Some Properties and Uses of the Species Scale

Luis Ibáñez, IFT UAM-CSIC, Madrid Corfu, September 11, 2025

Honouring Dieter!!

Honouring Dieter!!

CERN

36 years ago....

(he was 33)

Cortu

13 years ago....
(he was 55)

CORFU 2011

Honouring Dieter!!

Citation Summary

But collaborating all the time between Munich and M drid !!!

At IFT.....

S-duality friends

....and elsewhere..

Saclay

2 years ago....

UNPRECEDENTED SYNERGY: COMPLETING THE PUZZLE

This will be possible only by the complementary expertise and the synergy between the 4 PIs and their teams

Congratulaions in your FAXE retirement!!

Some Properties and Uses of the Species Scale

Based on:

Calderon-Infante, Castellano, Herráez, Ibáñez, hep-th/2306.16450 Castellano, Herráez, Ibáñez, hep-th/2310.07708

Aoufia, Castellano, Ibáñez, hep-th/2506.03253

G.F. Casas, Ibáñez, hep-th/2507.05345

Some Properties and Uses of the Species Scale

Based on:

Calderon-Infante, Castellano, Herráez, Ibáñez, hep-th/2306.16450

Castellano, Herráez, Ibáñez, hep-th/2310.07708

Aoufia, Castellano, Ibáñez, hep-th/2506.03253

G.F. Casas, Ibáñez, hep-th/2507.05345

The Swampland Distance Conjecture (SDC)

Starting from a point P in moduli space, and moving to a point @ an infinite distance away, there appears a tower of states which becomes exponentially massless according to

$$M(Q) \sim M(P) e^{-\alpha d(P,Q)}$$

 $\alpha \sim 1$

Ooguri, Vafa 2006.....and many more....

Towers

as $\Delta \phi \rightarrow \infty$ exponentially massless towers of states appear

• 1) KK-like, E.g. decompactification of p dimensions

Effective multiple KK tower:

$$m_n = n^{1/p} m_0 \; ; \; \Lambda_{UV} \simeq N^{1/p} m_0$$

 $N = number \ states \ below \ \Lambda_{QG}$

• 2) String tower

$$\underset{p=\infty}{\text{Strings}}$$

 $\Lambda_{UV} \simeq M_{string} = m_0$

Only these two options appear.

Tested in many string theory vacua

Lee, Lerche, Weigand, 2019

The Species Scale

The QG-cut-off in the presence of multiple species N is NOT the Planck scale but rather:

$$\Lambda_{QG} \simeq rac{M_{Pl,d}}{N^{rac{1}{d-2}}}$$

Dvali, Redi, 2007

Dvali, Gomez, 2010

The cut-off thus depends on the number of states becoming light

$$m_n = n^{1/p} m_0 \longrightarrow \Lambda_{QG} = N^{1/p} m_0$$

Combined with Species Scale definition:

$$\Lambda_{QG} \simeq m_0^{rac{p}{d-2+p}}$$

Note for strings
$$p = \infty$$
 and $\Lambda_{QG} \simeq M_s$

The Species convex hull

** One can define convex hull vectors for the masses of the towers as

Calderon, Uranga, Valenzuela, 2020

$$ec{z}_t = -rac{ec{
abla} m_t}{m_t}$$
 and exponential decay rate along $ec{n}$ $lpha_t = ec{n}.ec{z}_t$

Then it was conjectured as the Convex hull SDC:

Etheredge et al. 2022

$$\alpha \geq \frac{1}{\sqrt{d-2}}$$
 $\alpha = max \ \alpha_t$

** One can define convex hull vectors for the species scale (including all towers and bulk)

$$ec{Z} = -rac{ec{
abla}\Lambda}{\Lambda}$$
 and exponential rate $\lambda = ec{n}.ec{Z}$

Then it was conjectured as the Species Scale Convex hull SSDC:

$$\lambda \geq \frac{1}{\sqrt{(d-1)(d-2)}}$$
 and $\lambda \leq \frac{1}{\sqrt{d-2}}$

