

The Gravitino and the Extra Dimensions

WIP with M. Scalisi and D. Lüst

Leonardo Bersigotti

Corfu2025: Workshop on Quantum Gravity and Strings
September 11, 2025

In this talk:

- 1. Introduction
 - Main goal and motivations
 - Connecting $m_{3/2}$ with Extra Dimensions
 - Setup
- 2. Results

Introduction

Main goal:

Quantify the connection between the supersymmetry (SUSY) breaking scale M_{SUSY} and the features of the extra dimensions (EDs).

Motivations:

• Both SUSY and extra dimensions EDs are possible predictions of superstring theory. The absence of their experimental detection leads to bounds.

For the scale of SUSY breaking M_{SUSY} :

 $M_{SUSY} > \mathcal{O}(10) \, TeV$

Based on LHC results showing no evidence of superpartners.

[Particle Data Group '22]

For the scale *l* at which EDs are compactified:

 $l < 38.6 \,\mu m$

Derived from tests of Newton's law and no deviations detected.

[Lee, Adelberger, Cook, Fleisher, Heckel '20]

Introduction

2

Main goal:

Quantify the connection between the supersymmetry (SUSY) breaking scale M_{SUSY} and the features of the extra dimensions (EDs).

Motivations:

 Historically, to solve the electroweak hierarchy problem it was considered to restore SUSY at low scales or to lower the higher dimensional Planck mass, i.e.:

 $M_{SUSY} \sim TeV$ scale

or

two ~millimeter-sized EDs in the ADD model.

[Arkani-Hamed, Dimopoulos, Dvali '98]

[Weinberg's textbook]

Recently, the Dark Dimension scenario (DD) linked one ~micron-sized ED to the small cosmological constant by extending the Anti de-Sitter Distance Conjecture (ADC) to the de-Sitter case within the Swampland Program. In this scenario, the Gravitino Conjecture (GC) was also invoked to connect a TeV-scale SUSY breaking to the cosmological constant.

[Vafa '05]; [Lüst, Palti, Vafa '19]; [Cribiori, Lüst, Scalisi '21]; [Castellano, Font, Herraez, Ibañez '21]; [Montero, Vafa, Valenzuela '22]; [Anchordoqui, Antoniadis, Cribiori, Lüst, Scalisi '23]

MAX-PLANCK-INSTITUT FÜR PHYSIK

Introduction - why gravitino?

• The gravitino is a key-particle to explore Quantum Gravity and in a quasi-flat spacetime its mass $m_{3/2}$ is related to M_{SUSY} as:

$$M_{SUSY}^2 \sim m_{3/2} M_{pl} .$$

Gravitino Conjecture:

In Planck units, the limit of **small gravitino mass** $m_{3/2} \rightarrow 0$ always corresponds to the **massless limit of an infinite tower of states**, yielding the breakdown of the EFT.

[Cribiori, Lüst, Scalisi '21] [Castellano, Font, Herraez, Ibañez '21]

• The gravitino mass $m_{3/2}$ is linked to the KK scale (in Planck units) as:

$$m_{KK} \sim (m_{3/2})^n$$
 is an $\mathcal{O}(1)$ parameter.

In DD scenario, assuming (dS)ADC and GC we have:

one ~micron-sized ED \iff small cosmological constant \iff M_{SUSY} at TeV

Infinite distance limits probed by (dS)**ADC** and the **GC could be different,** e.g. for $\mathcal{N}=1$ SUGRA EFTs with nearly-flat scalar potential.

- ADC: Interpreting Λ (the cosmological constant) as a metric parameter, it gives information about the motion in the geometric space of metrics, ADC claims that the limit $\Lambda \to 0$ is at infinite-distance and is related to an infinite tower of states with masses $m \sim |\Lambda|^{\alpha}$; with $\alpha \sim \mathcal{O}(1)$.
- Our proposal is to use **GC** to connect the number p of mesoscopic EDs at size l to $m_{3/2}$ (i.e. M_{SUSY}).

$$l = m_{KK}^{-1}$$

Setup

- We work on 4d $\mathcal{N}=1$ Supergravity from type IIA/IIB Calabi-Yau orientifold compactification, where the volume of the internal manifold can be approximated by the one of a p-cycle, \mathscr{V}_p , whose p directions are compactified at the same scale l. $l=m_{KK}^{-1}$
 - l is large, then \mathcal{V}_p is large. The others 6-p directions remain small.
 - SUSY is broken, say by F-term.
 - Universal perturbativity condition $g_s \lesssim 1$, where g_s is the 10-dimensional dilaton/string coupling.

