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Introduction

Spectral Triples and Physics

Almost-Commutative Geometries a la Connes provide a natural
geometric origin for the standard model

Investigate a non-commutative ’spacetime’ with internal space e.g.
Perez-Sanchez [1]

Matrix geometries provide a nice space of toy geometries (with
commutative geometries as limits e.g. fuzzy sphere).

Functional Integrals are well defined for matrix geometries
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Introduction

Matrix Geometries (Real Finite Spectral Triples)

Matrix Geometries (Barrett [2]) are real finite spectral triples,
(A,H,D; J , Γ), such that

A = Mn(R) or Mn/2(H)

H = Ck ⊗ Mn(C) for Ck a (p, q) Clifford Module

D is a general Dirac operator constructed of combinations of Clifford
generators (gamma matrices) and (anti-)commutators of matrices e.g
for a (0, 4) geometry

D4 =
∑
µ

γµ ⊗ [Lµ, ·] +
∑

i<j<k
γ iγjγk ⊗

{
Hijk , ·

}

Joe Burridge (University of Nottingham) Matrix Geometries with an Internal Space
Corfu Summer Institute - September 17, 2025
5 / 24



Fluctuations of Matrix Geometries
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Fluctuations of Matrix Geometries The Model

Matrix Geometry with an Internal Space
Take the product of a (0, 4) space and a ’U(1)’ internal space. Gives a
KO-2 triple:

A = Mn(R)⊗R C or Mn(H)⊗R C

H = C4 ⊗ Mn(C)⊗ C2

D = D4 ⊗ 1HF + Γ⊗ DF

J = C ⊗ (·)∗ ⊗ JF

γ = Γ⊗ γF = γ5 ⊗ 1n ⊗ γF

Representations of the algebra are given by

π(A ⊗ λ) = 14 ⊗ A ⊗

(
λ 0
0 λ̄

)
=

(
14 ⊗ λA 0

0 14 ⊗ λ̄A

)
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Fluctuations of Matrix Geometries The Model

The Gauge Group

The gauge group of the spectral triple is given by

G(A,H; J) = U(n)/Z2

This agrees with Bhomwick et al.[3]

The gauge algebra of the spectral triple is

g(A,H; J) = u(n)
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Fluctuations of Matrix Geometries Fluctuations

Fluctuations

Inner fluctuations are Connes one-forms

ω = π(A ⊗ α)[D, π(B ⊗ β)]

For almost commutative geometries inner automorphisms provide gauge-
and scalar- field content.

In this case, all automorphisms are inner.

Gauge and spacetime fluctuations are associated to the ’manifold’
Dirac operator, π(A ⊗ α)[D4 ⊗ 1HF , π(B ⊗ β)]

Scalar fluctuations originate from the mass Dirac operator,
π(A ⊗ α)[Γ⊗ DF , π(B ⊗ β)]
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Fluctuations of Matrix Geometries Fluctuations

Spacetime Vs Gauge I

Fluctuations associated to D4 take the form

ΩΛ = γµ ⊗

(
λΛµ(·)− (·)λ̄Λµ 0

0 λ̄Λµ(·)− (·)λΛµ

)

+ γ iγjγk ⊗

(
λΛijk(·) + (·)λ̄Λijk 0

0 λ̄Λijk(·) + (·)λΛijk

)

for λ ∈ C, Λµ,Λijk ∈ Mn(C).
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Fluctuations of Matrix Geometries Fluctuations

Spacetime Vs Gauge II

Upon applying the Hermiticity constraint,there are two possible types of
fluctuation related to λ = ν + iκ

Real fluctuations, ν 6= 0, κ = 0, are associated to the ’manifold
algebra’ - Spacetime Fluctuations

Imaginary fluctuations, ν = 0, κ 6= 0, are associated to both the
manifold and internal algebras - Gauge Fields

General fluctuations are a sum of these two types
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Fluctuations of Matrix Geometries Fluctuations

Spacetime Vs Gauge III

Real / Spacetime Fluctuations

ΩR =

(
γµ ⊗ 1

2 [σµ, ·] + γ iγjγk ⊗ 1
2
{

yijk , ·
})

⊗ 1HF

= (Σ + Y )⊗ 1HF

Imaginary / Gauge fluctuations

ΩiR =

(
γµ ⊗ 1

2{θµ, ·}+ γ iγjγk ⊗ 1
2
[
ixijk , ·

])
⊗ γF

= (Θ + X)⊗ γF
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Fluctuations of Matrix Geometries Fluctuations

Higgs terms

The mass fluctuations are generated by the internal Dirac operator.

