

Instabilities in scale-separated Casimir vacua

Miquel Aparici September 12, 2025

Work done with Ivano Basile and Niccolò Risso

Scale separation

- Scale of new physics is separated from current HEP experiments.
- Scale of HEP ≫ Hubble scale
 - ightarrow Scale separation = Scale of new physics \gg Hubble scale.

Scale separation

- Scale of new physics is separated from current HEP experiments.
- Scale of HEP ≫ Hubble scale
 - → Scale separation = Scale of new physics ≫ Hubble scale.
- In the case of extra dimensions [Courdachet 2023],

Scale separation condition

We say that a vacuum exhibits scale separation if

$$\frac{m_{\rm KK}^2}{|\Lambda|} \gg 1$$

Casimir vacua

- Scale separation is hard to achieve in Freund-Rubin vacua.
- An alternative is Casimir vacua.

[de Luca, de Ponti, Mondino, Tomasiello 2023; Bento and Montero 2025]

- Flux compactification where extra dimensions are compactified in a Riemaniann Flat Manifold → no internal curvature!
- Energy from the fluxes compensated by the Casimir effect.
- Non-vanishing Casimir achieved by breaking SUSY.
- Stability of these vacua is no longer SUSY protected!

Candidate scale-separated Casimir vacua (I)

- We study the simplest possible vacuum construction of this type. [de Luca,de Ponti, Mondino, Tomasiello 2023]
- Consider M-Theory/11d SUGRA compactified on a 7-dimensional square torus

$$ds^2 = L^2 ds_{AdS_4}^2 + R^2 ds_{T^7}^2.$$

- SUSY is broken à la Scherk-Schwarz: periodic BCs for the bosons are chosen along torus cycles and antiperiodic for fermions.
- The Casimir energy can be estimated through a scaling argument.
 - It depends only on the internal manifold.
 - It has an overall negative sign from bosons.

On dimensional grounds

$$S_{\text{Casimir}} = 2|\rho_c| \int d^{11}x \sqrt{-g} R^{-11}$$
.

Candidate scale-separated Casimir vacua (II)

• The volume modulus is stabilized by introducing a four-flux

$$F_4 = f_4 \text{vol}_{AdS_4}$$
,

Quantization of the magnetic dual imposes

$$\frac{1}{(2\pi\ell_{\text{Pl},11})^6} \int_{T^7} F_7 = N \quad \Longrightarrow \quad f_4^2 = \frac{N^2}{4\pi^2} \ell_{\text{Pl},11}^{12} \frac{L^8}{R^{14}}$$

Candidate scale-separated Casimir vacua (II)

• The volume modulus is stabilized by introducing a four-flux

$$F_4 = f_4 \text{vol}_{AdS_4}$$
,

Quantization of the magnetic dual imposes

$$\frac{1}{(2\pi\ell_{\text{Pl},11})^6} \int_{7^7} F_7 = N \quad \Longrightarrow \quad f_4^2 = \frac{N^2}{4\pi^2} \ell_{\text{Pl},11}^{12} \frac{L^8}{R^{14}}$$

Solving the field equations with these sources,

$$L^2 = \ell_{\text{Pl},11}^2 \left(\frac{N}{2\pi}\right)^{\frac{22}{3}} |\rho_c|^{-\frac{14}{3}} \frac{7^{14/3}}{2^{11} \cdot 3^{8/3}} \,, \quad R^{11} = \ell_{\text{Pl},11}^{11} \left(\frac{N}{2\pi}\right)^{\frac{22}{3}} |\rho_c|^{-\frac{14}{3}} \frac{7^{11/3}}{2^{11} \cdot 3^{11/3}} \,.$$

When $N \gg 1$, the vacuum exhibits parametric scale separation

$$\frac{R^2}{L^2} \propto N^{-6} \ll 1$$

Potential instabilities

- We performed a detailed analysis of the stability of this vacuum. In particular, we studied
 - runaway directions? x
 - brane nucleation? ✓
 - tachyons? ✓

Potential instabilities

- We performed a detailed analysis of the stability of this vacuum. In particular, we studied
 - runaway directions? x
 - brane nucleation? ✓
 - tachyons? √
- For these purposes, it is necessary to understand how exactly the Casimir energy is computed. [Dall'Agata, Zwirner 2025]

Computation of the Casimir energy (I)

