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General idea

® Talk aims:

- 1: Briefly review consistent truncations and explain how our approach for constructing
them is novel.

- 2: Review the Salam-Sezgin model and why it is interesting.

- 3: Explain how we embed the model in type II supergravity and give some examples.

® Allow me to frame things...
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The utility of consistent truncations

® String theory is a fantastic frame work for studying physical problems
- It is the leading contender for unifying gravity standard model forces
- Allows for microscopic description of black holes
- AdS/CFT allows one to probe gauge theories with string theory
® But strings live in d = 10, the world around us d = 4, SCFTs d < 6!
- one needs to do something with the extra dimensions
® Conceptually this isn’t really a problem
- String pheno perspective, extra dimensions are small, yet to be observed
- AdS/CFT perspective, extra dimensions capture symmetries of gauge dual
® There are problems on a technical level
- Constructing solutions in gravity is hard, and difficulty scales with d
- Usually need compact/bounded extra dimensions
® Useful to have an effective description in lower dimensions

® A very powerful tool in this regard are consistent truncations

3/23



So what is a consistent truncation?

A consistent truncation is essentially a map between theories of different dimensionality
® This is an old idea that goes back to Kaluza-Klein
- 5d pure gravity on M4xS! = 4d Einstein-Maxwell+dilaton theory
® In general EOM of theory in d dimensions imply those of d + n dimensional theory
- fields of low dim theory embedded into higher in the form
ds3 ., = VAds] + ds*(B™)
- A can contain dim d scalars and B" scalars and vectors
- Fluxes also dim d tensors.
® In strings context if B is compact then n dimensions are taken care of
- allows one to construct and study solutions in dim d
- vast simplification
® But one needs a consistent truncations in hand

- Actually constructing an embedding is challenging
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Truncations from string dimensions

Consistent truncations of 10 and 11d supergravity to gauged supergravities have had
much utility

- Usually these are of one of two types:

® Consistent truncations to maximally supersymmetric gauged supergravities :
- Truncations to the theories with 32 supercharges
- Large gauge symmetries must be respected by embedding
- Constructed with Scherk-Schwarz procedure on B” = S"
- Examples include truncations of 11d on S* and S7, IIB on S® and IIA on S6
- Full non linear embedding still very challenging to construct:

Ex: S% truncation proposed in 1985, full embedding found in 2015 [Baguet-Hohm-Samtleben]

® Consistent truncations to minimal gauged supergravities:
- Typically truncations to theories with U(1) gauge symmetry and gauge field .4
- Minimal fields turned on, so comparatively easy to embed
- Often simply need to modify AdS vacua by housing A within existing S*

- Truncations of type II and 11d based on AdSs vacua are fully known. Other AdS, only
partially.
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What about other cases?

There are many more gauged supergravities than these, but how to construct their higher
dim embeddings?

® Truncations to maximal greatly benefited from developments in exceptional field theory
- Used for full non-linear embedding of d = 5 maximal into type IIB
- Have lead to truncations to half maximally supersymmetric gauged supergravities

- But seems like not well suited for matter coupled minimal theories

® Truncations to minimal supergravities usually proceed by brute force
- Minimal fields makes this tractable
- Often there are no scalars making things particularly “easy”

- Difficult to brute force inclusion of additional matter multiplets

® There is an exception: Embedding of minimal d = 5 into type IIA [Couzens-NTM-Passias]
- This utilised bispinor techniques to embed the gauged and ungauged theories.

- Very systematic: Geometric conditions for supersymmetry imply most of the
embedding

- Seems like same approach should work for matter coupled minimal theories

® This talk: I will show this is indeed the case, lifting the Salam-Sezgin model
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Talk outline

® The Salam-Sezgin model
- Generalities of the model
- Why it is interesting

- Geometric conditions for suspersymmetry

¢* Embedding Salam-Sezgin into d = 10
- What is already known
- Uplift recipe

- Constraints on embedding manifolds

°* Example embeddings

- Some gauged and ungauged uplifts

® Conclusions
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The Salam-Sezgin model
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The Salam-Sezgin model: Generalities

The Salam-Sezgin model, or d = 6 Einstein-Maxwell gauged supergravity, is not minimal
® Contains a gauge coupling g and the following multiplets (write Bosons only)
Gravity : (g,(,f,)7 G ), Tensor : (¢, G1), Vector : A
- where xGt = +G% such that G =Gt + G~ is a generic 3-form.

