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Scale separation

• Scale of new physics is separated from current HEP experiments.

• Scale of HEP≫ Hubble scale

→ Scale separation = Scale of new physics≫ Hubble scale.

• In the case of extra dimensions [Courdachet 2023],

Scale separation condition

We say that a vacuum exhibits scale separation if

m2
KK

|Λ|
≫ 1
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Casimir vacua

• Scale separation is hard to achieve in Freund-Rubin vacua.

• An alternative is Casimir vacua.
[de Luca, de Ponti, Mondino, Tomasiello 2023; Bento and Montero 2025]

• Flux compactification where extra dimensions are compactified
in a Riemaniann Flat Manifold→ no internal curvature!

• Energy from the fluxes compensated by the Casimir effect.

• Non-vanishing Casimir achieved by breaking SUSY.

• Stability of these vacua is no longer SUSY protected!
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Candidate scale-separated Casimir vacua (I)

• We study the simplest possible vacuum construction of this type.
[de Luca,de Ponti, Mondino, Tomasiello 2023]

• Consider M-Theory/11d SUGRA compactified on a 7-dimensional
square torus

ds2 = L2ds2AdS4 + R2ds2T7 .

• SUSY is broken à la Scherk-Schwarz: periodic BCs for the bosons
are chosen along torus cycles and antiperiodic for fermions.

• The Casimir energy can be estimated through a scaling argument.

• It depends only on the internal manifold.
• It has an overall negative sign from bosons.

On dimensional grounds

SCasimir = 2|ρc|
∫
d11x

√
−gR−11 .
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Candidate scale-separated Casimir vacua (II)

• The volume modulus is stabilized by introducing a four-flux

F4 = f4volAdS4 ,

Quantization of the magnetic dual imposes

1
(2πℓPl,11)6

∫
T7
F7 = N =⇒ f24 =

N2
4π2 ℓ

12
Pl,11

L8
R14

• Solving the field equations with these sources,

L2 = ℓ2Pl,11

(
N
2π

) 22
3

|ρc|−
14
3

714/3
211 · 38/3 , R11 = ℓ11Pl,11

(
N
2π

) 22
3

|ρc|−
14
3

711/3
211 · 311/3 .

When N≫ 1, the vacuum exhibits parametric scale separation

R2
L2 ∝ N−6 ≪ 1
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Potential instabilities

• We performed a detailed analysis of the stability of this vacuum.
In particular, we studied

– runaway directions? ×
– brane nucleation? ✓
– tachyons? ✓

• For these purposes, it is necessary to understand how exactly the
Casimir energy is computed. [Dall’Agata, Zwirner 2025]
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Computation of the Casimir energy (I)

The Casimir potential can be evaluated from the usual trace-log box
expression. For a single massless bosonic field on Rd × Tq

V =
1
2

∫ ddp
(2π)d

1
2πR

∑
n⃗∈Zq

log

(
p2 + n⃗2

R2

)
= − π2

2(2πR)d+q

∫ ∞

0

ds
s d
2+1

θ3(e−s)q .

with θ3(e−s) =
∑

n e−n
2s.

This is a divergent expression. However, divergences cancel after
adding contributions from all fields. Final result is

V = − 128π2
2(2πR)d+q

∫ ∞

0

ds
s d
2+1

(
θ3(e−s)q − θ2(e−s)q

)
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Computation of the Casimir energy (II)

Another method is to use V = ⟨T00⟩. Contact divergence is regularized
using point splitting. For a massless field [Birrel and Davies 1982;
Arkani-Hamed, Dubovski, Nicolis, Villadoro 2007]

V = ⟨T00⟩ = lim
x−→x′

∂

∂x0
∂

∂x′0G(x, x
′)

where G(x, x′) = ⟨ϕ(x)ϕ(x′)⟩ is the Green’s function. Divergences
cancel after adding contributions from all fields.

For a bosonic field, the method of images yields

G(x, x′) = 1
(d+ q− 2)Ωd+q−1

∑
n∈Zq

1
|x− x′ + 2πR n⃗|d+q−2

The Casimir potential is

VTq(R) = − 1
Ωd+q−1

∑
n ̸=0

1
|2πR n⃗|d+q

= − ζZq(d+ q)
Ωd+q−1(2πR)d+q

This is for square torus, now we turn to deformations.
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Casimir energy on a deformed torus

Consider traceless metric perturbations of the torus:

ds2 = ηµν dxµ ⊗ dxν +
(
δij + hij(y)

)
dyi ⊗ dyj ,

Casimir energy is computed from GF’s and point splitting. For that,

L = L0 + L1, G = G0 + G1

where
L0 = ∂µ∂

µ + ∂i∂
i, L1 = − ∂i(hij ∂j)

Then
LG = (L0 + L1)(G0 + G1) = δ → L0G1 = −L1G0

Solve this expanding in a basis of eigenfunctions of L0, {fi(x, y)},

G1 =
∑
ij

(L1)ij
fi(x)∗ fj(y)

λiλj
.
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Casimir energy on a deformed torus

More explicitly

G1((x, y), (x′, y′)) =
∫ ddp

(2π)d
∑

n,m∈Zq

1
(2πR)2q

nimj
R2

h̃ijn−m e−ip·(x−x
′)−i n·y−m·y′

R(
p2 + n2

R2

)(
p2 + m2

R2

) .

where h̃n ≡
∫
Tq d

qy h(y) ei nR ·y are the Fourier modes of the metric
perturbation.

