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Color algebras and color superalgebras

color algebras and color superalgebras: Rittenberg and Wyler,
1978

color algebras and color superalgebras: graded by some
abelian grading group Γ

the simplest case not coinciding with a Lie algebra or Lie
superalgebra is for Γ = Z2 × Z2.

for an algebra graded by Z2 × Z2 = Z2
2, there are already two

distinct choices for the Lie bracket: referred to as
Z2 × Z2-graded Lie algebras and Z2 × Z2-graded Lie
superalgebras
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Renewed interest in Z2 × Z2-graded LA/LSA

symmetries of Lévy–Leblond equations [Aizawa et al 2016,
2017]

graded (quantum) mechanics and quantization [Bruce 2020;
Aizawa, Kuznetsova, Toppan 2020, 2021; Quesne 2021]

Z2 × Z2-graded two-dimensional models [Bruce 2021, Toppan
2021]

parastatistics [Tolstoy 2014, Stoilova and Van der Jeugt
2018-2023]

alternative descriptions of parabosons and parafermions
[Toppan 2021-2025]

algebraic structute and representation theory [Aizawa
2018-2025, Issac 2019, 2024, Rui Lu 2023], Stoilova and Van
der Jeugt 2018-2025
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The Z2 × Z2-graded Lie algebras and Lie superalgebras

V. Rittenberg and D. Wyler (1978)

g =
⊕

a ga = g(0,0) ⊕ g(0,1) ⊕ g(1,0) ⊕ g(1,1)
with a = (a1, a2) an element of Z2 × Z2.

homogeneous elements of ga: xa with degree deg xa = a
g with bracket J., .K is a Z2 × Z2-graded Lie algebra, resp.
Z2 × Z2-graded Lie superalgebra:

Jxa, ybK ∈ ga+b, grading

Jxa, ybK = −(−1)a·bJyb, xaK, symmetry

Jxa, Jyb, zcKK = JJxa, ybK, zcK + (−1)a·bJyb, Jxa, zcKK, Jacobi identities

where
a + b = (a1 + b1, a2 + b2) ∈ Z2 × Z2,
a · b = a1b2 − a2b1 - Z2 × Z2-graded Lie algebra
a · b = a1b1 + a2b2 - Z2 × Z2-graded Lie superalgebra
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General remarks

Note: in general, a Z2 × Z2-graded Lie algebra is NOT a Lie
algebra, nor a Lie superalgebra.

(Similarly: a Z2 × Z2-graded Lie superalgebra is NOT a Lie
superalgebra.)

g(0,0) is a Lie subalgebra;
g(0,1), g(1,0) and g(1,1) are g(0,0)-modules.

[g(0,0), ga] ⊂ ga, Jga, gaK ⊂ g(0,0), a ∈ Z2 × Z2

Let g be an associative Z2 × Z2-graded algebra, with a
product denoted by x · y :

ga · gb ⊂ ga+b

then (g, J·, ·K) is a Z2 × Z2-graded Lie algebra, resp. a
Z2 × Z2-graded Lie superalgebra, by defining

Jxa, ybK = xa · yb − (−1)a·byb · xa,

with a · b = a1b2 − a2b1, resp. with a · b = a1b1 + a2b2.
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Construction of classical Z2 × Z2-graded Lie algebras
(J.Math.Phys.64 (2023) 061702; Springer proceedings in
mathematics and statistics 473 (2025) 123)

Now consider: Z2 × Z2-graded Lie algebras

Assume at least two nontrivial subspaces in
g(0,1) ⊕ g(1,0) ⊕ g(1,1)

{ga, gb} ⊂ gc if a, b and c are mutually distinct elements of
{(1, 0), (0, 1), (1, 1)}.
Classes of Z2 × Z2-graded Lie algebras analogues of the
classical Lie algebras (denining matrices)

Natural to assume that g is generated by g(1,0) ⊕ g(0,1).

Then one can deduce

g(0,0) = Jg(1,0), g(1,0)K + Jg(0,1), g(0,1)K

g(1,1) = Jg(1,0), g(0,1)K.



Construction of classical Z2 × Z2-graded Lie algebras

Let V be a Z2 × Z2-graded linear space of dimension n:
V = V(0,0) ⊕ V(0,1) ⊕ V(1,0) ⊕ V(1,1), subspaces of dimension
p + q + r + s = n.
End(V ) is then a Z2 × Z2-graded associative algebra, and turned
into a Z2 × Z2-graded Lie algebra by the bracket J·, ·K. Denoted by
glp,q,r ,s(n). In matrix form:

p q r sa(0,0) a(0,1) a(1,0) a(1,1)
b(0,1) b(0,0) b(1,1) b(1,0)
c(1,0) c(1,1) c(0,0) c(0,1)
d(1,1) d(1,0) d(0,1) d(0,0)

pq
r
s

The indices of the matrix blocks refer to the Z2 × Z2-grading.