In the large volume/large complex structure limit of type IIA/IIB this reads differently [Font, Herráez, Ibáñez '19]

 $g_{(4)} \lesssim 1$

IIB: g_s

Setup

- We work on 4d $\mathcal{N}=1$ Supergravity from type IIA/IIB Calabi-Yau orientifold compactification, where the volume of the internal manifold can be approximated by the one of a p-cycle, \mathscr{V}_p , whose p directions are compactified at the same scale l. $l=m_{KK}^{-1}$
 - l is large, then \mathcal{V}_p is large. The others 6-p directions remain small.
 - · SUSY is broken, say by F-term.
 - Universal perturbativity condition $g_s \lesssim 1$, where g_s is the 10-dimensional dilaton/string coupling.
- We refine **GC** relation $m_{KK} \sim (m_{3/2})^n$ by finding by finding bounds for the parameter n in terms of the number p of large EDs.
- Finally, we present **phenomenological scenarios** relating sections of the parameter spaces of $m_{3/2}$ and l, at varying p.

1. Introduction

- 2. Results
 - Supergravity with large p-cycle
 - Bounds on the Gravitino Conjecture from large EDs
 - Phenomenological scenarios

Supergravity with large p-cycle

- We divided the results into three parts:
- 1. **Kähler potential modification** when the volume of the internal manifold is dominated by \mathcal{V}_p :

IIA-like:
$$K \simeq -\frac{6}{p} \ln \mathcal{V}_p^{(E)} + \dots$$
 IIB-like: $K \simeq -\frac{12}{p} \ln \mathcal{V}_p^{(E)} + \dots$

Where (E) means Einstein frame and the dots represent **dilaton-dependent** factors.

This is obtained generalising the usual two-cycle t^i / four-cycle τ^k dependence of the internal volume in type IIA/IIB cases:

$$\mathscr{V}_p \sim f_{p/2}(t^i)$$

$$\mathcal{V}_p \sim f_{p/4}(\tau^k)$$

Supergravity with large p-cycle

- We divided the results into three parts:
- 1. **Kähler potential modification** when the volume of the internal manifold is dominated by \mathcal{V}_p :

IIA-like:
$$K \simeq -\frac{6}{p} \ln \mathcal{V}_p^{(E)} + \dots$$
 IIB-like: $K \simeq -\frac{12}{p} \ln \mathcal{V}_p^{(E)} + \dots$

Where (E) means Einstein frame and the dots represent **dilaton-dependent** factors.

• The superpotential is assumed at $\partial V/\partial \phi = 0$ as $\langle W \rangle \sim constant$.

Bounds on the GC from large EDs MAX-PLANCK-IN

We find **explicit relations between** $m_{3/2}, m_{KK}$, and ${\mathscr V}_p$:

| IIA-like:
$$\left(\frac{m_{KK}}{M_{P,(4)}}\right) = \mathscr{V}_p^{-\frac{1}{p}} g_{(4)}$$
, | IIB-like: $\left(\frac{m_{KK}}{M_{P,(4)}}\right) = \mathscr{V}_p^{-\frac{1}{p}-\frac{1}{2}} g_s$,

IIA-like:
$$\left(\frac{m_{3/2}}{M_{P,(4)}}\right) \sim \mathcal{V}_p^{-\frac{3}{p}} g_{(4)}^2,$$
 IIB-like: $\left(\frac{m_{3/2}}{M_{P,(4)}}\right) \sim \mathcal{V}_p^{-\frac{6}{p}} g_s^{\frac{1}{2}}.$

3. We insert this in the **GC** to **find generalised bounds** on *n*:

IIA-like:
$$\frac{1}{3} \le n \le \frac{1}{2} + \frac{1}{p}$$

IIB-like:
$$\frac{1}{6} + \frac{p}{12} \le n \le \frac{1}{2} + \frac{1}{p}$$

- IIA-like: $\frac{1}{3} \le n \le \frac{1}{2} + \frac{1}{p}$ Lower bounds: **perturbative** string regime.