Calderon, Castellano, Herraez, L. 7. 2023

Example: maximal sugra in 9d

$M-th \ on \ T^2$

$$ds_{11}^2 = e^{-2U/7}ds_9^2 + g_{mn}dz^m dz^n$$

$$g_{mn} = \frac{e^U}{\tau_2} \left(\begin{array}{cc} 1 & \tau_1 \\ \tau_1 & |\tau|^2 \end{array} \right)$$

$$ds_{11}^2 = e^{-2U/7} ds_9^2 + g_{mn} dz^m dz^n \qquad g_{mn} = \frac{e^U}{\tau_2} \begin{pmatrix} 1 & \tau_1 \\ \tau_1 & |\tau|^2 \end{pmatrix} \qquad U = \kappa_9 \sqrt{\frac{14}{9}} \,\hat{U} \,, \quad \tau_2 = \kappa_9 \, e^{\sqrt{2}\,\hat{\tau}}$$

$$\vec{z}_t = -\frac{\nabla m_t}{m_t}$$

$$\vec{Z} = -\frac{\vec{\nabla}\Lambda}{\Lambda}$$

Figure 1: Convex hull diagram for the species scale in M-theory on T^2 in the plane $(\hat{U}, \hat{\tau}) = (\frac{3}{\sqrt{14}} \log \mathcal{V}_2, \frac{1}{\sqrt{2}} \log \tau_2)$. The blue dots in the facets represent the single KK towers, whereas the red and purple dots at the vertices represent string oscillator and double KK towers. The self-dual line $\hat{\tau} = 0$ is fixed under the \mathbb{Z}_2 remnant symmetry.

The Species Scale and the QG EFT expansion

If Λ_{QG} is the QG cut-off it should appear supressing higher dimensional BPS operators in QG, e.g. higher derivative terms like

v.d. Heisteeg, Vafa, Wiesner, Wu 2022-2023 Castellano, Herraez, L. I. 2023

$$S_{EFT,D} \ = \ \int d^Dx \frac{1}{2\kappa_D^2} \left(\mathcal{R} \ + \ \sum_n \frac{\mathcal{O}_n(\mathcal{R})}{\Lambda^{n-2}} \right) \ + \dots \ , \qquad \text{FT} \\ \int_{d^dx \sqrt{-g}} \sum_{n \geq d} \frac{\mathcal{O}_n(\mathcal{R})}{M_{\mathsf{t}}^{n-d}} \right)$$

- - 'Double expansion' Calderon, Castellano, Herraez. 2025

- Alternative definition of species scale.
- In particular in maximal supergravity the operators:

$$S_{BPS} = \frac{1}{2\kappa_d^2} \int d^d x \sqrt{-g} \mathcal{F}(\phi) \frac{\mathcal{R}^4}{M_{p,d}^6}$$

$$\Lambda_{QG} = M_{p,d} \mathcal{F}^{-\frac{1}{6}}$$

Field-dependent Species Scale in terms of field dependent Wilson coefficients Also give information about the bulk

Example: 10D Type IIB

• The Wilson coefficients have been computed in the literature from 4-

graviton scattering

[Kiritsis, Pioline '97; Green, Gutperle '97; Green, Gutperle, Vanhove, Gatto '99; Green, Sethi '99; Obers, Piolone '00; Green, Vanhove '06; Lambert, West '07; Green, Miller, Russo, Vanhove '10; Green, Russo, Vanhove '10]

$$t_8 t_8 \mathcal{R}^4 \equiv t^{\mu_1 \dots \mu_8} t_{\nu_1 \dots \nu_8} \mathcal{R}^{\nu_1 \nu_2}_{\mu_1 \mu_2} \dots \mathcal{R}^{\nu_7 \nu_8}_{\mu_7 \mu_8}$$

$$S_{\text{IIB}}^{10\text{d}} \supset \frac{1}{\ell_{10}^2} \int d^{10}x \sqrt{-g} \, E_{3/2}^{sl_2}(\tau, \bar{\tau}) \, t_8 t_8 \mathcal{R}^4$$

