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Introduction

Dialogue between entropy and geometry via noncommutative geometry, following
some considerations of v. Suijlekom (CIRM Luminy, last april) concerning his
paper “Entropy and the spectral action” with Chamseddine and Connes (2018)

Connes’s characterisation of riemannian geometry in terms of spectral data:

M ⇐⇒ (C∞(M), L2(M,S), ∂/ = −iγµ∂µ)︸ ︷︷ ︸
︷ ︸︸ ︷
Riemannian, compact, spin, manifold spectral triple

In particular, identifying a point z of M with the pure state of C∞ (M)

δz : f 7→ f (z),

the geodesic distance is retrieved as

d(δx , δy ) = sup
f∈C∞(M)

{ δx(f )− δy (f ), ||[∂/, f ]|| ≤ 1 } .

Connes, Lott (1992)
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Spectral triples - and the distance formula - make sense also for noncommutative
algebra A.

In particular, for

A = C∞ (M)⊗AF , H = L2(M,S)⊗ C96, D = ∂/⊗ IF + γ5 ⊗ DF

with a suitably chosen finite dimensional algebra AF and matrix DF , one retrieves
the bosonic part of the lagrangian of the Standard Model as the asymptotic
expansion Λ → ∞ of the spectral action

Tr

(
f

(
D2

A

Λ2

))
,

where DA = D + A+ JAJ−1 is the covariant Dirac operator defined by a
generalised 1-form

A = A∗ ∈
{∑

i

ai [D, bi ], ai , bi ∈ A
}

with J the ”real structure”,

and the test function f is a smooth approximation of the characteristic function
of the interval [0, 1]. Chamseddine, Connes, Marcolli, Suijlekom (1996-2015)
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By studying a specific C∗-dynamical system associated to a spectral triple, one
singles out a unique state, whose entropy turns out to be related to the spectral
action for a specific test function.

Chamseddine, Connes, van Suijlekom (2018)

What does this entropy says about the geometry, in particular about the distance
between the (pure) states ?



1. Entropy from the spectral action
C∗-dynamical system
KMS state for the Clifford algebra
The result of Chamseddine, Connes and v. Suijlekom

2. The two point space
Relation between distance and entropy

3. Entropy on the Bloch sphere



I. Entropy from the spectral action

C∗-dynamical system: a (unital) C∗-algebra C together with a 1-parameter group
of automorphism σt ∈ Aut(C), t ∈ R.

A state φ on C (i.e. linear, positive map C → R of norm 1) then satisfies the
KMS condition at inverse temperature β > 0 if

φ(ba) = φ(a σiβ(b)) ∀a, b ∈ C.

Finite dimensional case: for C = Mn(C), any σt is associated with a self-adjoint
H = H∗ ∈ Mn(C):

σt(A) = e itH A e−itH ∀A ∈ Mn(C), t ∈ R.

For any β > 0, there exists a unique KMS state φβ on (C, σt):

φβ(·) = Tr(ρβ ·) for ρβ = Ze−βH with Z =
1

Tr(e−βH)
.
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Any density matrix ρ on an Hilbert space H (i.e. positive operator with trace 1)
defines a state

φ(.) := Tr(ρ·)
on any C∗-subalgebra of B(H).

The entropy of this state is

S(φ) := −Tr (ρ log ρ) .

Example Chamseddine, Connes, V. Suijlekom

For x > 0, the partition of the unit interval by two intervals α, β of ratio x is

α =
1

x + 1
, β =

x

x + 1
.

The corresponding density matrix

ρ =

(
α 0
0 β

)

defines a state with entropy

E(x) := log(x + 1)− x log x

x + 1
.
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Proposition Chamseddine, Connes, V. Suijlekom (2018)

Let H be a complex Hilbert space, D a selfadjoint operator on H with compact
resolvent. Let

• C = Cl(HR) be the complex Clifford algebra of the underlying real Hilbert
space HR,

• σt the 1-parameter group of automorphisms associated to e itD ∈ Aut(HR),

then for any β > 0 there exists a unique KMS state φβ on the C∗-dynamical
system (C, σt).

Moreover, if the operator e−β|D| is trace-class, the entropy of φβ is equal to the
spectral action,

S(φβ) = Tr (h(βD))

for the test function
h(x) = E(e−x).

▶ The function h is linked to Riemann ζ function.
▶ Given any spectral triple (A,H,D) such that e−β|D| is trace-class, the

spectral action for the test function h measures a “intrinsic” entropy
associated with the noncommutative geometry.