 IIB-like: $\frac{1}{6} + \frac{p}{12} \le n \le \frac{1}{2} + \frac{1}{p}$ Upper bounds: $M_{SUSY} \le \Lambda_{sp}$.

Phenomenological scenarios

Easily detectable scenarios within the next generation of experiments

Recall the experimental constraint $l < 38.6 \,\mu m$, therefore consider $l_* \sim 10^{-7} m$.

- p=1 and p=2 are the only possibilities at this scale. [Hannestad, Raffelt (v3) '04 ('25)]
- Predictions for both IIA/IIB: p = 1 $n \in \left[1, \frac{3}{2}\right]$ $m_{3/2} \in \left[0.1 \, eV, \, 2.1 \, GeV\right]$ $M_{SUSY} \in \left[10^4 \, GeV, \, 10^9 \, GeV\right]$ $\Lambda_{sp} \sim 10^9 \, GeV$

$$p = 2$$
 $n \sim 1$ $m_{3/2} \sim 1.9 \, eV$

$$m_{3/2} \sim 1.9 \, eV$$

$$M_{SUSY} \sim 7 \, TeV$$

$$\Lambda_{sp} \sim 7 \, TeV$$

Phenomenological scenarios

Easily detectable scenarios within the next generation of experiments

Lee, Adelberger, Cook, Fleisher, Heckel '20]

Recall the experimental constraint $l < 38.6 \, \mu m$, therefore consider $l_* \sim 10^{-7} m$.

- p=1 and p=2 are the only possibilities at this scale. [Hannestad, Raffelt (v3) '04 ('25)]
- Predictions for both IIA/IIB:

$$p = 1$$
 $n \in \left[1, \frac{3}{2}\right]$ $m_{3/2} \in \left[0.1 \, eV, \, 2.1 \, GeV\right]$ $M_{SUSY} \in \left[10^4 \, GeV, \, 10^9 \, GeV\right]$ $\Lambda_{sp} \sim 10^9 \, GeV$ $p = 2$ $n \sim 1$ $m_{3/2} \sim 1.9 \, eV$ $M_{SUSY} \sim 7 \, TeV$ $\Lambda_{sp} \sim 7 \, TeV$

With just the **GC** as assumption, we recover something similar to the interesting results of:

[Montero, Vafa, Valenzuela '22]

[Anchordoqui, Antoniadis, Lüst '25]

Phenomenological scenarios

• Easily detectable scenarios within the next generation of experiments [Lee, Adelberger, Cook, Fleisher, Heckel '20]

Recall the experimental constraint $l < 38.6 \,\mu m$, therefore consider $l_* \sim 10^{-7} m$.

- p=1 and p=2 are the only possibilities at this scale. [Hannestad, Raffelt (v3) '04 ('25)]
- Predictions for both IIA/IIB: $p=1 \quad n \in \left[1,\frac{3}{2}\right] \quad m_{3/2} \in \left[0.1\,eV,\ 2.1\,GeV\right] \quad M_{SUSY} \in \left[10^4\,GeV,\ 10^9\,GeV\right] \quad \Lambda_{sp} \sim 10^9\,GeV$ $p=2 \quad n \sim 1 \quad m_{3/2} \sim 1.9\,eV \quad M_{SUSY} \sim 7\,TeV \quad \Lambda_{sp} \sim 7\,TeV$
- Scenarios with larger gravitino mass

$$m_{3/2} \sim 10^5 \, GeV$$

- No bound on the value of $p \to \text{Scenarios}$ across all values of p.
- Values of \boldsymbol{l} are in general very small. For example:

