Matrix Geometries with an Internal Space

Joe Burridge

University of Nottingham

Corfu Summer Institute - September 17, 2025

Based on joint work with John Barrett

- Introduction
- 2 Fluctuations of Matrix Geometries
 - The Model
 - Fluctuations
 - The Action
- 3 Fermion Integrals for Matrix Geometries with Internal Space
 - The Integral of Interest
 - Extending the Real Integral
- 4 Conclusion

Introduction

Spectral Triples and Physics

- Almost-Commutative Geometries a la Connes provide a natural geometric origin for the standard model
- Investigate a non-commutative 'spacetime' with internal space e.g.
 Perez-Sanchez [1]
- Matrix geometries provide a nice space of toy geometries (with commutative geometries as limits e.g. fuzzy sphere).
- Functional Integrals are well defined for matrix geometries

Matrix Geometries (Real Finite Spectral Triples)

Matrix Geometries (Barrett [2]) are real finite spectral triples, $(\mathcal{A}, \mathcal{H}, \mathcal{D}; J, \Gamma)$, such that

- $\mathcal{A} = M_n(\mathbb{R})$ or $M_{n/2}(\mathbb{H})$
- $\mathcal{H} = \mathbb{C}^k \otimes M_n(\mathbb{C})$ for \mathbb{C}^k a (p,q) Clifford Module
- D is a general Dirac operator constructed of combinations of Clifford generators (gamma matrices) and (anti-)commutators of matrices e.g for a (0,4) geometry

$$D_4 = \sum_{\mu} \gamma^{\mu} \otimes [L_{\mu}, \cdot] + \sum_{i < j < k} \gamma^i \gamma^j \gamma^k \otimes \{H_{ijk}, \cdot\}$$

- Pluctuations of Matrix Geometries
 - The Model
 - Fluctuations
 - The Action

Matrix Geometry with an Internal Space

Take the product of a (0,4) space and a ${}^{\prime}U(1){}^{\prime}$ internal space. Gives a KO-2 triple:

$$\mathcal{A} = M_n(\mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C}$$
 or $M_n(\mathbb{H}) \otimes_{\mathbb{R}} \mathbb{C}$
 $\mathcal{H} = \mathbb{C}^4 \otimes M_n(\mathbb{C}) \otimes \mathbb{C}^2$
 $D = D_4 \otimes \mathbb{1}_{\mathcal{H}_F} + \Gamma \otimes D_F$
 $J = C \otimes (\cdot)^* \otimes J_F$
 $\gamma = \Gamma \otimes \gamma_F = \gamma_5 \otimes \mathbb{1}_n \otimes \gamma_F$

Representations of the algebra are given by

$$\pi(A\otimes\lambda)=\mathbb{1}_4\otimes A\otimes egin{pmatrix}\lambda&0\0&ar{\lambda}\end{pmatrix}=egin{pmatrix}\mathbb{1}_4\otimes\lambda A&0\0&\mathbb{1}_4\otimesar{\lambda}A\end{pmatrix}$$

The Gauge Group

The gauge group of the spectral triple is given by

$$\mathfrak{G}(\mathcal{A},\mathcal{H};J)=U(n)/\mathbb{Z}_2$$

This agrees with Bhomwick et al.[3]

The gauge algebra of the spectral triple is

$$\mathfrak{g}(\mathcal{A},\mathcal{H};J)=\mathfrak{u}(n)$$

Fluctuations

Inner fluctuations are Connes one-forms

$$\omega = \pi(A \otimes \alpha)[D, \pi(B \otimes \beta)]$$

For almost commutative geometries inner automorphisms provide gaugeand scalar- field content.

In this case, all automorphisms are inner.

