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Scale separation

e Scale of new physics is separated from current HEP experiments.
e Scale of HEP > Hubble scale
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e In the case of extra dimensions [Courdachet 2023],

Scale separation condition

We say that a vacuum exhibits scale separation if
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Casimir vacua

e Scale separation is hard to achieve in Freund-Rubin vacua.

e An alternative is Casimir vacua.
[de Luca, de Ponti, Mondino, Tomasiello 2023; Bento and Montero 2025]

e Flux compactification where extra dimensions are compactified
in a Riemaniann Flat Manifold — no internal curvature!

e Energy from the fluxes compensated by the Casimir effect.
e Non-vanishing Casimir achieved by breaking SUSY.

e Stability of these vacua is no longer SUSY protected!



Candidate scale-separated Casimir vacua (l)

e We study the simplest possible vacuum construction of this type.
[de Luca,de Ponti, Mondino, Tomasiello 2023]

e Consider M-Theory/11d SUGRA compactified on a 7-dimensional
square torus
ds* = L*dsjpgs, + R7ds? .

e SUSY is broken a la Scherk-Schwarz: periodic BCs for the bosons
are chosen along torus cycles and antiperiodic for fermions.

e The Casimir energy can be estimated through a scaling argument.

- It depends only on the internal manifold.
- It has an overall negative sign from bosons.

On dimensional grounds

Scasimir = 2|pc‘ / dﬂXV ) R



Candidate scale-separated Casimir vacua (I1)

e The volume modulus is stabilized by introducing a four-flux

Fy = fuvolags, ,
Quantization of the magnetic dual imposes
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Candidate scale-separated Casimir vacua (I1)

e The volume modulus is stabilized by introducing a four-flux

Fy = fuvolags, ,
Quantization of the magnetic dual imposes
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e Solving the field equations with these sources,
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When N > 1, the vacuum exhibits parametric scale separation
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Potential instabilities

e We performed a detailed analysis of the stability of this vacuum.
In particular, we studied

- runaway directions? x

- brane nucleation? v

- tachyons? v
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e We performed a detailed analysis of the stability of this vacuum.
In particular, we studied

- runaway directions? x

- brane nucleation? v

- tachyons? v

e For these purposes, it is necessary to understand how exactly the
Casimir energy is computed. [Dall’Agata, Zwirner 2025]



Computation of the Casimir energy (1)

The Casimir potential can be evaluated from the usual trace-log box
expression. For a single massless bosonic field on R? x T¢
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with 6;(e=%) = 32, e,

This is a divergent expression. However, divergences cancel after
adding contributions from all fields. Final result is

12872 > ds
V= — il / —— (65(e7%)7 — B2(e7°)7)
0
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Computation of the Casimir energy (l1)

Another method is to use V = (Tyo). Contact divergence is regularized
using point splitting. For a massless field [Birrel and Davies 1982;
Arkani-Hamed, Dubovski, Nicolis, Villadoro 2007]

0 0
V= <T00> = ||m, wa)(lo G(X X/)

where G(x,X') = (¢(x)p(x")) is the Green’s function. Divergences
cancel after adding contributions from all fields.

For a bosonic field, the method of images yields
1 1

G(x,x') =
(d+9=2)Qurq-1 5, |x — x + 27R AT
The Casimir potential is
1 1 Cza(d+q)
Vie(R) = — —
M) G L TRATT T Tarq R

This is for square torus, now we turn to deformations.



Casimir energy on a deformed torus

Consider traceless metric perturbations of the torus:

ds? = 1, dx* @ dx” + (85 + hy(y)) dy' @ dy/,

Casimir energy is computed from GF's and point splitting. For that,
L=Lg+ L, G=Go+ G

where
Lo = 0,0" + 80, Li=-a(h"o)
Then
LG=(Lo+L1)(Go+G))=6 — LoG = —L1Go

Solve this expanding in a basis of eigenfunctions of Lo, {fi(x,¥)},

6= 31, ;Af( )
if



Casimir energy on a deformed torus

More explicitly

o R —ip(x—x")—jry=my"
n,m,hn_me plx=xX) =i

Gi((x,y), (X, Y)) / zﬂ-)d Z 27rR R? (p2+ g—i) (p2+ %2)

where h, = [+ d9y h(y) e'7 are the Fourier modes of the metric
perturbation.



Casimir energy on a deformed torus

More explicitly

I-n-y—m-y’
R

iy e

Gi((x,y), (X, Y)) / zﬂ-)d 27rR R? (p2 + g—i) (p2 + %2)

where h, = [+ d9y h(y) e'7 are the Fourier modes of the metric
perturbation. The perturbed Casimir potential is

(SV__/CMppz ) nim;hl_, o—i(n—m)-4
Cr)? d g CRITRE (024 2 (p2 + 2)
This expression implies that flat deformations are on-shell since, in

that case, h’_,, = (2rR) 6. hl. This, combined with rotational
invariance, implies that the result will be o hjﬁ =0.