® Inclusion of tensor multiplet allows for a “true” action for the theory

S = /dﬁx\/ —g(6) [R — (0p)? — 229G — 2e¥ F2 — 292%™ ¢

- where F =dA and G =dB+ AN F.

® Theory is interesting for several reasons:
- The vacuum is not AdSg

- The e~¥g? term can yield positive cosmological constant.
® Action also has following symmetries (in addition to trombone sym):

- Scaling symmetry: (G, e~ %?, F, g) = (AG, Xe™ %, )\%]-', )\—%g)
- Follows that de = 0 equivalent to ¢ =0
- When g = F = 0 “S-duality”: (G, €29 x6 G, ) = (—e®*? %6 G, —G, —¢)
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The Salam-Sezgin model: Generalities

® Supersymmetry is chiral i.e A" = (1,0), in the absence of fermions, amounts to
- . 1
(F—ige™®)¢- =0, (dp—eG)(— =0, (Vu—igAu){ + 1679m- =0
- (— negative chirality Weyl spinor. Note that F =0 = g =0

Some notable solutions include:

® Gravity multiplet only (ungauged): AdS3xS3 black-string near horizon
- Relevance to microstate counting, superstrata etc
® Gravity + vector: MinksxS? solution [ Salam, Sezgin]
- Provides explicit chiral ' =1 Minky4 solution, c.f CY3 compactions of type II
® Gravity + tensor + vector: Dionic-string solutions [Giiven, Liu, Pope, Sezgin]
- Some supersymmetric some not
® Gravity + tensor + vector: Two parameter AdS3 x [squashed S?]
- near horizon of the former case, spectrum shows scale separation with and without

supersymmetry [Proust, Samtleben, Sezgin]
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The Salam-Sezgin model: Supersymmetry as geometric conditions

Crucial to our uplift method are geometric conditions of supersymmetry in d = 6
® Chiral spinor in 6d Lorenzian = SU(2)xR%-structure
ds? = g\ datda” = 2kv + ds*(M(SU(2)))
- (k,v) null 1-forms (J, Q) real and holomorphic SU(2)-structure 2-forms

® Bi-spinors are useful for making supersymmetry geometric

- map to forms under Clifford map, in dim d

d d

1 1

V=¢c Qe = ] E € Vpn..p €LY 5 U = ] E €2y .. pg €1dTHLHT
2 n=0 212

vl

® For the case at hand this leads to
— ~(6 —
vO=-cec, 39=-coc,
w(_(s):f%k/\e_“, J)@:ék/\ﬂ

® One can then derive constraints on these forms that imply spinoral supersymmetry
conditions
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The Salam-Sezgin model: Supersymmetry as geometric conditions

® This is an exercise in G-structure torsion classes, technical...
® We find the following is necessary and sufficient for supersymmetry

Viukny =0, Lrp=0, xF=0,
e dy!® = Lk(g —%60), ' =2giAn G,
k(G + *6G) = —8e~Pdip AP\,
Fayl® = gbk x6 F +ige=?ys®),  F Al =igem el
vAQA [d(k/\v—iJ)+2e“pg

A [Im(dﬂ/\ﬁ)—2k/\J/\dv—4(g.A/\J/\J—e¢Q/\J)

® In particular k#0, is a null Killing vector.