One can check: TrJA,BK = 0, hence g = slp,q,r ,s(n) is subalgebra
of traceless elements.
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Graded transpose

If A ∈ slp,q,r ,s(n) ⊂ End(V ), then A∗ ∈ End(V ∗) by requirement:

⟨A∗yb, x⟩ = (−1)a·b⟨yb,Ax⟩

where ⟨·, ·⟩ is natural pairing of V and V ∗.

In matrix form, this leads to the Z2 × Z2-graded transpose AT of
A:

A =

a(0,0) a(0,1) a(1,0) a(1,1)
b(0,1) b(0,0) b(1,1) b(1,0)
c(1,0) c(1,1) c(0,0) c(0,1)
d(1,1) d(1,0) d(0,1) d(0,0)

 ,AT =


at(0,0) bt(0,1) c t(1,0) d t

(1,1)

at(0,1) bt(0,0) −c t(1,1) −d t
(1,0)

at(1,0) −bt(1,1) c t(0,0) −d t
(0,1)

at(1,1) −bt(1,0) −c t(0,1) d t
(0,0)


Property:

(AB)T = (−1)a·bBTAT
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Subalgebra g = sop,q,r ,s(n) ⊂ slp,q,r ,s(n)

g = sop,q,r ,s(n) = {A ∈ slp,q,r ,s(n) | AT + A = 0}

If A,B ∈ g, then

JA,BKT = (AB − (−1)a·bBA)T

= (−1)a·bBTAT − ATBT = (−1)a·bBA− AB = −JA,BK

Matrices of the form:

p q r s
a(0,0) a(0,1) a(1,0) a(1,1)
−at(0,1) b(0,0) b(1,1) b(1,0)
−at(1,0) b

t
(1,1) c(0,0) c(0,1)

−at(1,1) b
t
(1,0) c

t
(0,1) d(0,0)


p
q
r
s

where a(0,0), b(0,0), c(0,0) and d(0,0) are antisymmetric matrices.

Disadvantages: Cartan subalgebra? (classical choice not abelian)
sop,q,r ,s(n)(0,0)



Different approach

Analogues of classical Lie algebras of type B, C , D?

G = so(2n + 1)
(dimG = 2n2 + n)

n n 1(
a b c
d −at e

−et −ct 0

)n
n
1

b and d antisymmetric;

G = sp(2n)
(dimG = 2n2 + n)

n n(
a b
c −at

)
n
n

b and c symmetric;

G = so(2n)
(dimG = 2n2 − n)

n n(
a b
c −at

)
n
n

b and c antisymmetric,



Different approach

start from a set of generators of the classical Lie algebra (in
the defining matrix form)

associate a Z2 × Z2-grading on these generators

compute new elements with these generators using the
Z2 × Z2-graded bracket, and see which matrix structures and
algebras arise in this way.

How to do this systematically?

Let generating subspace S of the classical Lie algebra G
correspond to the subspace g(1,0) ⊕ g(0,1) of the associated
Z2 × Z2-graded Lie algebra g, and generate g.

Thus we are looking for generating subspaces S of a classical
Lie algebra G such that G = S + [S ,S ] (as vector space).

Use all so-called 5-gradings G−2 ⊕ G−1 ⊕ G0 ⊕ G1 ⊕ G2 of G
such that G is generated by S = G−1 ⊕ G1.
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Different approach

Classification of those 5-gradings: [Stoilova and Van der Jeugt
2005]

Procedure:

For each of the 5-gradings of G , let S = G−1 ⊕ G1 (as a
subspace of the vector space of G ).

Partition S in all possible ways in two subspaces g(1,0) ⊕ g(0,1).

Construct from here the matrix elements of the
Z2 × Z2-graded Lie algebra g using the Z2 × Z2-graded
bracket.

This construction process is straightforward but very elaborate.

For sl(n): same graded algebras slp,q,r ,s(n).
Results on following slides.



Z2 × Z2-graded Lie algebras of type B

The Z2 × Z2-graded Lie algebra g = sop(2n + 1) consists of all
matrices of the following block form:

p n − p p n − p 1
a(0,0) a(1,1) b(0,0) b(1,1) c(0,1)
ã(1,1) ã(0,0) b t

(1,1) b̃(0,0) c(1,0)
d(0,0) d(1,1) −a t

(0,0) ã t
(1,1) e(0,1)

d t
(1,1) d̃(0,0) a t

(1,1) −ã t
(0,0) e(1,0)

−e t
(0,1) −e t

(1,0) −c t
(0,1) −c t

(1,0) 0


p

n − p

p

n − p

1

where b(0,0), b̃(0,0), d(0,0) and d̃(0,0) are antisymmetric matrices.

dim g(0,0) = 2n2 − n − 4p(n − p)2

dim g(0,1) = 2p, dim g(1,0) = 2(n − p)

dim g(1,1) = 4p(n − p).

