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Background

Theories defined on manifolds with boundaries, particularly
asymptotic boundaries, play an important role in modern field
theory. Gauge field theories in such settings are of special
interest.

The study of asymptotic structures in General Relativity has a
long history [Bondi, Metzner, Sachs, Penrose, Geroch, Ashtekar,...], but has
seen a surge of interest recently.

Since the asymptotic infinity of general relativity is a conformal
(Carrollian) manifold, conformal geometry methods become
especially effective [Fefferman, Graham, Gover, Herfray,... ].
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Background

To work with gauge field theories, it is useful to employ the
Batalin–Vilkovisky (BV) formalism. When locality is taken into
account, it is helpful to reformulate BV in terms of jet bundles
[Henneaux, Barnich, Brandt,...].

More general object: gauge PDE [Barnich, Grigoriev 2010; Grigoriev, Kotov
2019]. They behave well under restriction to submanifolds and
boundaries.

The aim of this talk is to provide a geometric, Gauge PDE
formulation for gauge field theories induced on boundaries and to
illustrate it with the example of asymptotically simple gravity.
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Q-manifold

Definition
A Q-manifold is a Z-graded supermanifold equipped with a degree-one
vector field Q satisfying Q2 = 0.

Example. Given a smooth manifoldX with local coordinates xµ, one
can construct the supermanifold T [1]X with coordinates (xµ, θµ),
where the θµ are anticommuting: θµθν = −θνθµ. It is equipped with
the vector field

dX ≡ θµ
∂

∂xµ
, d2X = 0. (1)

One easily sees that that the complex (C∞(T [1]X), dX) is isomorphic
to the de Rham complex (Λ(X), ddR).
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Gauge PDE
Definition
A gauge PDE is a Z-graded Q-bundle π : (E,Q) → (T [1]X, dX),
π∗ ◦ dX = Q ◦ π∗.

There is a well-defined notion of equivalence between gauge PDEs.
Whenever fiber coordinates forming a contractible pair appear, i.e.
wα, vα: Qwα = vα, the subbundle wα = vα = 0 is equivalent to the
original gauge PDE.

Gauge PDE encodes the complete content of a gauge field
theory at the level of the equations of motion.

But where is the actual PDE?
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Solution space of a gauge PDE

Definition
Solutions of a gauge PDE are sections σ : T [1]X → E satisfying
dXσ∗ = σ∗Q.

Definition
Infinitesimal gauge transformation of a given section σ is defined as

δσ∗ = σ∗[Q,Y ],

where Y , gh(Y ) = −1 is a vertical vector field interpreted as a gauge
parameter
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Gauge PDE on manifold with boundaries
Definition
A gauge PDE with boundary consists of (E,Q, T [1]X,EΣ, T [1]Σ), where
(E,Q, T [1]X) is a gPDE onX and (EΣ, QΣ, T [1]Σ) is a gPDE on the
boundary Σ = ∂X, realised as a sub-gPDE of the pull-back i∗E with
i : T [1]Σ ↪→ T [1]X. In particular, QΣ is the restriction of Q to
EΣ ⊂ i∗E ⊂ E.
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Conformal-like GR as a gPDE
E = T [1]X × F Coordinates on F :

{D(a)gbc, D(a)Ω, D(a)λ,D(a)ξ
b}.

The action of Q is induced from

Qgab = ξcDcgab + gcbDaξ
c + gacDbξ

c + 2λgbc, Qξa = ξbDbξ
a,

QΩ = ξaDaΩ+ λΩ, Qλ = ξaDaλ

and [Q,Da] = 0.

(Almost) Einstein equations in these terms are given by the
Da-prolongations of(

DbDcΩ− Γd
bc[g]DdΩ+ Pbc[g]Ω

)∣∣
t−f

= 0,

1
2D

aΩDaΩ− 1
DΩ

(
DaDaΩ− gbcΓa

bc[g]DaΩ+ P [g]Ω
)
= Λ̃.

(2)

Note thatD(a) lnΩ andD(a)λ form contractible pairs if Ω > 0.
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Reduced conformal-like GR

One can eliminate contractible pairs in the conformal geometry
sector[Boulanger, Erdmenger, 2004]. Fiber coordinates after:

{gab,∇(a)Ω,∇(a)W
b
cde} ∪ {λ,∇aλ, ξ

a,∇aξ
b}.

Restricted to the equation manifold, one obtains

∇(c)(∇a∇bΩ|t−f ) = 0,
1

2
∇aΩ∇bΩ− 1

D
Ω∇a∇aΩ = Λ̃. (3)

Here, the vector fields∇a can be interpreted as a covariant total
derivative.