- Gauge and spacetime fluctuations are associated to the 'manifold' Dirac operator, $\pi(A \otimes \alpha)[D_4 \otimes \mathbb{1}_{\mathcal{H}_F}, \pi(B \otimes \beta)]$
- Scalar fluctuations originate from the mass Dirac operator, $\pi(A \otimes \alpha)[\Gamma \otimes D_F, \pi(B \otimes \beta)]$

Spacetime Vs Gauge I

Fluctuations associated to D_4 take the form

$$\Omega_{\Lambda} = \gamma^{\mu} \otimes \begin{pmatrix} \lambda \Lambda_{\mu}(\cdot) - (\cdot) \bar{\lambda} \Lambda_{\mu} & 0 \\ 0 & \bar{\lambda} \Lambda_{\mu}(\cdot) - (\cdot) \lambda \Lambda_{\mu} \end{pmatrix} \\
+ \gamma^{i} \gamma^{j} \gamma^{k} \otimes \begin{pmatrix} \lambda \Lambda_{ijk}(\cdot) + (\cdot) \bar{\lambda} \Lambda_{ijk} & 0 \\ 0 & \bar{\lambda} \Lambda_{ijk}(\cdot) + (\cdot) \lambda \Lambda_{ijk} \end{pmatrix}$$

for $\lambda \in \mathbb{C}$, Λ_{μ} , $\Lambda_{iik} \in M_n(\mathbb{C})$.

Spacetime Vs Gauge II

Upon applying the Hermiticity constraint,there are two possible types of fluctuation related to $\lambda=\nu+i\kappa$

- Real fluctuations, $\nu \neq 0, \kappa = 0$, are associated to the 'manifold algebra' Spacetime Fluctuations
- Imaginary fluctuations, $\nu=0, \kappa \neq 0$, are associated to both the manifold and internal algebras Gauge Fields

General fluctuations are a sum of these two types

Spacetime Vs Gauge III

Real / Spacetime Fluctuations

$$\Omega_{\mathbb{R}} = \left(\gamma^{\mu} \otimes \frac{1}{2} [\sigma_{\mu}, \cdot] + \gamma^{i} \gamma^{j} \gamma^{k} \otimes \frac{1}{2} \{y_{ijk}, \cdot\}\right) \otimes \mathbb{1}_{\mathcal{H}_{F}}$$
$$= (\Sigma + Y) \otimes \mathbb{1}_{\mathcal{H}_{F}}$$

Imaginary / Gauge fluctuations

$$\Omega_{i\mathbb{R}} = \left(\gamma^{\mu} \otimes \frac{1}{2} \{\theta_{\mu}, \cdot\} + \gamma^{i} \gamma^{j} \gamma^{k} \otimes \frac{1}{2} [i \mathsf{x}_{ijk}, \cdot]\right) \otimes \gamma_{F}$$
$$= (\Theta + X) \otimes \gamma_{F}$$

Higgs terms

The mass fluctuations are generated by the internal Dirac operator.

These fluctuations are determined by a complex, symmetric matrix ϕ

$$\Omega_{\Phi} = \gamma_5 \otimes \begin{pmatrix} 0 & \bar{\mu}\{\phi, \cdot\} \\ \mu\{\bar{\phi}, \cdot\} & 0 \end{pmatrix}$$

$$= \gamma_5 \otimes \begin{pmatrix} 0 & \bar{\mu}\Phi \\ \mu\bar{\Phi} & 0 \end{pmatrix}$$

The Total Dirac Operator

$$\begin{split} D &= \begin{pmatrix} (D_4 + \Sigma + Y) + (\Theta + X) & \bar{\mu}\Gamma(1 + \Phi) \\ \mu\Gamma(1 + \bar{\Phi}) & (D_4 + \Sigma + Y) - (\Theta + X) \end{pmatrix} \\ &= \begin{pmatrix} D_4' + (\Theta + X) & \bar{\mu}\Gamma(1 + \Phi) \\ \mu\Gamma(1 + \bar{\Phi}) & D_4' - (\Theta + X) \end{pmatrix} \end{split}$$

The spacetime fluctuations can be absorbed via a redefinition of D_4

The Fermionic Action

The fermionic action is defined as $S = \frac{1}{2} \langle J\Psi, D\Psi \rangle = \frac{1}{2} (\Psi, D\Psi)$ [4]. The action for a fermion, $\Psi = \chi \otimes e + \xi \otimes \overline{e}$, in this model is

$$(\Psi, D\Psi) = (\xi, (D'_4 + (\Theta + X))\chi)$$
$$+ (\chi, (D'_4 - (\Theta + X))\xi)$$
$$+ \mu(\xi, \Gamma(1 + \Phi)\xi) + \bar{\mu}(\chi, \Gamma(1 + \Phi)\chi)$$