Note: dim sop(2n + 1) = dim so(2n + 1).



Z2 × Z2-graded Lie algebras of type B

One can verify that g = sop(2n + 1) consists of all matrices A of
sl2p,0,2n−2p,1(2n) that satisfy

ATK + KA = 0

where

K =


0 0 I 0 0
0 0 0 −I 0
I 0 0 0 0
0 −I 0 0 0
0 0 0 0 1


p

n − p

p
n − p

1

Note: KT = K , K−1 = K t .



Z2 × Z2-graded Lie algebras of type B

Cartan subalgebra is straightforward, as it consists of the set
of diagonal matrices

basis for the Cartan subalgebra h is given by (eij , 1 in the
entry of row i , column j and 0 elsewhere)

hi = ei ,i − en+i ,n+i i = 1, . . . , n

now h ⊂ g(0,0), i.e. the Cartan subalgebra is just the Cartan
subalgebra of the Lie algebra g(0,0), which makes further
structure theory feasible



Z2 × Z2-graded Lie algebras of type B

In terms of the dual basis ϵj (j = 1, . . . , n) of h∗ the roots and
corresponding root vectors of soq(2n + 1) are given by:

root deg root vector
ϵj (0, 1) ej,2n+1 − e2n+1,j+n j = 1, . . . , q
ϵj (1, 0) ej,2n+1 − e2n+1,j+n j = q + 1, . . . , n
−ϵj (0, 1) en+j,2n+1 − e2n+1,j j = 1, . . . , q
−ϵj (1, 0) en+j,2n+1 − e2n+1,j j = q + 1, . . . , n
ϵj − ϵk (0, 0) ejk − ek+n,j+n j ̸= k = 1, .., q or j ̸= k = q + 1, .., n
ϵj − ϵk (1, 1) ejk + ek+n,j+n j = 1, . . . , q; k = q + 1, . . . , n or

j = q + 1, . . . , n; k = 1, . . . , q
ϵj + ϵk (0, 0) ej,k+n − ek,j+n j < k = 1, .., q or j < k = q + 1, .., n
ϵj + ϵk (1, 1) ej,k+n + ek,j+n j = 1, .., q; k = q + 1, .., n
−ϵj − ϵk (0, 0) ej+n,k − ek+n,j j < k = 1, .., q or j < k = q + 1, .., n
−ϵj − ϵk (1, 1) ej+n,k + ek+n,j j = 1, . . . , q; k = q + 1, . . . , n



Z2 × Z2-graded Lie algebras of type B

the positive roots are given by

∆+ = {ϵj (j = 1, . . . , n); ϵj − ϵk , ϵj + ϵk (1 ≤ j < k ≤ n)}

but note that there are four different types of roots, according
to the Z2 × Z2 degree:

∆+
(0,1) = {ϵj (j = 1, . . . , q)}

∆+
(1,0) = {ϵj (j = q + 1, . . . , n)}

∆+
(0,0) = {ϵj − ϵk , ϵj + ϵk (j < k = 1, . . . , q or j < k = q + 1, . . . , n)}

∆+
(1,1) = {ϵj − ϵk , ϵj + ϵk (j = 1, . . . , q; k = q + 1, . . . , n)}

a set of simple roots (with their degrees) is given by

ϵ1 − ϵ2 . . . ϵq−1 − ϵq ϵq − ϵq+1 ϵq+1 − ϵq+2 . . . ϵn−1 − ϵn ϵn
(0, 0) . . . (0, 0) (1, 1) (0, 0) . . . (0, 0) (1, 0)



Z2 × Z2-graded Lie algebras of type B

for the Z2 × Z2-graded Lie algebra soq(2n + 1) we have the
same root space decomposition as for the Lie algebra
so(2n + 1)

the main difference being the degree of the roots

and the fact that both commutators and anti-commutators
appear among the brackets between root vectors.



