose the strong requirement that each term in (1) vanishes individually?

lim
λ→0

∂λE(g(0), h(λ)) = 0 (2)

▶ Trivial solutions: Isometries of the background g(λ) = g(0)
▶ Other solution: accidental symmetry —transforms solns h among themselves
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Accidental symmetry: electrovacuum case

E : linearized Einstein-Maxwell equations (electrovacuum)
g(0) : Bertotti-Robinson
h(0) : hθθ = a r (µ = 0 solution)

The solution of limλ→0 ∂λE(g(0), h(λ)) = 0 ⇔ E(g(0),Lξh(0)) = 0 is given by

ξ =

[
ϵ(t) +

ϵ′′(t)
2r2

]
∂t −

[
rϵ′(t)−

ϵ′′′(t)
2r

]
∂r ,

where,
ϵ(t) = e1 + e0t + e−1t2 + e−2t3.

▶ ξ0,±1: SL(2) Killing vectors of AdS2

ξ1 = ∂t , ξ0 = t ∂t − r ∂r , ξ−1 =

(
t2 +

1
r2

)
∂t − 2rt ∂r ,

▶ ξ−2: non-trivial accidental symmetry

ξ−2 =

(
t3 +

3t
r2

)
∂t − 3r

(
t2 −

1
r2

)
∂r



Accidental symmetry: electrovacuum case

Question: What does ξ−2 do?

Answer: Relates µ = 0 to µ ̸= 0. Indeed, we have

∆µ = −4a∆c = −12λe−2a2

Accidental symmetries enlarge the possible mappings among solutions to
include those beyond the SL(2) isometries, thereby allowing to move from
one µ orbit to another.

Question: What do ξ−3, ξ−4, . . . do?

Answer: They move the perturbations off-shell. Collectively, for arbitrary ϵ(t) = t−n+1,

we have the Virasoro algebra [ξm, ξn] = (m − n)ξm+n.

Accidental symmetries of the Einstein equation around AdS2 may be usefully
thought of as on-shell large diffeomorphisms (asymptotic symmetries).
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Accidental symmetry as on-shell large diffeo of AdS2
Putting on-shell the large diffeomorphisms of AdS2 in JT gravity

▶ The large diffeomorphisms of AdS2, in FG gauge, are given by

t → f (t) +
2f ′′(t)f ′(t)2

4r2f ′(t)2 − f ′′(t)2
, r →

4r2f ′(t)2 − f ′′(t)2

4rf ′(t)3

ds2
2 → −r2

(
1 +

Sch(f , t)
2r2

)2
dt2 +

dr2

r2
and Φ → ϕ0(t)r +

v(t)
r

,

with ϕ0(t) = [a + bf (t) + cf (t)2]/f ′(t) and v(t) = −[ϕ′′
0 (t) + Sch(f , t)ϕ0(t)]/2.

▶ For arbitrary f (t), this ϕ0(t) satisfies the Schwarzian eom

[
1
f ′

(
(f ′ϕ0)

′

f ′

)′]′
= 0

▶ If one imposes that ϕ0(t) = constant, before as well as after acting with the large
diffeo, then for infinitesimal diffeo f (t) = t + ϵ(t), the Schwarzian eom reduces to

ϵ′′′′(t) = 0

with its cubic solution ϵ(t) = e1 + e0t + e−1t2 + e−2t3. ✓



Accidental symmetry: turning on propagating d.o.f.

lim
λ→0

∂λE(g(0), h(λ)) = T (3)

Source T must satisfy equations of motion. We consider Klein-Gordon scalar

□ϕ = 0 ⇒ ϕ = f+(v) + f−(u) (u = t − 1/r , v = t + 1/r)

Can get solution to (3) from the electrovacuum hθθ = r using the transformation

ξt =
3
2r

[F ′
+(v) + F ′

−(u)]−
3

2r2
[F ′′

+(v)− F ′′
−(u)]

+
3
r3

[∫ v F+(t0)
(t − t0)4

dt0 +

∫ u F−(t0)
(t − t0)4

dt0

]

−
1
r3

∫ r ∫ t f ′+
(

t̂ + 1
r̂

)
f ′−
(

t̂ − 1
r̂

)
r̂

d̂t dr̂

ξr = r [F ′
+(v)− F ′

−(u)]− [F ′′
+(v) + F ′′

−(u)],

where F ′′′′
+ (v) = [f ′+(v)]

2 and F ′′′′
− (u) = [f ′−(u)]2.



Accidental symmetries: a method for identifying them

▶ Begin with

gERN = gBR + λ h +O(λ2) ⇒ h is an µ = 0 anabasis soln, E(gBR, h) = 0

Previously we defined accidental symmetry ξ as soln of: E(gBR,Lξh) = 0.

▶ Let ξ generate a linearized diffeo of size µ : h → h + µLξh +O(µ2)

For ξ = ξ−2 this produces a soln that is an anabasis soln off BR whose back
reaction builds the exterior asymptotically flat region of near-extreme RN:

gRN = gBR + λ
(

h + µLξ−2 h
)
+ · · ·

Method: Obtain ξ−2 by finding an appropriate one-parameter family of coordinates to
write an RN spacetime, of charge-to-mass ratio controlled by µ, as a double series of
the above form. Advantage: No need to solve the linearized Einstein equation.



Accidental symmetries: a method for identifying them
Derivation of electrovacuum ξ−2

▶ Recall: for ERN, Q = M, Limit #1

t̂ = t/λ, r̂ = 1 + λr

produces BR in Poincare coords: gERN = gBR + λ h +O(λ2).

▶ For near-extreme RN, Q = M
√

1 − λ2κ2, instead of Limit #2, follow up above by:

t → t + κ2ξt (t , r), r → r + κ2ξr (t , r)

i.e. apply on RN

t̂ =
t
λ

+
κ2

λ
ξt (t , r)

r̂ = 1 + λr + λκ2ξr (t , r),

and expand in both λ and κ :

gRN = gBR + κ2 G + λh + λκ2 H + · · · .

▶ Setting κ = 0 ⇒ E(gBR, h) = 0. Setting λ = 0 ⇒ E(gBR,G) = 0 for arbitrary ξ.



Accidental symmetries: a method for identifying them

Derivation of electrovacuum ξ−2

gRN = gBR + κ2 G + λh + λκ2 H + · · · .

▶ We can make H also a soln, E(gBR,H) = 0, if we choose ξ such that G = 0:

gRN = gBR + λ
(

h + κ2 H
)
+ · · ·

The most general soln is:

G = 0 ⇒ ξ =
1

12
ξ−2 + e0ξ0 + e1ξ1 + e−1ξ−1.

▶ Thus we have: h is a µ = 0 anabasis off BR that builds ERN,
h + κ2H is a µ = 4κ2 anabasis off BR that builds RN.

Question: Is H = Lξ−2 h ?
Answer: Yes, provided we align the gauges for h and H appropriately.



Summary

Accidental Symmetry: Coordinate transformation that acts on the
perturbative solutions of Einstein equation near extreme black hole horizon
and maps them among themselves.

▶ BR→RN: turn on deviation from extremality. Similarly for NHEK→Kerr.

▶ Combine neatly with isometries inside a Virasoro.

▶ May be thought of as on-shell large diffeomorphisms of AdS2

▶ In spherical symmetry, can turn on arbitrary propagating KG matter sources

▶ What’s next? WIP: Work out accidental symmetries turning on axisymmetric
gravitational waves in NHEK.

The end
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