The supergravity description of a finite duality cascade Based on [2506.18988]

Pietro Moroni

In collaboration with: Fabrizio Aramini Riccardo Argurio Matteo Bertolini Eduardo Garcia-Valdecasas

PhD Supervisor: Matteo Bertolini

Introduction

- ► The objective is to describe four-dimensional confining theories using holography.
- Very successful example: the Klebanov-Strassler model. It is an $\mathcal{N}=1$ supersymmetric gauge theory admitting a supergravity description at all energies scales.
- ▶ The RG flow of the KS theory is an infinite cascade of Seiberg dualities: in the UV the number of dofs is infinite.
- Idea: tweak the KS model to find theories with finite cascades → the UV is a strongly interacting SCFT.

The Klebanov-Strassler model

Setup: D3 and D5 branes at the singularity of the conifold

Resulting $\mathcal{N}=1$ theory:

$$SU(N+M) \times SU(N)$$
, A_1 , A_2 , B_1 , B_2 chirals in the bifundamental $\mathcal{W} = h \mathrm{Tr} \left[\det(A_i B_j) \right]$

The Klebanov-Strassler model (continued)

The running of the gauge couplings is:

Cascade of Seiberg dualities:

$$\cdots \to SU(N+M) \times SU(N) \to SU(N-M) \times SU(N) \to SU(N-M) \times SU(N-2M) \to \ldots$$

For N = kM at the end of the cascade on the baryonic branch of the moduli space the theory reduces to pure SU(M) SYM, which confines.

KS SUGRA solution

The backreaction of the branes deforms the conifold:

The deformation is the holographic realization of gaugino condensation and confinement.

- B_2 runs logarithmically, $e^{\phi} = g_s$ is constant.
- ▶ $N_{eff}(r) = \frac{1}{(4\pi^2)^2} \int_{T^{1,1}} F_5$ depends on the radial coordinate: the number of colors changes with energy.
- ▶ $\frac{1}{4\pi^2} \int_{S^3} F_3 = M$: the difference in the ranks of the two gauge groups is constant.

Adding an orientifold plane

O7 plane: now the field theory is $USp(N + M - 2) \times USp(N)$.

The RG is again described by a duality cascade:

$$\cdots \to USp(N+M-2) \times USp(N+2M-8) \to \\ USp(N+M-2) \times USp(N) \to USp(N-M-2) \times USp(N) \to \dots$$

Different from KS: the difference in ranks is not constant along the RG.

RG of the theory

 $\Delta(\text{rank})$ gets smaller \implies the cascade stops. UV: $USp(N+4) \times USp(N) \ / \ USp(N+2) \times USp(N)$. Both admit a conformal manifold of complex dimension $1 \implies$ the RG starts from a SCFT with a finite number of degrees of freedom.

IR: vacuum where the theory reduces USp(M+2) $\mathcal{N}=1$ SYM \implies confinement.

Supergravity solution

The O7 sources ϕ and $C_8 \implies$ all bosonic Type IIB fields in the background.

Smearing approximation: consider the O7 charge not as localized, but distributed smoothly in the transverse directions. Features of the solution (τ is the radial coordinate):

- At a value $\tau = \tau_c$ the S^2 shrinks, while S^3 is finite: same as Klebanov-Strassler \rightarrow confinement.
- ▶ For $\tau \to \infty$ the metric is $AdS_5 \times T^{1,1}$ with $\frac{1}{\tau}$ corrections.
- ▶ The effective string coupling $e^{\phi}N_{eff} \rightarrow 0$ for $\tau \rightarrow +\infty$ \Longrightarrow large curvature in deep UV.

Supergravity solution (continued)

- $e^{\phi} \sim \frac{1}{\tau \tau_0} \implies$ dilaton diverges at τ_0 .
- $M_{eff}(\tau)$ monotonically decreasing function of τ .
- $N_{eff}(\tau)$ monotonically increasing function of τ .

The dilaton singularity is screened by $\tau = \tau_c$, where spacetime ends.

Gauge couplings from SUGRA

Gauge/gravity relations for the couplings:

$$\frac{8\pi^2}{g_1^2} + \frac{8\pi^2}{g_2^2} = \pi e^{-\phi} , \quad \frac{8\pi^2}{g_1^2} - \frac{8\pi^2}{g_2^2} = 2\pi e^{-\phi} \left[\left(\frac{1}{4\pi^2} \int_{S^2} B_2 \right) \bmod 1 - \frac{1}{2} \right]$$

Integer flux of $B_2 \implies$ one of the gauge couplings diverges. This corresponds to a Seiberg duality on the field theory side.

Running of the dilaton \implies accumulation of Seiberg dualities in the IR.

Gauge Theory Ranks and β functions

RR fluxes (effective number of branes) \leftrightarrow gauge theory ranks. We match where the flux of B_2 is an integer:

$$M_n = M_0 - 4n, N_n = nM_0 - 2n^2$$

Derivatives of the couplings give the β functions:

$$\begin{split} \beta_1 &\sim 3 \frac{d}{d\tau} \left(\frac{M_0 \tau}{2} - 2n\tau \right) \sim \frac{3}{2} (M_0 - 4n) = \frac{3}{2} M_n \\ \beta_2 &\sim 3 \frac{d}{d\tau} \left(-\frac{M_0 \tau}{2} + 2(n+1)\tau \right) \sim -\frac{3}{2} (M_0 - 4n) + 6 = -\frac{3}{2} (M_n - 4) \end{split}$$

Perfect agreement at leading order in $\frac{1}{N}$.

Holographic a and c functions

The holographic dictionary provides a way to compute the a and c functions in field theory.

c-function: effective number of dofs. Differently from KS: zero in the IR, but finite in the UV.

Thank you for your attention!