Z2 × Z2-graded Lie algebras of type C

The Z2 × Z2-graded Lie algebra g = spp(2n) (matrices):

p n − p p n − p
a(0,0) a(1,0) b(1,1) b(0,1)
ã(1,0) ã(0,0) −b t

(0,1) b̃(1,1)
c(1,1) c(0,1) −a t

(0,0) −ã t
(1,0)

−c t
(0,1) c̃(1,1) −a t

(1,0) −ã t
(0,0)


p

n − p

p

n − p

where b(1,1), b̃(1,1), c(1,1) and c̃(1,1) are symmetric matrices

AT J + JA = 0 (∗)

J =

(
0 0 I 0
0 0 0 I
−I 0 0 0
0 I 0 0

) p
n − p
p

n − p



Z2 × Z2-graded Lie algebras of type D

The Z2 × Z2-graded Lie algebra g = sop(2n) (matrices):

p n − p p n − p
a(0,0) a(1,0) b(1,1) b(0,1)
ã(1,0) ã(0,0) b t

(0,1) b̃(1,1)
c(1,1) c(0,1) −a t

(0,0) −ã t
(1,0)

c t
(0,1) c̃(1,1) −a t

(1,0) −ã t
(0,0)


p

n − p

p

n − p

where b(1,1), b̃(1,1), c(1,1) and c̃(1,1) are antisymmetric matrices

ATK + KA = 0

where

K =

(
0 0 I 0
0 0 0 I
I 0 0 0
0 −I 0 0

) p
n − p
p

n − p



Z2 × Z2-graded Lie superalgebras (J.Phys.A 57 (2024)
095202)

Now consider: Z2 × Z2-graded Lie superalgebras

Let g be an associative Z2 × Z2-graded algebra, with a
product denoted by x · y :

ga · gb ⊂ ga+b

then (g, J·, ·K) is a Z2 ×Z2-graded Lie superalgebra by defining

Jxa, ybK = xa · yb − (−1)a·byb · xa ,

with a · b = a1b1 + a2b2.



Z2 × Z2-graded general linear Lie superalgebra

Let V be a Z2 × Z2-graded linear space,
V = V(0,0) ⊕ V(1,1) ⊕ V(1,0) ⊕ V(0,1), with subspaces of
dimension m1,m2, n1 and n2 respectively. End(V ) is then a
Z2 × Z2-graded associative algebra.

By the previous bracket: turned into a Z2 × Z2-graded Lie
superalgebra. This algebra is usually denoted by
gl(m1,m2|n1, n2).
In matrix form, the elements are written as:

A =

m1 m2 n1 n2a(0,0) a(1,1) a(1,0) a(0,1)
b(1,1) b(0,0) b(0,1) b(1,0)
c(1,0) c(0,1) c(0,0) c(1,1)
d(0,1) d(1,0) d(1,1) d(0,0)

m1
m2
n1
n2

(the indices refer to the Z2×Z2-grading; the size of the blocks
is indicated in the lines above and to the right of the matrix.



Z2 × Z2-graded special linear Lie superalgebra

A =

m1 m2 n1 n2a(0,0) a(1,1) a(1,0) a(0,1)
b(1,1) b(0,0) b(0,1) b(1,0)
c(1,0) c(0,1) c(0,0) c(1,1)
d(0,1) d(1,0) d(1,1) d(0,0)

m1
m2
n1
n2

The matrices of the Lie algebra gl(m1 +m2 + n1 + n2), of the Lie
superalgebra gl(m1 +m2|n1 + n2) and of the Z2 × Z2-graded Lie
superalgebra gl(m1,m2|n1, n2) are all the same, but of course the
bracket is different in all of these cases.
One can check that StrJA,BK = 0, where
Str(A) = tr(a(0,0)) + tr(b(0,0))− tr(c(0,0))− tr(d(0,0)) is the graded
supertrace in terms of the ordinary trace tr. Hence
sl(m1,m2|n1, n2) is defined as the subalgebra of elements of
gl(m1,m2|n1, n2) with graded supertrace equal to 0.



Z2 × Z2-graded supertranspose AT of A

Let A ∈ sl(m1,m2|n1, n2) ⊂ End(V ) of degree a ∈ Z2 × Z2; V
∗ -

dual to V , inheriting the Z2 × Z2-grading from V ; ⟨·, ·⟩ - the
natural pairing of V and V ∗. Then A∗ ∈ End(V ∗) is determined
by:

⟨A∗yb, x⟩ = (−1)a·b⟨yb,Ax⟩, ∀yb ∈ V ∗
b , ∀x ∈ V .

This is extended by linearity to all elements of sl(m1,m2|n1, n2). In
matrix form, this yields the Z2 × Z2-graded supertranspose AT of
A:

AT =


at(0,0) bt(1,1) −ct(1,0) −d t

(0,1)

at(1,1) bt(0,0) ct(0,1) d t
(1,0)

at(1,0) −bt(0,1) ct(0,0) −d t
(1,1)

at(0,1) −bt(1,0) −ct(1,1) d t
(0,0)

 ,

at - ordinary matrix transpose. One can check (case by case,
according to the Z2 × Z2-grading) that the graded supertranspose
of matrices satisfies

(AB)T = (−1)a·bBTAT



Orthosymplectic Z2 × Z2-graded Lie superalgebras of type B

The Z2 × Z2-graded Lie superalgebra osp(2m1 + 1, 2m2|2n1, 2n2)
consists of the set of matrices A from sl(2m1 + 1, 2m2|2n1, 2n2)
such that

AT J + JA = 0

where

J =


0 Im1+m2 0 0 0

Im1+m2 0 0 0 0
0 0 1 0 0
0 0 0 0 In1+n2
0 0 0−In1+n2 0

 .