- 3 Fermion Integrals for Matrix Geometries with Internal Space
 - The Integral of Interest
 - Extending the Real Integral

The Real Fermionic Integral

The real fermionic integral is given by

$$Z_{\mathbb{R}} = \int_{\mathcal{H}} \mathcal{D} \psi e^{rac{i}{2} \langle J \Psi, D \Psi
angle}$$

The conjugation operator ensures this integration is only over the fermion field.

For a KO-2 triple, and if there is a mass to regulate zero modes (or there are no zero modes), this results in [5]

$$Z_{\mathbb{R}} = \mathsf{pf}[\langle Je_i, iDe_j \rangle] = \sqrt{\mathsf{det}(D)}$$

Real Integral with Spacetime Fluctuations

Consider the Dirac operator with only real fluctuations, $D_{ST} = D + \Omega_{\mathbb{R}}$

- Spacetime fluctuations are global, thus a basis can be found in terms of a modified D_4^\prime
- Barrett's method can then be used [5], giving an identical form just with a modified eigenvalue spectrum

•
$$\int_{\mathcal{H}} \mathcal{D}\psi e^{rac{i}{2}\langle J\Psi, D_{ST}\Psi \rangle} = \sqrt{\det(D_{ST})} = \sqrt{\det\left(D_{4}'^{2} + |\mu|^{2}\right)}$$

Real Integral with a Gauge Field I

Now 'turn on' the imaginary fluctuations to give the operator

$$D_{G} = D_{ST} + D_{i\mathbb{R}}$$

$$= \begin{pmatrix} D'_{4} + (\Theta + X) & \bar{\mu}\Gamma \\ \mu\Gamma & D'_{4} - (\Theta + X) \end{pmatrix}$$

In this case a basis of D_4^\prime cannot be used, instead one is constructed directly for D_G

Real Integral with a Gauge Field II

Hence, $pf(M_G) = \sqrt{\det(D_G)}$, with $\det(D_G)$ equal to,

$$\det\left(D_4'^2 + |\mu|^2 - \underbrace{((\Theta + X)^2 + [D_4', \Theta + X])}_F\right)$$

These induced terms take the form

$$F = (\Theta + X)^{2} + [D'_{4}, \Theta + X]$$

= $\Theta^{2} + [D'_{4}, \Theta] + X^{2} + [D'_{4}, X] + \{\Theta, X\}$

4 Conclusion

Conclusion/Recap

- ullet Investigation of a matrix geometry with a U(1) internal space
- Formed a spectral fermionic action functional that provided gauge and scalar field interaction terms
- In addition shown the fluctuations generate a new charge dependent derivative-like term from the spin connection
- Symbolically computed fermionic integrals these contribute 'Field Strength'-like correction terms to the action
- Outlook Higgs effects, Chiral fermion integral, Spectral action,
 Geometries with commutative limit

The End

Thank you for your time! :)

References

- C. I. Perez-Sanchez, "On multimatrix models motivated by random noncommutative geometry II: A Yang-Mills-Higgs matrix model," *Annales Henri Poincare*, vol. 23, no. 6, pp. 1979–2023, May 2021.
- [2] J. W. Barrett, "Matrix geometries and fuzzy spaces as finite spectral triples," *Journal of Mathematical Physics*, vol. 56, no. 8, p. 82301, Aug. 2015.
- [3] J. Bhowmick, F. D'Andrea, B. Das, and L. Dabrowski, "Quantum gauge symmetries in Noncommutative Geometry," *Journal of Noncommutative Geometry*, vol. 8, no. 2, pp. 433–471, Dec. 2011.
- [4] W. D. van Suijlekom, Noncommutative Geometry and Particle Physics (Mathematical Physics Studies). Cham: Springer Nature Switzerland, 2025.
- [5] J. W. Barrett, "Fermion integrals for finite spectral triples," Journal