The Casimir potential can be evaluated from the usual trace-log box expression. For a single massless bosonic field on $\mathbb{R}^d \times T^q$

$$V = \frac{1}{2} \int \frac{d^d p}{(2\pi)^d} \frac{1}{2\pi R} \sum_{\vec{n} \in \mathbb{Z}^q} \log \left(p^2 + \frac{\vec{n}^2}{R^2} \right) = -\frac{\pi^2}{2(2\pi R)^{d+q}} \int_0^\infty \frac{ds}{s^{\frac{d}{2}+1}} \theta_3(e^{-s})^q \,.$$

with
$$\theta_3(e^{-s}) = \sum_n e^{-n^2 s}$$
.

This is a divergent expression. However, divergences cancel after adding contributions from all fields. Final result is

$$V = -\frac{128\pi^2}{2(2\pi R)^{d+q}} \int_0^\infty \frac{ds}{s^{\frac{d}{2}+1}} \left(\theta_3 (e^{-s})^q - \theta_2 (e^{-s})^q\right)$$

Computation of the Casimir energy (II)

Another method is to use $V = \langle T_{00} \rangle$. Contact divergence is regularized using point splitting. For a massless field [Birrel and Davies 1982; Arkani-Hamed, Dubovski, Nicolis, Villadoro 2007]

$$V = \langle T_{00} \rangle = \lim_{x \to x'} \frac{\partial}{\partial x^0} \frac{\partial}{\partial x'^0} G(x, x')$$

where $G(x,x')=\langle \phi(x)\phi(x')\rangle$ is the Green's function. Divergences cancel after adding contributions from all fields.

For a bosonic field, the method of images yields

$$G(x,x') = \frac{1}{(d+q-2)\Omega_{d+q-1}} \sum_{n \in \mathbb{Z}^q} \frac{1}{|x-x'+2\pi R \, \vec{n}|^{d+q-2}}$$

The Casimir potential is

$$V_{Tq}(R) = -\frac{1}{\Omega_{d+q-1}} \sum_{n \neq 0} \frac{1}{|2\pi R \, \vec{n}|^{d+q}} = -\frac{\zeta_{\mathbb{Z}^q}(d+q)}{\Omega_{d+q-1}(2\pi R)^{d+q}}$$

This is for square torus, now we turn to deformations.

Casimir energy on a deformed torus

Consider traceless metric perturbations of the torus:

$$ds^2 = \eta_{\mu\nu}\,dx^\mu\otimes dx^\nu + \left(\delta_{ij} + h_{ij}(y)\right)dy^i\otimes dy^j\,,$$

Casimir energy is computed from GF's and point splitting. For that,

$$L = L_0 + L_1$$
, $G = G_0 + G_1$

where

$$L_0 = \partial_{\mu}\partial^{\mu} + \partial_i\partial^i, \quad L_1 = -\partial_i(h^{ij}\partial_j)$$

Then

$$LG = (L_0 + L_1)(G_0 + G_1) = \delta \rightarrow L_0G_1 = -L_1G_0$$

Solve this expanding in a basis of eigenfunctions of L_0 , $\{f_i(x,y)\}$,

$$G_1 = \sum_{ij} (L_1)_{ij} \frac{f_i(x)^* f_j(y)}{\lambda_i \lambda_j}.$$

Casimir energy on a deformed torus

More explicitly

$$G_1((x,y),(x',y')) = \int \frac{d^d p}{(2\pi)^d} \sum_{n,m \in \mathbb{Z}^q} \frac{1}{(2\pi R)^{2q}} \frac{n_i m_j}{R^2} \frac{\widetilde{h}_{n-m}^{ij} e^{-ip \cdot (x-x') - i\frac{n \cdot y - m \cdot y'}{R}}}{\left(p^2 + \frac{n^2}{R^2}\right) \left(p^2 + \frac{m^2}{R^2}\right)}.$$

where $\widetilde{h}_n \equiv \int_{\mathbb{T}^q} d^q y \, h(y) \, e^{i\frac{n}{R} \cdot y}$ are the Fourier modes of the metric perturbation.