(Explicit blocks of the matrices can be given, but technical.)



Orthosymplectic Z2 × Z2-graded Lie superalgebras of type C and D

By deleting row 2m1 + 2m2 + 1 and column 2m1 + 2m2 + 1 in the
matrix A of osp(2m1 + 1, 2m2|2n1, 2n2), one obtains the
Z2 × Z2-graded Lie superalgebras osp(2m1, 2m2|2n1, 2n2), the
Z2 × Z2-graded Lie superalgebras corresponding to the Lie
superalgebras of type C and D.



Z2 ×Z2-graded Lie algebra of type G2 (J.Phys.A 58 (2025)
365201)

the applied technique to the Z2 × Z2-graded Lie
(super)algebras of type A,B,C ,D did not lead to any results
for exceptional Lie (super)algebras

first: a basis for the ordinary Lie algebra G2 in terms of
7× 7-matrices; (Eij is the 7× 7-matrix with a 1 at position
(i , j) and zeroes elsewhere)

Matrix form of Chevalley basis, as 7× 7-matrices.

h1 = −E11 + 2E22 − E33 + E44 − 2E55 + E66, h2 = E11 − E22 − E44 + E55,

x1 = E35 − E26 +
√
2E71 −

√
2E47, x2 = E16 − E34 +

√
2E72 −

√
2E57,

x3 = −E15 + E24 +
√
2E73 −

√
2E67, y1 = −E53 + E62 −

√
2E17 +

√
2E74,

y2 = −E61 + E43 −
√
2E27 +

√
2E75, y3 = E51 − E42 −

√
2E37 +

√
2E76,

a12 = E12 − E54, a23 = E23 − E65, a13 = E13 − E64,

a21 = E21 − E45, a32 = E32 − E56, a31 = E31 − E46.



G2 commutator table

[·, ·] h1 h2 a12 a13 a23 a21 a31 a32 x1 x2 x3 y1 y2 y3

h1 0 0 −3a12 0 3a23 3a21 0 −3a32 x1 −2x2 x3 −y1 2y2 −y3

h2 0 2a12 a13 −a23 −2a21 −a31 a32 −x1 x2 0 y1 −y2 0

a12 0 0 a13 h2 −a32 0 −x2 0 0 0 y1 0

a13 0 0 −a23 h1+2h2 a12 −x3 0 0 0 0 y1

a23 0 0 a21 h1+h2 0 −x3 0 0 0 y2

a21 0 0 −a31 0 −x1 0 y2 0 0

a31 0 0 0 0 −x1 y3 0 0

a32 0 0 0 −x2 0 y3 0

x1 0 2y3 −2y2 h1+3h2 3a21 3a31

x2 0 2y1 3a12 h1 3a32

x3 0 3a13 3a23 −2h1−3h2

y1 0 2x3 −2x2

y2 0 2x1

y3 0

Note that this is a Z2 × Z2-graded basis of G2, with the degree of the elements given as follows:

(0, 0) (0, 1) (1, 0) (1, 1)
h1, h2 x1, y1, a23, a32 x2, y2, a13, a31 x3, y3, a12, a21



Z2 × Z2-graded (color) Lie algebra of type G2

Same principle as before: certain sign changes in defining matrices,
e.g.

x2 =


0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −

√
2

0 0 0 0 0 0 0
0
√
2 0 0 0 0 0

 → x̃2 =


0 0 0 0 0 −1 0
0 0 0 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0

√
2

0 0 0 0 0 0 0
0
√
2 0 0 0 0 0


(0, 0) (0, 1) (1, 0) (1, 1)
h̃1, h̃2 x̃1, ỹ1, ã23, ã32 x̃2, ỹ2, ã13, ã31 x̃3, ỹ3, ã12, ã21