What does this entropy say about the geometry ?
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II. Entropy of a two point space

Suijlekom (2025)

A = C2, H = C2, D =

(
0 m
m̄ 0

)

with m ∈ C∗ and A acts on H as

π(z1, z2) =

(
z1 0
0 z2

)
for (z1, z2) ∈ C2.

The two pure states of A are

δ1(z1, z2) = z1, δ1(z1, z2) = z2,

at distance

d(δ1, δ2) =
1

|m| =: r

from one another.
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The entropy depends only on the distance

S(r) = Tr (h (βD)) = 2

(
log(1 + e−

β
r ) +

β

r

1

1 + e
β
r

)
.

and hence,

F (r) =
�

2r3
� �3

8r5
+ o(

1

r5
).

Finally, one gets

F (r) ⇠ 2
�

r3
e�

�
r , r ! 0

F (r) ⇠ �

2r3
, r ! 1

(3.2.8)

that is,
F (r) ! 0, r ! 0

F (r) ! 0, r ! 1 (3.2.9)

Let’s now find the maximum of the entropic force. Define the new variable x = �
2r

, one
gets that

F ⌘ 4

�4
g(x) =

4

�4

x3

cosh2(x)
.

Thus, finding the maximums of F is equivalent to finding the maximums of g. One has
g0(x) = 0 () x tanh(x) = 3

2
() x ⇡ 1.621, x > 0. Therefore, the maximum of the entropic

force is obtained when r ⇡ 0.308�. By definition, it corresponds to a configuration of the
space where a small change in the distance between the two points implies the strongest
variation of the entropy. It could then correspond to an optimal geometric configuration.
Again, it should be emphasized that this is a hypothetical interpretation. Finally, we have
derived the most stable geometric configuration of the system (r ! 1), and the most optimal
one (r ⇡ 0.308�).

(a) Function h (b) Entropy (c) Entropic force

Figure 3.2.1: The function h, entropy and entropic force

In figure 3.2.1, I provided the graph of the function h, the graphs of the entropy and the
entropic force for the two-point space.

33

The entropy tends to its

{
minimum 0 when r → 0,
maximum 2 log 2 when r →= ∞.

▶ Maximal (yet finite) disorder when the points are far from one another.
Minimal disorder when the two points coincide.
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The entropic force
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▶ The maximum of F (r), for r ≃ 0.308β, singles out one particular
geometrical configuration (i.e. distance) of the two points.
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However, there is an hidden parameter: the diagonal of D.

Substituting

D =

(
0 m
m̄ 0

)
with D ′ =

(
λ1 m
m̄ λ2

)
,

the distance is unchanged but the entropy

S(r ′, t ′) = h

(
β

r ′
+

β

t ′

)
+ h

(
β

r ′
− β

t ′

)

now depends on two parameters

r ′ =
2

|D1 − D2|
, t ′ =

2

|D1 + D2|
.

(Martinetti, Priou, 2025)

▶ When the diagonal is zero, then t ′ → ∞ and r ′ = 1
|m| = r , so that one finds

back S(r ′, t ′) = S(r).

▶ When the diagonal is non-zero, d(δ1, δ2) = r ̸= r ′.

Possible to express the entropy as S(r , r̃) for some parameter r̃ ?
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D =

(
0 m
m̄ 0

)
with D ′ =

(
λ1 m
m̄ λ2

)
,

the distance is unchanged but the entropy

S(r ′, t ′) = h

(
β

r ′
+

β

t ′

)
+ h

(
β

r ′
− β

t ′

)

now depends on two parameters

r ′ =
2

|D1 − D2|
, t ′ =

2

|D1 + D2|
.

(Martinetti, Priou, 2025)
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III. Entropy of the Bloch sphere

A = M2(C), H = C2, D ∈ M2(C) with eigenvalues D1,D2.

The space of pure states of A is CP1:

ξ =
(
ξ1, ξ2

)
∈ C2, |ξ1|2 + |ξ2|2 = 1 such that ξ ≃ ζ ⇐⇒ ξ = e iθζ.