These fluctuations are determined by a complex, symmetric matrix φ

ΩΦ = γ5 ⊗

(
0 µ̄{φ, ·}

µ
{
φ̄, ·
}

0

)

= γ5 ⊗

(
0 µ̄Φ

µΦ̄ 0

)
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Fluctuations of Matrix Geometries The Action

The Total Dirac Operator

D =

(
(D4 +Σ+ Y ) + (Θ + X) µ̄Γ(1 +Φ)

µΓ(1 + Φ̄) (D4 +Σ+ Y )− (Θ + X)

)

=

(
D ′

4 + (Θ + X) µ̄Γ(1 +Φ)

µΓ(1 + Φ̄) D ′
4 − (Θ + X)

)

The spacetime fluctuations can be absorbed via a redefinition of D4
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Fluctuations of Matrix Geometries The Action

The Fermionic Action

The fermionic action is defined as S = 1
2〈JΨ,DΨ〉 = 1

2(Ψ,DΨ) [4]. The
action for a fermion, Ψ = χ⊗ e + ξ ⊗ ē, in this model is

(Ψ,DΨ) = (ξ, (D ′
4 + (Θ + X))χ)

+ (χ, (D ′
4 − (Θ + X))ξ)

+ µ(ξ, Γ(1 +Φ)ξ) + µ̄(χ, Γ(1 +Φ)χ)
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Fermion Integrals for Matrix Geometries with Internal Space
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3 Fermion Integrals for Matrix Geometries with Internal Space
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Fermion Integrals for Matrix Geometries with Internal Space The Integral of Interest

The Real Fermionic Integral

The real fermionic integral is given by

ZR =

∫
H
Dψe

i
2 〈JΨ,DΨ〉

The conjugation operator ensures this integration is only over the fermion
field.

For a KO-2 triple, and if there is a mass to regulate zero modes (or there
are no zero modes), this results in [5]

ZR = pf[〈Jei , iDej〉] =
√
det(D)
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Fermion Integrals for Matrix Geometries with Internal Space Extending the Real Integral

Real Integral with Spacetime Fluctuations

Consider the Dirac operator with only real fluctuations, DST = D +ΩR

Spacetime fluctuations are global, thus a basis can be found in terms
of a modified D ′

4

Barrett’s method can then be used [5], giving an identical form just
with a modified eigenvalue spectrum∫
HDψe i

2 〈JΨ,DSTΨ〉 =
√

det(DST ) =

√
det
(

D ′2
4 + |µ|2

)
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Fermion Integrals for Matrix Geometries with Internal Space Extending the Real Integral

Real Integral with a Gauge Field I

Now ’turn on’ the imaginary fluctuations to give the operator

DG = DST + DiR

=

(
D ′

4 + (Θ + X) µ̄Γ

µΓ D ′
4 − (Θ + X)

)

In this case a basis of D ′
4 cannot be used, instead one is constructed

directly for DG
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Fermion Integrals for Matrix Geometries with Internal Space Extending the Real Integral

Real Integral with a Gauge Field II

Hence, pf(MG) =
√
det(DG), with det(DG) equal to,

det

D ′2
4 + |µ|2 − ((Θ + X)2 +

[
D ′

4,Θ+ X
]
)︸ ︷︷ ︸

F


These induced terms take the form

F = (Θ + X)2 +
[
D ′

4,Θ+ X
]

= Θ2 +
[
D ′

4,Θ
]
+ X2 +

[
D ′

4,X
]
+ {Θ,X}
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Conclusion

Conclusion/Recap

Investigation of a matrix geometry with a U(1) internal space

Formed a spectral fermionic action functional that provided gauge
and scalar field interaction terms

In addition shown the fluctuations generate a new charge dependent
derivative-like term from the spin connection

Symbolically computed fermionic integrals - these contribute ’Field
Strength’-like correction terms to the action

Outlook - Higgs effects, Chiral fermion integral, Spectral action,
Geometries with commutative limit
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Conclusion

The End

Thank you for your time! :)
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