Z2 × Z2-graded Lie algebra of type G2,

Jxa, ybK = xa · yb − (−1)a1b2−a2b1yb · xa



Z2 × Z2-graded (color) Lie algebra of type G2: brackets

J·, ·K h̃1 h̃2 ã12 ã13 ã23 ã21 ã31 ã32 x̃1 x̃2 x̃3 ỹ1 ỹ2 ỹ3

(0,0) h̃1 0 0 −3ã12 0 3ã23 3ã21 0 −3ã32 x̃1 −2x̃2 x̃3 −ỹ1 2ỹ2 −ỹ3

(0,0) h̃2 0 2ã12 ã13 −ã23 −2ã21 −ã31 ã32 −x̃1 x̃2 0 ỹ1 −ỹ2 0

(1,1) ã12 0 0 ã13 h̃2 ã32 0 x̃2 0 0 0 ỹ1 0

(1,0) ã13 0 0 ã23 h̃1+2h̃2 ã12 x̃3 0 0 0 0 −ỹ1

(0,1) ã23 0 0 ã21 h̃1+h̃2 0 x̃3 0 0 0 −ỹ2

(1,1) ã21 0 0 ã31 0 x̃1 0 ỹ2 0 0

(1,0) ã31 0 0 0 0 x̃1 −ỹ3 0 0

(0,1) ã32 0 0 0 x̃2 0 −ỹ3 0

(0,1) x̃1 0 2ỹ3 −2ỹ2 h̃1+3h̃2 −3ã21 3ã31

(1,0) x̃2 0 −2ỹ1 −3ã12 h̃1 3ã32

(1,1) x̃3 0 −3ã13 −3ã23 2h̃1+3h̃2

(0,1) ỹ1 0 2x̃3 −2x̃2

(1,0) ỹ2 0 −2x̃1

(1,1) ỹ3 0



Lie algebra G2

e1 = A010
100 e2 = A001

100 e3 = A100
010 e4 = A001

010 e5 = A110
110

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0




0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0




0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0


e6 = A001

110 e7 = A100
001 e8 = A010

001 e9 = A101
101 e10 = A010

101
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0




0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0




0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0


e11 = A100

011 e12 = A011
011 e13 = A101

111 e14 = A011
111

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(Z2 × Z2 × Z2 ≡ Z3

2-graded) Lie algebra G2



Relation with Chevalley basis

One can now take as basis of a Cartan subalgebra of g:

h1 = ie2 − ie1, h2 = ie1

and consider the following twelve root vectors with respect to this
Cartan subalgebra:

x1 = e3 +
1

2
e4 + ie5 +

i

2
e6, x2 = e11 +

1

2
e12 + ie13 +

i

2
e14, x3 = e7 +

1

2
e8 + ie9 +

i

2
e10,

y1 = e3 +
1

2
e4 − ie5 −

i

2
e6, y2 = e11 +

1

2
e12 − ie13 −

i

2
e14, y3 = e7 +

1

2
e8 − ie9 −

i

2
e10,

a12 =
1

2
e8 −

i

2
e10, a13 = −1

2
e12 +

i

2
e14, a23 =

1

2
e4 +

i

2
e6,

a21 = −1

2
e8 −

i

2
e10, a31 =

1

2
e12 +

i

2
e14, a32 = −1

2
e4 +

i

2
e6.



Z2 × Z2 × Z2-graded color Lie algebra of type G2: case 1

Sign factor

⟨α, β⟩ = α1β2 + α2β1, α = (α1, α2, α3)

Jxα, yβK = xα · yβ − (−1)⟨α,β⟩yβ · xα
New basis elements ẽi (old G2 basis ei ), i = 1, . . . , 14.

Grading:

000 100 010 110 001 101 011 111
e1, e2 e3, e4 e5, e6 e7, e8 e9, e10 e11, e12 e13, e14
ẽ1, ẽ2 ẽ3, ẽ4 ẽ5, ẽ6 ẽ7, ẽ8 ẽ9, ẽ10 ẽ11, ẽ12 ẽ13, ẽ14

Brackets: [ei , ej ] ∼ ek → Jẽi , ẽjK ∼ ±ẽk , e.g.

[e1, e4] = −e6 [e1, e5] = e3 [e1, e6] = e4 [e1, e7] = e10 →
{ẽ1, ẽ4} = ẽ6 {ẽ1, ẽ5} = −ẽ3 {ẽ1, ẽ6} = −ẽ4 [ẽ1, ẽ7] = ẽ10



Z2 ×Z2 × Z2-graded color Lie algebra of type G2: one case

ẽ1 ∼ A010
100 ẽ2 ∼ A001

100 ẽ3 ∼ A100
010 ẽ4 ∼ A001

010 ẽ5 ∼ A110
110

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0




0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0




0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0


ẽ6 ∼ A001

110 ẽ7 ∼ A100
001 ẽ8 ∼ A010

001 ẽ9 ∼ A101
101 ẽ10 ∼ A010

101
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0




0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0




0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0


ẽ11 ∼ A100

011 ẽ12 ∼ A011
011 ẽ13 ∼ A101

111 ẽ14 ∼ A011
111

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(Z3

2-graded color Lie algebra of type G2: case 1)



Z2 × Z2 × Z2-graded color Lie algebra of type G2: other
cases

Case 2: sign factor

⟨α, β⟩ = α1β3 + α3β1

Case 3: sign factor

⟨α, β⟩ = α2β3 + α3β2

All of type 32.
Note: type 31 is ordinary Lie algebra.
Type 33 ((−1)αiβi ), type 34 ((−1)αiβi+αjβj ) and type 35
((−1)α1β1+α2β2+α3β3) would correspond to Γ-graded color
superalgebras, so not surprising that they are missing.