 $E_{3/2}^{sl2}(\tau)$ is the order -3/2 non-holomorphic Eisenstein form in $SL(2, \mathbf{Z})$

$$\Lambda_{IIB} = \frac{M_{p,10}}{E_{3/2}^{1/6}}$$

$$E_{3/2}^{sl_2} = 2\zeta(3)\tau_2^{3/2} + 4\zeta(2)\tau_2^{-1/2} + \mathcal{O}\left(e^{-2\pi\tau_2}\right)$$

$$\Lambda_{\rm sp} \sim m_s = \frac{M_{\rm Pl, 10}}{(4\pi\tau_2^2)^{1/8}}$$

Matches known expression

Species scale is the string scale in this case

Example : 9d $M - th \ on \ T^2$

The Wilson coefficients have been computed to be

$$S_{R^4}^{9d} = \frac{1}{\ell_9} \int d^9 x \sqrt{-g} \left(\frac{2\pi^2}{3} \mathcal{V}_2^{6/7} + \mathcal{V}_2^{-9/14} E_{3/2}^{sl_2}(\tau, \bar{\tau}) \right) t_8 t_8 R^4 \qquad \mathcal{V}_2 = e^U$$

$$\Lambda_{\text{QG}} = \left(\frac{2\pi^2}{3} \mathcal{V}_2^{6/7} + \mathcal{V}_2^{-9/14} E_{3/2}^{sl_2}(\tau)\right)^{-1/6}$$

Diferent limits: 11d M-th,10d Type II and string limis recovered

The case of 4d: IIA on a CY

$$S_{\mathcal{R}^2} = rac{1}{2\kappa_4^2} \int \mathrm{d}^d x \sqrt{-g} \,\, \mathscr{F}_{\mathrm{4d}} \, rac{\mathcal{R}^2}{M_{\mathrm{Pl};\,4}^2} \,\,$$
 v.d. Heisteeg, Vafa, Wiesner, Wu 2022-2023

 $Vec-moduli\ dependence\ of\ \mathcal{F}_{4d}\ from\ toplogical\ string\ computation$

for large overall Kahler moduli $s \to \infty$

$$\mathcal{F}_{4d} \simeq \frac{2\pi c_2}{12} s - \beta log(s) + \tilde{N}_0 + \mathcal{O}(s^{-1})$$
 linear

 $c_2 = integrated \ 2nd \ Chern \ class$

$$\longrightarrow \Lambda_{QG} \simeq \frac{M_{p,4}}{\mathcal{F}_{4d}^{1/2}} \simeq \frac{M_{p,4}}{s^{1/2}}$$

• Example: Enriques CY, $(K3 imes T^2)/Z_2$

$$\mathcal{F} = -6log(2t|\eta(T)|^4) + \tilde{N}_0$$

Torus $SL(2, \mathbf{Z})$ modular invariant

Qualitative shape of the Species Scale

 $maximum \ \Lambda_{QG} \ \longrightarrow \ minimum \ number \ of \ states \ \sim \ \mathcal{F}$ 'Desert points'

Laplacians and the species scale

Aoufia, Castellano, L. I., 2025

$$S_{\text{BPS}} = \frac{1}{2\kappa_d^2} \int d^d x \sqrt{-g} \, \mathscr{F}_n^{(d)}(\phi^i) \, \frac{\mathcal{R}^{2n}}{M_{\text{Pl};d}^{4n-2}}, \quad n = 1, 2$$

• It has been found that Wilson coefficients for 32, 16 and 8 SUSY's obey a Laplace-like equation of the form

$$\mathcal{D}^2_{\mathcal{M}} \mathcal{F}^{(d)}_n = \eta_d \mathcal{F}^{(d)}_n$$
 $\mathcal{D}^2_{\mathcal{M}} = \Delta_{\mathcal{M}} \ (modulo \ subtleties)$

• It was already known for maximal sugra with: $\eta_d = \frac{3}{d-2}(11-d)(d-8)$

