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In particular, identifying a point z of M with the pure state of C*° (M)
0, f— f(2),
the geodesic distance is retrieved as

d(0x,0y) = feggci()M){(Sx(f) =0, (F), g Al <1}.

Connesz=Lott (1992)
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where Dy = D + A+ JAJ™! is the covariant Dirac operator defined by a
generalised 1-form

1

A=A*c {Z a;[D, bi], a;, bi € A} with J the "real structure”,

and the test function f is a smooth approximation of the characteristic function
of the interval [0, 1]. Chamseddine, Connes, Marcolli, Suijlekom (1996-2015)



By studying a specific C*-dynamical system associated to a spectral triple, one
singles out a unique state, whose entropy turns out to be related to the spectral
action for a specific test function.

Chamseddine, Connes, van Suijlekom (2018)

What does this entropy says about the geometry, in particular about the distance
between the (pure) states ?
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C*-dynamical system: a (unital) C*-algebra C together with a 1-parameter group
of automorphism o; € Aut(C), t € R.

A state ¢ on C (i.e. linear, positive map C — R of norm 1) then satisfies the
KMS condition at inverse temperature 3 > 0 if

w(ba) = p(aocis(b)) Va,beC.
Finite dimensional case: for C = M,(C), any o is associated with a self-adjoint
H = H* € M,(C):
oi(A) = e Ae=™ VYA€ M,(C), t €R.
For any 3 > 0, there exists a unique KMS state ¢z on (C,0:):

1
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Any density matrix p on an Hilbert space # (i.e. positive operator with trace 1)
defines a state

on any C*-subalgebra of B(H).



Any density matrix p on an Hilbert space # (i.e. positive operator with trace 1)
defines a state

o(.) :==Tr(p:)
on any C*-subalgebra of B(H). The entropy of this state is

5(p) == —Tr(plogp).

Examp|e Chamseddine, Connes, V. Suijlekom

For x > 0, the partition of the unit interval by two intervals o, g of ratio x is
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Let H be a complex Hilbert space, D a selfadjoint operator on H with compact
resolvent. Let

e C = CI(Hg) be the complex Clifford algebra of the underlying real Hilbert

space Hg,

e 0; the 1-parameter group of automorphisms associated to e? € Aut(Hg),
then for any 3 > 0 there exists a unique KMS state ¢z on the C*-dynamical
system (C, o¢).

Moreover, if the operator e #IPl is trace-class, the entropy of s is equal to the
spectral action,

S5(pp) = Tr(h(5D))

for the test function

» The function h is linked to Riemann ( function.
> Given any spectral triple (A, H, D) such that e~ #IPl is trace-class, the
spectral action for the test function h measures a “intrinsic” entropy
associated with the noncommutative geometry.
What does this entropy say about the geometry ?
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Il. Entropy of a two point space

Suijlekom (2025)

A=C?% H=C? D—(

0

m(z1,22) = ( 201 0 > for (z1,20) € C°.

22

3o

with m € C* and A acts on H as

The two pure states of A are

0(z1,22) = 21, d1(z1,22) = 2,

at distance 1
d((517(52) = — =Ir

m|

from one another.
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The entropy depends only on the distance

S(r) = Tr(h(8D)) =2 (Iog(l et + fl +1e‘?) .

The function h Entropy S(r)

minimum 0 when r — 0,

The entropy tends to its { maximum 2log2 when r = o0.

» Maximal (yet finite) disorder when the points are far from one another.
Minimal disorder when the two points coincide.
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B 1

0= 25 o2y

Entropic force F(r)

» The maximum of F(r), for r ~ 0.3083, singles out one particular
geometrical configuration (i.e. distance) of the two points.
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(Martinetti, Priou, 2025)

» When the diagonal is zero, then t' — oo and r' = ITIH\
back S(r',t") = S(r).

» When the diagonal is non-zero, d(d1,82) =r # r'.

Possible to express the entropy as S(r, ¥) for some parameter 7 ?

= r, so that one finds
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A= My(C), H=C? D€ My(C) with eigenvalues Dy, D,.

The space of pure states of A is CP*:
£=(4,%) €C |&4P+1&)> =1 suchthat ¢~( e ¢=¢€"C
Any class of equivalence defines a pure state
we(m) = (§,€m)  Vm € My(C)

and any pure state comes in this way. This space is isomorphic to the sphere,

3
€— | ye | €5 where xe =2Re(&1&),  ye =2Im(61&,),  ze = |xi|* — &),

2

called the Bloch sphere in quantum computing (describing a g-bit).
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The distance coincides with the euclidean distance on a disk

— if 7o —
d(wg,wc)_{ oV (e +le -y fze=z,

if Z§ 75 ZC'

The entropy is the same as before

SRR

2 2
|Dy — Dy|’ |D1 + Ds|

with
r =

» The parameter r fixes the radius of the circle.



Assume the value of t is fixed. Then

S(r,t) -0 whenr—0,
s
S(r,t) — 2h(§) when r — 0.
» For t < 0,647, the maximum of the entropy is reached for a finite r
Entropy S(r,R) - R=0.2

Entropy S(r,R) - R=1 Maximum r_with respect to R
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The entropic force tends to 0 as r tends to 0 or co.

Entropic force F(rR) - R=0.2 Entropic force F(rR) - R=1
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It has negative minimum for t < 0,6473.
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