[∇a,∇b] = −W d
cab∆

c
d − CdabΓ

d. (4)

On the solution space ∇̂aσ
∗ ≡ σ∗∇a – conformal covariant derivative

introduced in [Wünsch, 1986].
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Boundary gPDE for gravity

Let i : T [1]Σ ↪→ T [1]X be the embedding of the boundary in the
spacetime.
Boundary gPDE: subbundle of i∗E specified through the conditions

Ω = 0, ∇aΩ ̸= 0, QΩ = 0. (5)

The first two conditions were already introduced in [Penrose, 1963]; the
third ensures that Q is tangent.
Further elimination of contractible pairs yields the boundary gauge
PDE EB with inclusion b : EB ↪→ E.

Question:

What are the implications of imposing the Einstein equations in
the bulk?

10 / 18



Boundary gPDE for gravity

Let i : T [1]Σ ↪→ T [1]X be the embedding of the boundary in the
spacetime.
Boundary gPDE: subbundle of i∗E specified through the conditions

Ω = 0, ∇aΩ ̸= 0, QΩ = 0. (5)

The first two conditions were already introduced in [Penrose, 1963]; the
third ensures that Q is tangent.
Further elimination of contractible pairs yields the boundary gauge
PDE EB with inclusion b : EB ↪→ E.

Question:

What are the implications of imposing the Einstein equations in
the bulk?

10 / 18



Useful tool – vector fields DA

Splitting the index set a ≡ {Ω, A} one can see that∇Ω is not tangent
to the surface of the boundary conditions.

Remarkably, Einstein’s equations guarantee that the vector fields

D(N)
A ≡ adN∇Ω

(∇A) ≡ [∇Ω, . . . , [∇Ω,∇A]]

are tangent and we will use the same symbol b∗D(N)
A = D(N)

A b∗.

Hence, any expression of the form∇N
Ω∇Af in the bulk on the

boundary can be rewritten as a sum over «subleadings» f (i) ≡ b∗∇i
Ωf :

b∗∇N
Ω∇Af = ∇Af

(N) +
N−1∑
i=0

Ci
ND(N−i)

A f (i)
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Boundary calculus
In the case Λ ̸= 0, using the Bianchi identities and introducing

TAB ≡ WΩAΩB, JABC ≡ WABΩC ,

one can decompose the covariant jets of the Weyl tensor as

{∇(a)Wbcde} =
{
∇(A)WBCDE , ∇(A)JBCD, ∇(A)T

(N)
BC , N ≥ 0

}
.

Theorem (Boundary calculus)
Using the Einstein equations, one can construct an iterative procedure
that expresses the set of functions on EB, {T (N)

AB , J
(N)
ABC |N ̸= D − 3}, in

terms of conformal geometry on the boundary and, for N > D − 3, in
terms of the coordinates T (D−3)

AB . The vector fields DA are likewise
determined through this set of functions and the differential Q.

[Graham, 2008] called the analogues of T (N)
AB with N < D − 3 extended

obstruction tensors.
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On-shell Boundary gPDE for AAdS spacetimes
Using the boundary calculus theorem, the fiber coordinates are

{gAB, ξ
A, ∇Aξ

B, λ, ∇Aλ, ∇(A)W
B
CDE} ∪ {∇(A)T

(D−3)
BC | N ≥ 0}.

The only remaining part of the Einstein equations is

D−4∑
i=0

Ci
D−4D

(D−4−i)
A J (i)A

BC = 0, (6)

∇AT
(D−3)
AB +

D−4∑
i=0

Ci
D−3D(D−3−i)AT

(i)
AB = 0. (7)

By an iterative procedure, one finds that for even-dimensional
boundaries the first equation (6) is precisely the Fefferman–Graham
obstruction equation, expressed entirely in terms of the conformal
geometry sector:

(∇A∇A)
D−5
2 BBC + · · · = 0.
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Neumann data T (D−3)
AB

The second equation (7) is the modified conservation law for the
Neumann data T (D−3)

AB :

∇AT
(D−3)
AB + · · · = 0,

where . . . depends only on the conformal geometry sector.

Under Weyl transformations, T (D−3)
AB transforms as a field of

weight (D − 3), but for even-dimensional boundaries an
additional inhomogeneous term appears. For instance, forD = 3
this is the standard Schwarzian term, while forD = 5 it takes the
form

δT
(2)
AB = γC(CBCA + CACB), (8)

where CBCA is the Cotton tensor.
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Fields on a Gravitational Background: extended GJMS

We consider an additional scalar field of weight∆ in the bulk,
described by the coordinates {∇(a)φ}, subject to conformal-like
Klein–Gordon equations. For Ω > 0, the system reduces to just a
scalar field obeying the Klein–Gordon equation.