® conditions hold in general, tuning off g or the vector or tensor multiplet not problematic.
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Embedding Salam-Sezgin into d = 10
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Embedding Salam-Sezgin into d = 10: What is already known

There are previous works that lift Salam-Sezgin or its ungauged limit

® There is a F-theory uplift of d = 6 supergravity coupled to arbitrary vectors, tensor and
hypers [ Bonett-Grimm]

- This contains the UNGAUGED Salam-Sezgin model as a special case
- Uplift is a bit implicit

® There is a type IIB uplift with g # 0 [Cvetic, Gibbons, Pope]

® h2
ds? = cosh(2p)gfﬁ)dz“da:” + i cosh(2p) |dp? + do? + M(dq&g —gA)?
2g2 cosh(2p)
inh? 1
PP (dps + g A2, et = ———e?, (F, G)EF;s

+ P e,
cosh(2p) v/ cosh(2p)

- Derived through a singular reduction of d = 7 maximal and its S* uplift

- Note: U(1)3 isometry of 8,5, in which A appears twice!

® However this uplift has issues:
- The internal manifold is not compact/bounded
- In fact as p — oo the uplift of MinksxS? approaches linear dilaton vacuum at infinity
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Embedding Salam-Sezgin into d = 10: How embedding in performed

Our general uplift philosophy is that
1. Embedding into type II should preserve d = 10 supersymmetry when d = 6 holds
2. Bosonic fields of type II should only depend on d = 6 data through
(G5 F, G, 9), Do =dp+V +A
- in particular, should not depend on anything that requires (— to define.

® This leads us to an embedding ansatz of the form

ds? = *4g%) + ds>(My), H = Hs + HoG + Hoe®® x6 G + Hi A F + Ha A dep,
Fi = (1+%)\) (fi +2AF N ge + €346 Agx + 7 %6 dgo/\h:,:) ,

e =¢_®nt +m.c, 62:C_®ni+m.c
® When g # 0 we require
ds?(My) = ds?(M3) + €2 D¢?, Only one U(1)

® We are totally agnostic about embedding of d = 6 dilaton

- i.e. above internal fields and d = 10 dilaton ® have function-like dependence on ¢
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Embedding Salam-Sezgin into d = 10: How embedding in performed

To deal with d = 6 = d = 10 supersymmetry make use of existing work [Tomasiello]

® Type II supersymmetry can be phrased in terms of bilinears

1 . 1 1
K = §(K1 + K2), K= §(K1 —K3), V¥i=€eQec, K= 3261 ol prer2dXM

® Geometric conditions for supersymmetry are

dRK =1 H, V!

OGP KNy =0, di(e™™Wa) = (K A+ux) Fa

+ Some “pairing constraints”

- where in particular KM 9, is a null/time-like Killing vector.

® For the case at hand

16K = e2Ak, 16K = e cos Bk,
Uy = T2 (ef‘w§6) ARetox + il A Tmyx + ARe (@ A ) + 2490 A Reng)
- where (£, 1/7;;) are internal d = 4 bi-linears/polyforms
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Embedding Salam-Sezgin into d = 10: How embedding in performed

® We can then extract constraints on internal fields and bilinears that imply d = 10
supersymmetry
- d.e

0=dy(e®0L)+ (KA +ig)Fe =3, [6d data]

K3

3

A {4d data}

K3

= [4d data] =0
- Horrible computation, but easily implemented in mathematica, result is is a bit long

® Internal bilinears take the following forms in ITA and IIB respectively

1 o, )
ZEA SinﬁU/\e§W/\W7 1!)7 - ZEA SinﬁW/\e_EU/\Uv

P

Py = ieA sin Be'®e ™, 1/~J+ = —ieA sin Sw
- where (j, w) span an SU(2)-structure and (U, W) a complex vielbein on My.
® Thus solving supersymmetry fixes M4 and other details of embedding
- actual result depends on what d = 6 fields are turned on
- given a choice there are actually distinct classes of embedding
® g # 0 requires that ’JJ;F is charged under Oy: L% 7,?); = inl/;q;

i.e. the isometry in which A is “housed”
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Embedding Salam-Sezgin into d = 10: Embedding equations