M.B. Gteen et al. 2010

- We found such Laplacian equations:
 - i)Related to some known Swampland constraints
 - ii) Also appear with less, 16,8 SUSY's

E.g. 10d Type IIB

Aoufia, Castellano, L. 7., 2025

$$\Delta \mathcal{F}(\tau, \bar{\tau}) = \frac{3}{4} \, \mathcal{F}(\tau, \bar{\tau})$$

• Ansatz: $\mathcal{F} = \tau_2^{\lambda}$

$$\Delta = \tau_2^2 \partial_{\tau_2}^2$$

$$\lambda(\lambda - 1) = \frac{3}{4} \longrightarrow \lambda_{1,2} = 3/2, -1/2$$

• Matches with $E_{3/2}$ expansion

$$E_{3/2}^{sl_2} = 2\zeta(3)\tau_2^{3/2} + 4\zeta(2)\tau_2^{-1/2} + \mathcal{O}\left(e^{-2\pi\tau_2}\right)$$

And predicts for large dilaton

$$\Lambda_{QG} \simeq \frac{M_{p10}}{\mathcal{F}^{1/6}} \simeq \frac{M_{p10}}{\tau_2^4} \sim M_{string}$$

In canonical basis yields the exponential decay of the distance conjecture

$$9d: M-th \ on \ T^2$$

Aoufia, Castellano, L. 9., 2025

$$\mathcal{F}(U, \tilde{\tau}) \sim e^{Ux + \tilde{\tau}y}$$

 $Laplace \longrightarrow circle\ constraint\ on\ rates$

Species Scale convex hull

Laplace condition for decay rates

$$circle \ \lambda \ = \ \frac{1}{\sqrt{d-2}}$$

Predicts Swampland Bound we mentioned

Laplace conditions on decay rates are spherical surfaces

Laplacian for 8 supercharges

Aoufia, Castellano, L. 9., 2025

•d=6 $\mathcal{N}=(1,0) \ sugra$ Moduli space spanned by scalars in tensor multiplets

It is a slice in $SO(1, n_T)/SO(n_T)$

$$\Delta_{\mathcal{M}}\mathcal{F} = n_T \mathcal{F}$$
 $n_T = number of tensors$

•d=5 M-th on a CY, Laplacian more subtle

$$\mathcal{D}^2 \, \mathcal{F}_5 = \frac{1}{6} (h^{1,1} - 1) \, \mathcal{F}_5$$

•d=4 e.g. Type IIA on a CY. One has in vector moduli space (up to IR threshold corrections)

$$\Delta_{\mathcal{M}}\mathcal{F}=0$$
 (using axion independence at large moduli)

Implies linear large modulus behaviour for any CY

$$\mathcal{F}(z,\bar{z}) \sim Imz + ...$$
 $\Lambda_{QG} \sim \mathcal{F}^{-1/2} \sim \frac{1}{\sqrt{Imz}}$

Why this Laplace equation?

The Species Scale as an EFT cut-off

 One may consider the species scale as a (field-dependent)cut-off in certain EFT computations

Will consider $\mathcal{N} = 1, 2$ 4d theories

- ullet In certain cases (like vacuum energy) the relevant cut-off is $\;\Lambda_{QG}$
- We will consider contributions to the vacuum energy once SUSY is broken taking Λ_{QG} as the cut-off (See A. Herraez talk)

Vacuum energy in GKP models

• These are N=1 4d 'no-scale' IIB vacua, SUSY broken in Minkowski (at leading order)

- We would now consider the Y_a fixed and consider one-loop corrections to the vacuum energy depending on the no-scale Z_i
- This is 'sugra mediated' SUSY breaking

$$V_{total}^{eff} = \frac{1}{(8\pi)^2} \left(-\text{Str} \mathcal{M}^0 \Lambda^4 + 2 \, \text{Str} \mathcal{M}^2 \Lambda^2 - 2 \, \text{Str} \mathcal{M}^4 \log \left(\frac{\Lambda}{\mathcal{M}} \right) \right)$$