IIB-like case
$$\left\{ \begin{array}{ll} p = 1 & n \in \left[\frac{1}{4}, \frac{3}{2}\right] & l \in \left[10^{-31} m, \ 10^{-14} m\right] \\ p = 2 & n \in \left[\frac{1}{3}, 1\right] & l \in \left[10^{-30} m, \ 10^{-21} m\right] \end{array} \right. \\ \Lambda_{sp} \in \left[10^{16} \, GeV, \ 10^{11} \, GeV\right] & M_{SUSY} \sim 10^{11} \, GeV$$

IIA case very similar

- Assuming the **GC** we can connect in a **quantitative** way **predictions for** M_{SUSY} to the **existence of** p **large EDs compactified at a size** l and viceversa.
- We performed calculations considering "1" as proportionality parameter in the GC, so for our results holds $m_{KK} = (m_{3/2})^n$.
- We have many (interesting) phenomenological scenarios. The two cases we presented are associated with two different **mediation mechanisms of SUSY breaking**.
- Just assuming **GC**, for $l_* \sim 10^{-7} m$ we can extend results found also in DD scenario giving predictions for $m_{3/2}$ and M_{SUSY} at the cost of not directly dealing with the cosmological hierarchy problem.

- Assuming the **GC** we can connect in a **quantitative** way **predictions for** M_{SUSY} to the **existence of** p **large EDs compactified at a size** l and viceversa.
- We performed calculations considering "1" as proportionality parameter in the GC, so for our results holds $m_{KK} = (m_{3/2})^n$.
- We have many (interesting) phenomenological scenarios. The two cases we presented are associated with two different **mediation mechanisms of SUSY breaking**.
- Just assuming **GC**, for $l_* \sim 10^{-7} m$ we can extend results found also in DD scenario giving predictions for $m_{3/2}$ and M_{SUSY} at the cost of not directly dealing with the cosmological hierarchy problem.

Extra slides

Connecting $m_{3/2}$ with EDs - bounds

Context: Space with p large extra dimensions in which gravity can propagate.

Consider the **GC** relation
$$m_{KK} = \lambda_{3/2} \left(\frac{m_{3/2}}{M_p}\right)^n M_p$$
, where for us $\lambda_{3/2} = 1$, and (for example) translate **upper bounds on EDs** in lower bounds for $m_{3/2}$.

$$p$$
-independent bound $l \lesssim 38.6 \,\mu m$

[Lee, Adelberger, Cook, Fleisher, Heckel '20]

$$egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} A.9 \cdot 10^2 \\ 2 & 0.96 \cdot 10^{-6} \\ 3 & 1.14 \cdot 10^{-9} \\ 2 & 2 \cdot 10^{-11} \\ \end{array} \\ & [\mbox{Hannestad}, \mbox{Raffelt (v3) '04 (25)}] \end{array}$$

Those are not the most restrictive bounds, and this choice is justified by possibly not considering isometries in the extra dimensions.

Connecting $m_{3/2}$ with EDs - bounds

• Context: Space with p large extra dimensions in which gravity can propagate.

Consider the **GC** relation
$$m_{KK} = \lambda_{3/2} \left(\frac{m_{3/2}}{M_p}\right)^n M_p$$
, where for us $\lambda_{3/2} = 1$, and (for example) translate **upper bounds on EDs** in lower bounds for $m_{3/2}$.

$$p$$
-independent bound $l \lesssim 38.6 \, \mu m$

[Lee, Adelberger, Cook, Fleisher, Heckel '20]

p valu	$\mathbf{ues} \mathbf{upper} \ \mathbf{bounds} \ \mathbf{on} \ \boldsymbol{l} \ (\text{in meters})$
1	$4.9\cdot 10^2$
2	$0.96 \cdot 10^{-6}$
3	$1.14\cdot 10^{-9}$
1	$2.29 \cdot 10^{-11}$
	[Hannestad, Raffelt (v3) '04 ('25)]

Lower bound on $m_{3/2}$ from LHC probed energies

$$m_{3/2} > 0.1 \, eV$$

[Particle Data Group '22]

At fixed n or p.

We improve this by finding bounds for the parameter n in terms of the number p of large EDs.