® General conditions (evaluated with A =0 if A in My)

2n =g, e**Hy— Hy—2e**1%cosB =0,
_ 1 _
diy (* 7 Imypz) — dip A Ho ATmibg = e 7w A(g),
P~ _ ~ 1 _ _
dig (227 Pg) — AP Hy Adp Ay = 0, §e3A (14 %i\)gx = Fe* " PRev,

=0,

_ 1 o
drty (4 PRevz) F £ wa A(fx) + 96> 707 (Hy ATmig — 10, It )

de—0

1
dmg (eA_q)Rew;) —dp A [i §e3A_‘p(1 — *a\)gF

1 1
F Ze3A cos 3 x4 AMhg) + e*"THy A Reibij| = :FZe2A cos Bf+,
® Conditions to be imposed when certainly multiplets are non trivial

1 -
Tensor : 165’47"’ (h; —e Pcosfxy )x(g;)) = ieA7®H0Rew;
8¢(62A sin8) = 0, 8¢(64A_2¢x/det ga) =0,

1
Vector : Ze4A(cosB + *A)g+ = +et™® (H1 A Repg — L3¢Rew;;)
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Example embeddings
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Example embeddings: Gravity+vector with g =0

There exists a universal embedding for gravity+vector multiplets with g = 0:
® Assuming A does not enter My we find:

ds? = eZAgfg,)dx“da:" +ds?(My), H = Hz —2e24 cos 8G + d(e*A) A F,

Fi— (1 + e4Af) A fi F 842G ARetpr + €84 (volg — %6 F) A *aA(f1),
® Internal fields can be those of ANY supersymmetric Minkg sol™ in type II obeying

d(e?” cos B) = 0, di, (e347%91) =0, st(e?’A_q)Iqu:) =0,

1 1
dig (""" Revz) = F e cos ffe,  dig (47 TReyx) = £ ¢ 6 A(f2)

® Contains separate classes of solution:
- ITA: D8-D6-NS5 brane system [tmamura], [Legramandi, Tomasiello]
- IIB: F-theory class+ 3-forms: My base of elliptically fibered CY3 [7]

- IIB: D5 branes back-reacted on CY2 [Lust, Patalong, Tsimpis]
® All contain bounded M4 examples

® Adding a tensor multiplet constrains classes, but doesn’t Kill them.
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Example embeddings: IIB uplift of full Salam-Sezgin

There are 3 classes of embeddings with g # 0 with tensor and vector multiplets

® The simplest is in type IIB with only RR 3-form:

g 6 v 2 9pA)?
ds® = (&) datdz” + = (D¢2 + % (dp? + €22 (da? + da3)) ) |,

/TPA 9pv

1
e~ =./0,Ae™%, D¢ = —5 %2 dA+gA, (F, G)eEFs3

® Embeddings are governed by a Toda-like equation
2(92, +92,)A + 92e*2 = 2(0,e”)?
- All d = 10 EOM implied by this and d = 6 ones
- Note: Deformation of eq™ defining CY2’s with charged U(1) isometry

® Have reduced embedding Salam-Sezgin to solving 1 PDE

- So does it have solutions leading to bounded My4?
- Yes, simple separation of variables ansatz e® = p(p)e”(zl’”) leads to
My = Ha /T x S x [bounded interval]

- singularity that we don’t recognise, but believe this can be improve on
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Conclusions

® Have derived embedding formulae for Salam-Sezgin and all its limits
- cases with g = 0 fully classified
- g # 0 still work in progress, but preliminary results look promising
- Also ITA and F-theory like classes

- Bounded embeddings with physical singularities? Will report on status soon

® Serves as a proof of concept for non minimal uplifts using bispinor techniques

- Works very systematically, many other interesting theories to uplift:
- SU(2) gauged Salam-Sezgin model
- d = 5 minimal gauged supergravity coupled to abelian vector multipets

-d=4 N = 2 gauged supergravity + matter
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Thank you