The perturbed Casimir potential is

δV = −
∫ ddp

(2π)d
p2
d

∑
n,m∈Zq

nimj h̃ijn−m
(2πR)2qR2

e−i(n−m)· yR(
p2 + n2

R2

)(
p2 + m2

R2

) .

This expression implies that flat deformations are on-shell since, in
that case, h̃ijn−m = (2πR)q δn,m hij. This, combined with rotational
invariance, implies that the result will be ∝ hii = 0.
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The vacuum is on-shell

• It is enough that flat deformations vanish for the vacuum to be
on-shell. Corrections to the potential take the form

δV =
∑
m⃗

am⃗hm⃗ei
m⃗·⃗y
R .

Performing the integral in the internal coordinates∫
dd+qx

∑
m⃗

am⃗hm⃗ei
m⃗·⃗y
R =

∑
m⃗

am⃗
∫
dd+qx hm⃗ei

m⃗·⃗y
R = (2πR)7a0⃗h0⃗ = 0 .

• This argument works provided that the Fourier series of δV is
well-defined, i.e. the sequence {am⃗} is square-summable. We proved
this in the paper. [MA, Basile, Risso 2025]
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Non-perturbative instabilities: brane nucleation

• Non-SUSY AdS vacua are expected to decay via flux tunneling.
[Horowitz, Orgera, Polchisnki 2007; Brown, Dahlen 2010; Ooguri, Vafa 2016;
Antonelli, Basile 2019; Dibitetto, Petri, Schillo 2020]

• M2-brane decay rate per unit volume is proportional to e−SEM2 , with

SEM2 = TΩ3L3(x3 − 2βV(x)),

and
V(x) =

∫ ρ
L

0
dρ̃ ρ̃3√

1+ ρ̃2
, x = ρ

L , β =
f4
2L3

µ

T

• This decay channel is allowed as long as β > 1. Here, β = 2
√
2 > 1.

• The vacuum exhibits non-perturbative instabilities!

• Exponentially suppressed decay channel, SEM2 ∼ N11 → Γ
Vol ∼ e−N11 .

• Brane nucleation near boundary of AdS. Vacuum decays in an AdS
time for an observer in the bulk.
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Perturbative instabilities: presence of tachyons (I)

Consider the 11d effective potential, now adding the dependence of
the Casimir in moduli orthogonal to the volume h

V11(R7) =
1

8π2M3
Pl,11

N2
R14 − 2v(h)

R11 .

The original solution is chosen to be at h = 0, i.e. v(0) = |ρc|. From
the preceding discussion v′(0) = 0.

Lower dimensional potential:

V4(R) = (2π)7R14∗

(
1

8π2M3
Pl,11

N2
R21 −

2v(h)
R18

)
,

Masses can be read off from the hessian, once the fields are
canonically normalized.
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Perturbative instabilities: presence of tachyons (II)

In particular, consider the following (single) flat torus deformation ϕ

R2ds2T7 = R2∗e2ρ
(
e2ϕdy21 + e−2ϕdy22 +

7∑
i=3

dy2i

)
,

The masses are found to be

m2
ρ =

∂2V4
∂ρ2

∣∣∣∣
ρ=0

=
36
L2∗

> 0 , m2
ϕ =

∂2V4
∂ϕ2

∣∣∣∣
ρ=0

= −42L2
v′′(0)
v(0) .

Importantly, m2
ϕ could be negative!
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Perturbative instabilities: presence of tachyons (III)

In AdS, tachyonic particles might still be fine, provided that they are
above the BF bound [Breitenlohner, Freedman 1982]

m2L2 ≥ −94 .

It is crucial to compute m2
ϕL2 = −42 v

′′(0)
v(0) . For that, we consider

v(x)
v(0) =

∫ ∞

0

ds
s3

[
θ3
(
e−exs

)
θ3
(
e−e−xs

)
θ3
(
e−s)5 − θ2

(
e−exs

)
θ2
(
e−e−xs

)
θ2
(
e−s)5]∫ ∞

0

ds
s3

[
θ3
(
e−s)7 − θ2

(
e−s)7]

Numerically computing the second derivative we find

m2
ϕL2 = −42v

′′(0)
v(0) ≈ −685.46 . . . < −94 ,

The vacua suffer from perturbative instabilities!
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Conclusion and outlook

• Casimir vacua provide a simple setting to look for AdS vacua with
parametric scale separation.

• We studied the simplest compactification of this type, confirming
the presence of both perturbative and non-perturbative instabilities.

• Even though the vacuum is unstable under brane nucleation, an
observer in the bulk can survive up to an AdS time, which is
parametrically larger than the EFT cutoff.

• In the presence of tachyons, the dimensionally reduced EFT lacks a
perturbative vacuum and unitarity is violated.

• Perturbative instabilities might be avoidable in more refined
constructions. We will further explore this in the future.
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