Z2 × Z2-graded A-statistics (J.Geom.Symmetry Phys. 71
(2025) 1)

A - arbitrary
(m1 +m2 + n1 + n2 + 1×m1 +m2 + n1 + n2 + 1)-matrix of
the following block form:

A =

m1 + 1 m2 n1 n2a(0,0) a(1,1) a(1,0) a(0,1)
b(1,1) b(0,0) b(0,1) b(1,0)
c(1,0) c(0,1) c(0,0) c(1,1)
d(0,1) d(1,0) d(1,1) d(0,0)

m1 + 1
m2
n1
n2

JA(a1,a2), Ã(b1,b2)K = A(a1,a2)Ã(b1,b2)−(−1)a1b1+a2b2Ã(b1,b2)A(a1,a2)

Graded supertrace
Str(A) = tr(a(0,0)) + tr(b(0,0))− tr(c(0,0))− tr(d(0,0))

Z2 × Z2-graded sl(m1 + 1,m2|n1, n2) is the subalgebra of
gl(m1 + 1,m2|n1, n2) with graded supertrace equal to 0.



Z2 × Z2-graded A-statistics

Let

di =


(0, 0); i = 0, . . . ,m1
(1, 1); i = m1 + 1, . . . ,m1 +m2 = m
(1, 0); i = m1 +m2 + 1, . . . ,m1 +m2 + n1 = m + n1
(0, 1); i = m1 +m2 + n1 + 1, . . . ,m1 +m2 + n1 + n2 = m + n,

and let eij , i , j = 0, 1, . . . ,m1 +m2 + n1 + n2 = m+ n (where
m1 +m2 = m, n1 + n2 = n) be the (m + n + 1×m + n + 1)
matrix A with 1 in the entry of row i , column j and 0
elsewhere. These matrices are homogeneous and the grading
deg(eij) is as follows:

deg(eij) = di + dj .

A set of generators of sl(m1 + 1,m2|n1, n2):

a+i = ei0, a−i = e0i , i = 1, . . . ,m + n, (deg(a±i ) = di )



Z2 × Z2-graded A-statistics

Denote these generators by

a±i ≡ b±i ∈ g(0,0), i = 1, . . . ,m1,

a±i ≡ b̃±i−m1
∈ g(1,1), i = m1 + 1, . . . ,m,

a±i ≡ f ±i−m ∈ g(1,0), i = m + 1, . . . ,m + n1,

a±i ≡ f̃ ±i−m−n1
∈ g(0,1), i = m + n1 + 1, . . . ,m + n.

Z2 × Z2-graded sl(m1 + 1,m2|n1, n2) can be defined in terms
of the generators a±i , i = 1, . . . ,m + n and the following
relations:

Jaξi , a
ξ
j K = 0, ξ = ±, i , j = 1, . . . ,m + n,

JJa+i , a
−
j K, a+k K = δjka

+
i + (−1)di ·di δija

+
k ,

JJa+i , a
−
j K, a−k K = −(−1)(di+dj )·dk δika

−
j − (−1)di ·di δija

−
k , i , j , k = 1, . . . ,m + n.



Fock representations

assume that the corresponding representation space Wp

contains (up to a multiple) a cyclic vector |0⟩, such that

a−i |0⟩ = 0, i = 1, 2, . . . , n +m,

Ja−i , a
+
j K|0⟩ = δijp|0⟩, p ∈ N, i , j = 1, 2, . . . , n +m.

basis in the Fock space

|p; r1, .., rm1 , l1, . . . , lm2 , θ1, . . . , θn1 , λ1, . . . , λn2) =

√
(p − R)!

p!r1! . . . λn2!
×

(b+1 )
r1 . . . (b+m1

)rm1 (b̃+1 )
l1 . . . (b̃+m2

)lm2 (f +1 )θ1 . . . (f +n1 )
θn1 (f̃ +1 )λ1 ..(f̃ +n2 )

λn2 |0⟩,

ri , li ∈ Z+, θi , λi ∈ {0, 1}, R =

m1∑
i=1

ri+

m2∑
i=1

li+

n1∑
i=1

θi+

n2∑
i=1

λi ≤ p.