SUSY

subleading

$$Str \mathcal{M}^a = \sum (-1)^{2j_n} (2j_n + 1)(m_n)^a, \quad a = 0, 2, 4,$$

$$V_{1-loop}^{eff} \simeq \frac{2}{(8\pi)^2} (Str\mathcal{M}_{tower}^2 + Str\mathcal{M}_{light}^2) \Lambda^2$$

G.F. Casas, L.I., 2025

 $\Lambda - independent$

$$Str\mathcal{M}_{light}^2 = -4m_{3/2}^2(N_0+2) \Lambda^2$$

$$Str\mathcal{M}_{light}^2 = -4m_{3/2}^2(N_0 + 2) \Lambda^2$$
 $Str\mathcal{M}_{tower}^2 \Lambda^2 \simeq Nm_{3/2}^2 \Lambda^2 \simeq m_{3/2}^2 M_p^2$

Ferrara, v. Proeyen. 2016

$$V_{1-loop} \simeq \frac{m_{3/2}^2 M_{\rm P}^2}{(8\pi)^2} \left(c - \frac{\eta}{N(z_i, \bar{z}_{\bar{i}})} \right) ; \quad \eta = 8 \left(N_0 + 2 \right)$$

$$\Lambda^2 \simeq \frac{M_p^2}{N} \sim \frac{M_p^2}{Imz}$$

no-scale moduli dynamicaly sent to

$$z \sim 1$$

where N is minimal

G.F. Casas, L. 9., 2025

$$Str\mathcal{M}_{light}^2 = -4m_{3/2}^2(N_0+2) \Lambda^2$$

$$Str\mathcal{M}_{light}^2 = -4m_{3/2}^2(N_0 + 2) \Lambda^2$$
 $Str\mathcal{M}_{tower}^2 \Lambda^2 \simeq Nm_{3/2}^2 \Lambda^2 \simeq m_{3/2}^2 M_p^2$

$$V_{1-loop} \simeq \frac{m_{3/2}^2 M_{\rm P}^2}{(8\pi)^2} \left(c - \frac{\eta}{N(z_i, \bar{z}_{\bar{i}})} \right) ; \quad \eta = 8 \left(N_0 + 2 \right)$$

In no-scale models the gravitino decreases like

$$m_{3/2}^2 \simeq \frac{|W_0|^2}{t^\alpha}$$

as expected in QG

G.F. Casas, L.T., 2025

The scalar potential and the Species Scale

- One can obtain a more general expression for the scalar potential in terms of the Species Scale
- One computes the one loop correction to the metric $\delta g_{iar{i}}$

As in 'emergence' computations

Grimm, Palti, Valenzuela, 2018

Heidenreich et al. 2018

Castellano, Herraez, 2022

Blumenhagen, Cribiori, Gligovic,

Paraskevopoulou, 2023

(But 'strong emergence' not assumed)

$$\delta g_{i\bar{i}} \simeq \frac{1}{(8\pi)^2} \sum_{n} n^2 (\partial_i m_{0i}) (\partial_{\bar{i}} m_{0i}) \simeq \frac{M_p^2}{(8\pi)^2} \frac{(\partial_i m_{0i}) (\partial_{\bar{i}} m_{0i})}{m_{0i}^2} \simeq \frac{M_p^2}{(8\pi)^2} \frac{(\partial_i \Lambda) (\partial_{\bar{i}} \Lambda)}{\Lambda^2}$$

$$recall \ \Lambda \simeq m_0^{\frac{p}{d-2+p}}$$

$$Z_i = (\eta_i + iz_i) + \theta \tilde{z}_i + \theta^2 F_i$$

$$\delta \mathcal{L}_{kin} = \left[\delta g_{i\bar{i}} Z^i \overline{Z}^{\bar{i}} \right]_D \simeq \left[\frac{4M_{\rm P}^2}{(8\pi)^2} \frac{(\partial_i \Lambda)(\partial_{\bar{i}} \Lambda)}{\Lambda^2} |Z^i \overline{Z}^{\bar{i}} \right]_D$$