The vacuum is on-shell

e It is enough that flat deformations vanish for the vacuum to be
on-shell. Corrections to the potential take the form

oV = Zamh,ﬁe"%y
I
Performing the integral in the internal coordinates
/dd+qXZa hae ™ Za~ /dd+qxh e = (2nR) aghg =

e This argument works provided that the Fourier series of §V is
well-defined, i.e. the sequence {a} is square-summable. We proved
this in the paper. [MA, Basile, Risso 2025]



Non-perturbative instabilities: brane nucleation

e Non-SUSY AdS vacua are expected to decay via flux tunneling.
[Horowitz, Orgera, Polchisnki 2007; Brown, Dahlen 2010; Ooguri, Vafa 2016;
Antonelli, Basile 2019; Dibitetto, Petri, Schillo 2020]

e M2-brane decay rate per unit volume is proportional to e~Si, with
St = TP (¢ = 28V(%)),

and

P fu n

2 =3
Y P Y R
V(X)_/O dpm , X L ’ 6 2L3T

e This decay channel is allowed as long as 8 > 1. Here, 8 = 2v/2 > 1.
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e Non-SUSY AdS vacua are expected to decay via flux tunneling.
[Horowitz, Orgera, Polchisnki 2007; Brown, Dahlen 2010; Ooguri, Vafa 2016;
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e M2-brane decay rate per unit volume is proportional to e~Si, with
St = TP (¢ = 28V(%)),

and

P fu n

2 =3
Y P Y R
V(X)_/O dpm , X L ’ 6 2L3T

e This decay channel is allowed as long as 8 > 1. Here, 8 = 2v/2 > 1.
e The vacuum exhibits non-perturbative instabilities!
e Exponentially suppressed decay channel, S, ~ N — L. ~ e,

e Brane nucleation near boundary of AdS. Vacuum decays in an AdS

time for an observer in the bulk.
M



Perturbative instabilities: presence of tachyons (1)

Consider the 11d effective potential, now adding the dependence of
the Casimir in moduli orthogonal to the volume h
1 N2 2v(h)
Vil(R7) = 53— 57 — 57— -
871'2/\/”3)[,” R RM
The original solution is chosen to be at h = 0, i.e. v(0) = |p¢|. From
the preceding discussion v/(0) = 0.



Perturbative instabilities: presence of tachyons (1)

Consider the 11d effective potential, now adding the dependence of
the Casimir in moduli orthogonal to the volume h

1 N2 2v(h)
Va(Ry) = 8m2M3, ., R R

The original solution is chosen to be at h = 0, i.e. v(0) = |p¢|. From
the preceding discussion v/(0) = 0.

Lower dimensional potential:

1 N2 2v(h)
Vi(R) = (2m)'RY ( il > ;
871'2/\/“3)[,11 R R18

Masses can be read off from the hessian, once the fields are
canonically normalized.



Perturbative instabilities: presence of tachyons (lI)

In particular, consider the following (single) flat torus deformation ¢
7
R’ds?, = RZe* (ez¢dy$ + e 2%dy2 + Z dyf) ;
i=3
The masses are found to be

%V,
2 4
m, = 8p2

36
i
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0¢?

_52v'(0)
T2 v0)
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>0, my=
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Importantly, m? could be negative!



Perturbative instabilities: presence of tachyons (lIl)

In AdS, tachyonic particles might still be fine, provided that they are
above the BF bound [Breitenlohner, Freedman 1982]
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Itis crucial to compute m3L? = —42* (((;) For that, we consider

vx) _ /o (-ZS [93( ) b3 (e—e*Xs) 05 (9_5)5 — 0, (e_exs) 0> (6_87&) 6> (9_5)5]
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Numerically computing the second derivative we find

// O) 9
21?2 = —42 v ~ —685.46... < ——

The vacua suffer from perturbative instabilities!
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Conclusion and outlook

e Casimir vacua provide a simple setting to look for AdS vacua with
parametric scale separation.

e We studied the simplest compactification of this type, confirming
the presence of both perturbative and non-perturbative instabilities.

e Even though the vacuum is unstable under brane nucleation, an
observer in the bulk can survive up to an AdS time, which is
parametrically larger than the EFT cutoff.

e In the presence of tachyons, the dimensionally reduced EFT lacks a
perturbative vacuum and unitarity is violated.

e Perturbative instabilities might be avoidable in more refined
constructions. We will further explore this in the future.