Casimir energy on a deformed torus

More explicitly

$$G_1((x,y),(x',y')) = \int \frac{d^d p}{(2\pi)^d} \sum_{n,m \in \mathbb{Z}^q} \frac{1}{(2\pi R)^{2q}} \frac{n_i m_j}{R^2} \frac{\widetilde{h}_{n-m}^{ij} e^{-ip \cdot (x-x') - i\frac{n \cdot y - m \cdot y'}{R}}}{\left(p^2 + \frac{n^2}{R^2}\right) \left(p^2 + \frac{m^2}{R^2}\right)}.$$

where $\widetilde{h}_n \equiv \int_{\mathbb{T}^q} d^q y \, h(y) \, e^{i \frac{n}{R} \cdot y}$ are the Fourier modes of the metric perturbation. The perturbed Casimir potential is

$$\delta V = -\int \frac{d^d p}{(2\pi)^d} \frac{p^2}{d} \sum_{n,m \in \mathbb{Z}^q} \frac{n_i m_j \tilde{h}_{n-m}^{ij}}{(2\pi R)^{2q} R^2} \frac{e^{-i(n-m) \cdot \frac{\gamma}{R}}}{\left(p^2 + \frac{n^2}{R^2}\right) \left(p^2 + \frac{m^2}{R^2}\right)}.$$

This expression implies that flat deformations are on-shell since, in that case, $\widetilde{h}_{n-m}^{ij}=(2\pi R)^q\,\delta_{n,m}\,h^{ij}$. This, combined with rotational invariance, implies that the result will be $\propto h_i^i=0$.

The vacuum is on-shell

• It is enough that flat deformations vanish for the vacuum to be on-shell. Corrections to the potential take the form

$$\delta V = \sum_{\vec{m}} a_{\vec{m}} h_{\vec{m}} e^{i\frac{\vec{m}\cdot\vec{y}}{R}}.$$

Performing the integral in the internal coordinates

$$\int d^{d+q} x \sum_{\vec{m}} a_{\vec{m}} h_{\vec{m}} e^{i\frac{\vec{m}\cdot\vec{y}}{R}} = \sum_{\vec{m}} a_{\vec{m}} \int d^{d+q} x \, h_{\vec{m}} e^{i\frac{\vec{m}\cdot\vec{y}}{R}} = (2\pi R)^7 a_{\vec{0}} h_{\vec{0}} = 0 \, .$$

 \bullet This argument works provided that the Fourier series of δV is well-defined, i.e. the sequence $\{a_{\vec{m}}\}$ is square-summable. We proved this in the paper. [MA, Basile, Risso 2025]

Non-perturbative instabilities: brane nucleation

- Non-SUSY AdS vacua are expected to decay via flux tunneling. [Horowitz, Orgera, Polchisnki 2007; Brown, Dahlen 2010; Ooguri, Vafa 2016; Antonelli, Basile 2019; Dibitetto, Petri, Schillo 2020]
- M2-brane decay rate per unit volume is proportional to $e^{-S_{M2}^{E}}$, with

$$S_{M2}^{E} = T\Omega_3 L^3 (x^3 - 2\beta \mathcal{V}(x)),$$

and

$$V(x) = \int_0^{\frac{\rho}{L}} d\tilde{\rho} \frac{\tilde{\rho}^3}{\sqrt{1 + \tilde{\rho}^2}} , \ x = \frac{\rho}{L} , \ \beta = \frac{f_4}{2L^3} \frac{\mu}{T}$$

• This decay channel is allowed as long as $\beta > 1$. Here, $\beta = 2\sqrt{2} > 1$.

Non-perturbative instabilities: brane nucleation

- Non-SUSY AdS vacua are expected to decay via flux tunneling. [Horowitz, Orgera, Polchisnki 2007; Brown, Dahlen 2010; Ooguri, Vafa 2016; Antonelli, Basile 2019; Dibitetto, Petri, Schillo 2020]
- M2-brane decay rate per unit volume is proportional to $e^{-S_{M2}^{E}}$, with

$$S_{M2}^{E} = T\Omega_3 L^3 (x^3 - 2\beta \mathcal{V}(x)),$$

and

$$V(x) = \int_0^{\frac{\rho}{L}} d\tilde{\rho} \frac{\tilde{\rho}^3}{\sqrt{1 + \tilde{\rho}^2}} , \ x = \frac{\rho}{L} , \ \beta = \frac{f_4}{2L^3} \frac{\mu}{T}$$

- This decay channel is allowed as long as $\beta > 1$. Here, $\beta = 2\sqrt{2} > 1$.
- The vacuum exhibits non-perturbative instabilities!
- Exponentially suppressed decay channel, $S_{M2}^{E} \sim N^{11}
 ightarrow rac{\Gamma}{ ext{Vol}} \sim e^{-N^{11}}.$
- Brane nucleation near boundary of AdS. Vacuum decays in an AdS time for an observer in the bulk.