$$Z^{i} = \theta^{2} F^{i}$$

$$g_{i\bar{i}} |F^{i}|^{2} = 3m_{3/2}^{2}$$

$$\partial_i \Lambda = 0$$
 at the desert points $z_i \sim \mathcal{O}(1)$

recall it goes to constant for large moduli

Same structure as previous computation but gives extrapolation to the bulk

Local minima in Minkowski

$$Z_i = (\eta_i + iz_i) + \theta \tilde{z}_i + \theta^2 F_i$$

$$\delta \mathcal{L}_{kin} = \left[\delta g_{i\bar{i}} Z^i \overline{Z}^{\bar{i}} \right]_D \simeq \left[\frac{4M_{\rm P}^2}{(8\pi)^2} \, \frac{(\partial_i \Lambda)(\partial_{\bar{i}} \Lambda)}{\Lambda^2} \, |Z^i \overline{Z}^{\bar{i}} \right]_D$$

$$Z^{i} = \theta^{2} F^{i}$$

$$g_{i\bar{i}} |F^{i}|^{2} = 3m_{3/2}^{2}$$

$$Z^{i} = \theta^{2} F^{i}$$

$$g_{i\bar{i}} |F^{i}|^{2} = 3m_{3/2}^{2}$$

$$V_{1-loop} \simeq \frac{m_{3/2}^{2} M_{p}^{2}}{(8\pi)^{2}} g^{i\bar{i}} \frac{(\partial_{i} \Lambda)(\partial_{\bar{i}} \Lambda)}{\Lambda^{2}}$$

$$\partial_i \Lambda = 0$$
 at the desert points $z_i \sim \mathcal{O}(1)$

recall it goes to constant for large moduli

Same structure as previous computation but gives extrapolation to the bulk

Local minima in Minkowski

Possible aplication to moduli fixing

- N=1, 4d Type IIA(B) orientifolds with fluxes
- Y_a moduli fixed by fluxes (e.g. c.s. fields in IIB)
- Z_i massless no-scale moduli fixed at one-loop as above. Potentiall all moduli fixed.
- A practical issue is that we do not know in detail the structure of the field dependent Species Scale for general CY vacua, particularly in the bulk, except few cases
- Note these corrections are larger than those computed in the literature
 in e.g. the KKLT and LVS at large moduli
- Seems compatible with one-loop string computations by Berg, Haack, Kang, Sjors in 2014: hep-th/1407.0027

Example: $Z_2 \times Z_2$ Type IIA toroidal orientifold

• Species scale depending on vector moduli in parent N=2 CY Known for $\,T^2$

$$\Lambda^2 = (-6log(ImT|\eta(T)|^4) + \tilde{N}_0)^{-1}$$

- Orientifold inherits same structure
- Example of flux superpotential (metric fluxes):

Villadoro, Zwirner, 2005

$$W = S(a_2T_2 + a_3T_3) + U_1(b_{21}T_2 + b_{31}T_3)$$

Camara, Font, L. 9. 2005

$$T_1, U_2, U_3$$
 are $no-scale\ moduli$

• t_1 gets a one-loop potential. Setting u_2,u_3 at their desert points

duality invariant actions:

recent review

Cribiori, Lüst, 2024

Conclusions

- Species Scale is a useful tool to check asymptotic properties of string vacua
- It is defined over all moduli space of a given vacuum, and not only along asymptotic tower directions
- Explicit field dependent Species Scale functions may be obtained in some case from higher dimensional protected operators
 - Associated Wilson coefficients (related to number of species) verify a Laplace-like equation. Formally somewhat analogous to Heat Equation......
 - May be used as a field dependent cut-off in the EFT. Doing this for the one-loop potential of no-scale moduli in GKP-like of scenarios, leads to potentials with minima at the 'desert points' and dS maxima. Could be very relevant for the moduli fixing issue.
- Full string computation would be important to confirm this behaviour

Thanks a lot Dieter for your friendship and your outstanding Physics!!