Fixingm2 = 2Λ̃∆(∆ + 1−D) and applying the same procedure as
for gravity, we obtain on the boundary coordinates
{∇(A)φ

(N)|N ≥ 0} subject to

c∆,Nφ(N) + (N − 1)Λ̃ b∗∇N−2
Ω ∇A∇Aφ = 0, N ≥ 1, (9)

where c∆,N ≡ 2∆ + 1−D +N . The interpretation of these
equations clearly depends on the zeros of c∆,N .
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Fields on a Gravitational Background: (extended)
GJMS
In the case∆ =

D − 1

2
− l, l ∈ N, the boundary theory contains two

scalar fields with the corresponding coordinates {∇(A)φ
(0),∇(A)φ

(2l)}
and the leading field satisfies

b∗∇2l−2
Ω ∇A∇Aφ = 0.

For example, for l = 3 this expands to

(∇A∇A)3φ(0) + 8Λ̃−2T
(2)
AB∇

A∇Bφ(0) = 0. (10)

AtD = 5, this equation involves subleading gravitational term
T
(D−3)
AB ≡ T

(2)
AB and thus is not determined by conformal geometry

alone.

ForD > 5, we have T (2)
AB = 2Λ̃2

D−5BAB, and this equation becomes the
standard third GJMS equation expressed in terms of Wünsch
derivatives.
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Conclusions
What has been shown here:

Geometric (in the sense of PDE geometry),
coordinate-independent, BV-BRST approach to the boundary
structure of gravity on the level of equations of motion.
For Λ ̸= 0: effective calculus for computing obstruction
equations for gravity and fields on a gravitational background,
formulated automatically in terms of conformal covariant
derivatives, usable to obtain (extended) GJMS operators,
conformally-invariant (higher) Yang–Mills equations, . . . .

What has not been shown here:
Lagrangian generalization: effective calculus for obtaining
conformally-invariant (first-order) actions for obstruction
equations; BV-BRST version of the covariant phase space
formalism, asymptotic charges, . . . .
Case Λ = 0: asymptotic symmetries, BMS group [Grigoriev, M.M.
2310.09637].
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8D higher conformal Yang-Mills equation
∇̄α

(F
(4)|I
αγ ) + 2nΩP

αβ
(3nΩ(CβδαF

I|δ
γ + CβδγF

I|
α

δ
) + 3[J

(1)
β

, F
I
αγ ] + 6∇̄βF

(2)|I
αγ +

+6P
δ
β (∇̄δF

I
αγ − 12nΩ(gδαJ

(1)|I
γ − gδγJ

(1)|I
α )) − 4(gβαJ

(3)|I
γ − gβγJ

(3)|I
α ))−

−J
(3)β

γ
α
F

I
αβ +

3

2
T

(2)|βα∇̄βF
I
αγ + [J

(3)α
, Fαγ ]

I
+

+6(−J
(1)|σ

γ
α
F

(2)
ασ + T

(2)|ασ
(
1

2
∇̄σF

I
αγ − gσαJ

(1)|I
γ + gσγJ

(1)|I
α ) + [J

(1)|α
, F

(2)
αγ ]

I
) = 0

(11)

T
(2)
αβ

= −
nΩ

2
Bαβ ,

J
(1)
γαβ

= − nΩCγαβ ,

J
(1)|I
β

=
nΩ

4
∇̄α

F
I
αβ ,

F
(2)|I
ασ =∇̄αJ

(1)|I
σ + Pα

γ
F

I
γδ − (α ↔ σ),

J
(3)|I
β

=
3nΩ

2
(∇̄α

F
I(2)
αβ

+ nΩP
αγ∇̄γF

I
αβ−

− 2nΩP
αγ

(gγαJ
I|(1)
β

− gγβJ
(1)|I
α ) + [J

(1)
α , F

α
β ]

I
+ nΩC

αγ
βF

I
αγ),

J
(3)

δγα =
3

2
(∇̄δT

(2)
αγ + 2nΩPδ

σ
(J

(1)
σγα + J

(1)
σαγ) − (δ ↔ σ)),

F
(4)|I
αγ =∇̄αJ

(3)|I
γ + 2nΩ(∇̄αJ

(1)|I
γ + F

I
αγ) + 3F

(2)|I
αγ +

+3(−J
(1)
δγα

J
(1)|Iδ

+
nΩ

2
T

(2)
αδ

F
Iδ

γ + [J
(1)
α , J

(1)
γ ]

I
) − (α ↔ γ)

(12)

where F I
αβ is the curvature tensor for the Yang–Mills sector, Pαβ ,Cαβγ , andBαβ are the Schouten, Cotton, and Bach

tensors respectively, ∇̄α is the covariant derivative induced from the Levi-Civita and Yang–Mills derivatives, nΩ is a certain
linear function of the cosmological constant, and [·, ·] denotes the commutator in the algebra underlying the Yang–Mills theory.18 / 18


	Appendix