Any class of equivalence defines a pure state

ωξ(m) = ⟨ξ, ξm⟩ ∀m ∈ M2(C)

and any pure state comes in this way. This space is isomorphic to the sphere,

ξ →



xξ
yξ
zξ


 ∈ S2 where xξ = 2Re(ξ̄1ξ2), yξ = 2Im(ξ̄1ξ2, ), zξ = |xi1|2 − |ξ2|2,

called the Bloch sphere in quantum computing (describing a q-bit).
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The distance coincides with the euclidean distance on a disk

d(ωξ, ωζ) =

{
2

|D1−D2|
√
(xξ − xζ)2 + (yξ − yζ)2 if zξ = zζ ,

= ∞ if zξ ̸= zζ .

The entropy is the same as before

S(r , t) = h

(
β

r
+

β

t

)
+ h

(
β

r
− β

t

)

with

r =
2

|D1 − D2|
, t =

2

|D1 + D2|
.

▶ The parameter r fixes the radius of the circle.
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Assume the value of t is fixed. Then

S(r , t) → 0 when r → 0,

S(r , t) → 2h(
β

R
) when r → ∞.

▶ For t < 0, 647β, the maximum of the entropy is reached for a finite r

Because of the presence of the trace of the Dirac operator, that is the parameter R, the
maximum is shifted. Now, its position can take finite values. Let us try to figure out that.
Introduce the parameters x ⌘ �

r
and y ⌘ �

R
, and define

�(x, y) ⌘ h0(x + y) + h0(x � y), (3.3.12)

we see that finding the maximum of the entropy is equivalent to solving

�(x, y) = 0. (3.3.13)

As h0 is an odd function, x = 0 is a solution to (3.3.13). Moreover, one has

@x�(0, y) = 2h00(y).

If we want equation (3.3.13) to admit solutions other than x = 0, we require h00(y) = 0. This
yields y tanh(y

2
) = 1 () y ⇡ 1.543, y > 0, and then R ⇡ 0.648�. Numerically, I have

found that for R < 0.647�, the equation @rS(r, R) = 0 admits a solution other than r = 0 or
r ! 1. The numerical value of R is very close to the approximation I made.

(a) Entropy R = 0.2 (b) Entropy R = 1 (c) Maximum

Figure 3.3.1: Entropy and its maximum for different values of R

As we can see in figure 3.3.1, the maximum of the entropy is reached for a finite value of
r when R < 0.647�, and its position tends to +1 otherwise. Note that this position tends
to 0 as R tends to 0.

Finally, we saw that for R < 0.647�, there would exist a stable geometric configuration at
finite distance (the maximum of the entropy is reached for a finite value of r). In geometric
terms, if we see the sphere S2 as a layer of several circles, the condition of maximum entropy
fixes the radius of these circles in Connes’ formula (3.3.6). For R > 0.647�, we recover what
happens for the two-point space case, that is, a stable geometric configuration at infinity.
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The entropic force tends to 0 as r tends to 0 or ∞.

and hence
F (r, R) ! 0, r ! 0

F (r, R) ! 0, r ! 1 (3.3.16)

Let’s turn our attention to the maximum of the entropic force. If we rewrite it in a more
concise way, one has

F (r, R) = � 1

r2

n
h0(

�

r
+
�

R
) + h0(

�

r
� �

R
)
o

, (3.3.17)

and hence

F 0 =
2

r3

n
h0(

�

r
+
�

R
) + h0(

�

r
� �

R
)
o

+
�

r4

n
h00(

�

r
+
�

R
) + h00(

�

r
� �

R
)
o

,

that is,

F 0 = 0 () 2r
n

h0(
�

r
+
�

R
) + h0(

�

r
� �

R
)
o

+ �
n

h00(
�

r
+
�

R
) + h00(

�

r
� �

R
)
o

= 0.

Introduce the parameters x ⌘ �
r

and y ⌘ �
R
, we get

F 0 = 0 ()
n

h0(x + y) + h0(x � y)
o

+
x

2

n
h00(x + y) + h00(x � y)

o
= 0. (3.3.18)

Because of the complexity of the above equation, I could not solve it analytically. However,
we can study numerically what happens.

(a) R = 0.2 (b) R = 1

(c) Maximum (d) Minimum

Figure 3.3.2: Entropic force, position of maximum and minimum for different values of R
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It has negative minimum for t < 0, 647β.



Conclusion

Nice results on the circle (ask Axel !).

What about the Standard Model ?

▶ The Higgs field has a metric interpretation. How does it enter the entropy ?

▶ Test function f related to the coupling constants. What happens for h ?

▶ KMS state for the Clifford algebra may explain why the twist of a riemannian
spectral triple induces a change of signature, via the thermal time hypothesis.
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