Fock representations

The transformation of the basis:

b+i |p; .., ri−1, ri , ri+1, . . .) =
√

(ri + 1)(p − R)|p; . . . , ri−1, ri + 1, ri+1, . . .),

b̃+i |p; . . . , li−1, li , li+1, . . .) =
√

(li + 1)(p − R)|p; . . . , li−1, li + 1, li+1, . . .),

f +i |p; . . . , θi−1, θi , θi+1, . . .) = (1− θi )(−1)l1+...+lm2 (−1)θ1+...+θi−1

×
√

p − R|p; . . . , θi−1, θi + 1, θi+1, . . .),

f̃ +i |p; . . . , λi−1, λi , λi+1, . . .) = (1− λi )(−1)l1+...+lm2 (−1)λ1+...+λi−1

×
√
p − R|p; . . . , θi−1, θi + 1, θi+1, . . .),



Fock representations

The transformation of the basis:

b−i |p; . . . , ri−1, ri , ri+1, . . .) =
√

ri (p − R + 1)|p; . . . , ri−1, ri − 1, ri+1, . . .),

b̃−i |p; . . . , li−1, li , li+1, . . .) =
√

li (p − R + 1)|p; . . . , li−1, li − 1, li+1, . . .),

f −i |p; . . . , θi−1, θi , θi+1, . . .) = θi (−1)l1+...+lm2 (−1)θ1+...+θi−1

×
√

p − R + 1|p; . . . , θi−1, θi − 1, θi+1, . . .),

f̃ −i |p; . . . , λi−1, λi , λi+1, . . .) = λi (−1)l1+...+lm2 (−1)λ1+...+λi−1

×
√
p − R + 1|p; . . . , θi−1, θi + 1, θi+1, . . .).



Microscopic properties of the underlying statistics

For simplicity assume that n = m.

Consider a “free” Hamiltonian

H =
m∑
i=1

εi (Ja+i , a
−
i K + Ja+i , a

−
i K)

then

[H, a±i ] = ±εia
±
i .
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Microscopic properties of the underlying statistics

interpretation:

ri , li , θi , λi , - the number of particles on the corresponding
orbital;

then the operator a+i increases this number by one, it
“creates” a particle in the one-particle state (= orbital) i

a−i diminishes this number by one, it “kills” a particle on the
i-th orbital

on every orbital there cannot be more than one f -particle,
whereas such restriction does not hold for the b-particles (no
restriction for the b-particles)

these are, Fermi like (resp. Bose like) properties

essential difference - if the order of the statistics is p then
no more than p “particles” can be accommodated in the
system,

∑m1
i=1 ri +

∑m2
i=1 li +

∑n1
i=1 θi +

∑n2
i=1 λi ≤ p
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Microscopic properties of the underlying statistics

consider some configurations for m = n = 6, assume p = 5; denote
by • a b−particle and by ◦ an f−particle, and represent the six
orbibals by six boxes.

the state | • • • | • ◦ • | | | | | is forbidden; it is not
possible to accommodate more than p = 5 particles

the state | • ◦ • | ◦ •| | | | | is completely filled. It
contains 5 particles; no more particles can be “loaded” even in
the empty “boxes” (orbitals)

the state | • ◦ • | ◦ ◦| | | | | is forbidden, because it
contains two f−particles in the second box

consider the state | • • ◦ | • | | | | |; a new
b−particle can be accommodated in any box, whereas the
first box is “locked” for an f−particle; an f−particle can
however be accommodated in any other box

this statistics - belongs to the class of the so-called
(fractional) exclusion statistics
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(Fractional) exclusion statistics (FES)

first introduced by Haldane (Phys.Rev.Lett. 67 (1991) 937)

it has emerged as a unifying framework for describing
quantum systems whose quasiparticle excitations interpolate
between bosonic and fermionic behavior

prominent applications of FES arises in the study of
low-dimensional electron systems, particularly the fractional
quantum Hall effect, spin chains and integrable models such
as the Haldane–Shastry and Calogero–Sutherland systems

beyond condensed matter, FES has been employed in black
hole thermodynamics and quantum gravity, and to
thermodynamics of strongly correlated electron gases,
Luttinger liquids, and quantum wires (A. Khare, Fractional
Statistics and Quantum Theory, 2nd edn. (World Scientific,
Singapore, 2005))



Conclusions / summary

Z2 × Z2-graded classical Lie algebras and basic classical Lie
superalgebras - definition, structure and representation theory;

Z2
2-grading of G2, graded Chevalley basis

Can also be lifted to Z2
2-graded color Lie algebras of type G2

Graded basis labeled by points and lines of the Fano plane

Colorings: Z2 × Z2 × Z2-graded color Lie algebras of type G2

Example: A-statistics: microscopic properties

Outlook: G (3)? F4 or F (4)?

https://users.ugent.be/∼jvdjeugt/
http://theo.inrne.bas.bg/∼stoilova/