Perturbative instabilities: presence of tachyons (I)

Consider the 11d effective potential, now adding the dependence of the Casimir in moduli orthogonal to the volume *h*

$$V_{11}(R_7) = \frac{1}{8\pi^2 M_{Pl,11}^3} \frac{N^2}{R^{14}} - \frac{2v(h)}{R^{11}}.$$

The original solution is chosen to be at h = 0, i.e. $v(0) = |\rho_c|$. From the preceding discussion v'(0) = 0.

Perturbative instabilities: presence of tachyons (I)

Consider the 11d effective potential, now adding the dependence of the Casimir in moduli orthogonal to the volume *h*

$$V_{11}(R_7) = \frac{1}{8\pi^2 M_{Pl,11}^3} \frac{N^2}{R^{14}} - \frac{2v(h)}{R^{11}}.$$

The original solution is chosen to be at h = 0, i.e. $v(0) = |\rho_c|$. From the preceding discussion v'(0) = 0.

Lower dimensional potential:

$$V_4(R) = (2\pi)^7 R_*^{14} \left(\frac{1}{8\pi^2 M_{Pl,11}^3} \frac{N^2}{R^{21}} - \frac{2v(h)}{R^{18}} \right),$$

Masses can be read off from the hessian, once the fields are canonically normalized.

Perturbative instabilities: presence of tachyons (II)

In particular, consider the following (single) flat torus deformation ϕ

$$R^2 ds_{T^7}^2 = R_*^2 e^{2\rho} \left(e^{2\phi} dy_1^2 + e^{-2\phi} dy_2^2 + \sum_{i=3}^7 dy_i^2 \right) \,,$$

The masses are found to be

$$m_{\rho}^2 = \left. \frac{\partial^2 V_4}{\partial \rho^2} \right|_{\rho=0} = \frac{36}{L_*^2} > 0 \,, \quad m_{\phi}^2 = \left. \frac{\partial^2 V_4}{\partial \phi^2} \right|_{\rho=0} = -\frac{42}{L^2} \frac{V''(0)}{V(0)} \,.$$

Importantly, m_{ϕ}^2 could be negative!

Perturbative instabilities: presence of tachyons (III)

In AdS, tachyonic particles might still be fine, provided that they are above the BF bound [Breitenlohner, Freedman 1982]

$$m^2L^2\geq -\frac{9}{4}.$$

It is crucial to compute $m_{\phi}^2 L^2 = -42 \frac{v''(0)}{v(0)}$. For that, we consider

$$\frac{v(x)}{v(0)} = \frac{\int_{0}^{\infty} \frac{ds}{s^{3}} \left[\theta_{3} \left(e^{-e^{x}s} \right) \theta_{3} \left(e^{-e^{-x}s} \right) \theta_{3} \left(e^{-s} \right)^{5} - \theta_{2} \left(e^{-e^{x}s} \right) \theta_{2} \left(e^{-e^{-x}s} \right) \theta_{2} \left(e^{-s} \right)^{5} \right]}{\int_{0}^{\infty} \frac{ds}{s^{3}} \left[\theta_{3} \left(e^{-s} \right)^{7} - \theta_{2} \left(e^{-s} \right)^{7} \right]}$$

Numerically computing the second derivative we find

$$m_{\phi}^2 L^2 = -42 \frac{v''(0)}{v(0)} \approx -685.46... < -\frac{9}{4},$$

The vacua suffer from perturbative instabilities!

Conclusion and outlook

- Casimir vacua provide a simple setting to look for AdS vacua with parametric scale separation.
- We studied the simplest compactification of this type, confirming the presence of both perturbative and non-perturbative instabilities.
- Even though the vacuum is unstable under brane nucleation, an observer in the bulk can survive up to an AdS time, which is parametrically larger than the EFT cutoff.
- In the presence of tachyons, the dimensionally reduced EFT lacks a perturbative vacuum and unitarity is violated.
- Perturbative instabilities might be avoidable in more refined constructions. We will further explore this in the future.