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Plan for the talk

• I will start with a short introduction to parabolic geometries and
examples, such as (2, 3, 5) distribution and conformal structures

• Second part will be about a joint work with Omid Makhmali on
Parabolic quasi-contact cone structures with transversal infinitesimal
symmetry
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Definition: Parabolic Geometries

Let G/P be a homogeneous space.

A Cartan geometry (G, ω) of type (G ,P) is given by

• a principal bundle π : G → M with structure group P and

• a Cartan connection, i.e., a 1-form ω ∈ Ω1(G, g) with values in
g = Lie(G ) which satisfies

• P-equivariance: (rp)∗ω = Ad(p)−1 ◦ ω,
• ω(ζX ) = X ∀X ∈ p, where ζX = d

dt
|t=0r

exptX (u)
• ω(u) : TuG → g is an isomorphism ∀u ∈ G.

A Cartan connection provides an identification

G ×P g/p ∼= TM, [u,X + p] 7→ Tuπ ω−1
u (X )

The homogeneous model of Cartan geometries of type (G ,P) is the
principal bundle π : G → G/P equipped with Maurer Cartan form ωG .

The curvature
K = dω + 1

2 [ω, ω]

vanishes iff (G, ω) it is locally isomorphic to its homogeneous model.



Definition: Parabolic Geometries

A parabolic geometry is a Cartan geometry of type (G ,P), where G is a
semisimple Lie group and P ⊂ G a parabolic subgroup.

Let g be a semisimple Lie algebra with a |k |-grading

g = g−k ⊕ · · · ⊕ g−1︸ ︷︷ ︸
g−

⊕ g0 ⊕ g1 ⊕ · · · ⊕ gk︸ ︷︷ ︸
g+

, [gi , gj ] ⊂ gi+j

such that g−1 generates g−.

Defining gi := gi ⊕ gi+1 ⊕ · · · ⊕ gk one obtains a filtration

gk ⊂ · · · ⊂ g0 ⊂ · · · ⊂ g−k

A subalgebra p ⊂ g is parabolic iff it is of the form p = g0 = g0 ⊕ g+ for
some |k|-grading as above.



Underlying structures

Equivalence of categories (Tanaka, Morimoto,...,Čap-Slovák){
regular normal parabolic
geometries of type (G ,P)

}
←→

{
underlying structures

}
Underlying structure (most cases):

• a filtration of the tangent bundle

T−1M ⊂ · · · ⊂ T−kM = TM,

s.t. the symbol algebra gr(TxM) =
⊕

i T
i
xM/T i+1

x M equipped with
bracket induced by Lie bracket of vector fields is isom. to g−
∀x ∈ M, (gi := gi ⊕ · · · ⊕ gk ⇝ T iM ∼= G ×P gi/p via ω)

• reduction of structure group of the graded frame bundle,

Fx = {graded Lie alg. isomorphism ϕ : g− → gr(TxM)} ,

with respect to Ad : G0 → Autgr (g−).



Example: conformal structures

Conformal structure:
equivalence class [g ] of metrics of sig. (p, q) (p + q > 2) on M, where

ĝ ∼ g ⇐⇒ ĝ = Ω2g , for some 0 < Ω ∈ C∞(M,R).

Here T−1M = TM and the conformal structure can be viewed as a
reduction of the (usual) frame bundle to G0 = CO(p, q).

Theorem (E. Cartan)
A conformal structure of signature (p, q), p + q > 2, determines a
canonical parabolic geometry of type (PO(p + 1, q + 1),P).

Homogeneous model: G/P, where G = PO(p + 1, q + 1), P = P1

stabilizer of null-line in Rp+1,q+1

so(p + 1, q + 1) =


µ Z t 0
Y M −Z
0 −Y t −µ


= g−1 ⊕ g0 ⊕ g1︸ ︷︷ ︸

p

[gi , gj ] ⊂ gi+j
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Example: (2, 3, 5) distributions

(2,3,5) distribution:
subbundle D ⊂ TM of the tangent bundle of 5-mf M s.t.

rank( D︸︷︷︸
T−1M

) = 2, rank([D,D]︸ ︷︷ ︸
T−2M

) = 3, rank([D, [D,D]]︸ ︷︷ ︸
T−3M

) = 5.

1893 Cartan and Engel (same journal, independent articles): Lie algebra
of inf. symmetries of D = span(X4,X5), where

X4 = ∂q, X5 = ∂x + p∂y + q∂p +
1
2q

2∂z ,

is the exceptional Lie algebra of type G2.



Example: (2, 3, 5) distributions

(2,3,5) distribution:
subbundle D ⊂ TM of the tangent bundle of 5-mf M s.t.

rank( D︸︷︷︸
T−1M

) = 2, rank([D,D]︸ ︷︷ ︸
T−2M

) = 3, rank([D, [D,D]]︸ ︷︷ ︸
T−3M

) = 5.

1893 Cartan and Engel (same journal, independent articles): Lie algebra
of inf. symmetries of D = span(X4,X5), where

X4 = ∂q, X5 = ∂x + p∂y + q∂p +
1
2q

2∂z ,

is the exceptional Lie algebra of type G2.



Example: (2, 3, 5) distributions

Theorem (Cartan, Tanaka,...)
A (2, 3, 5) distribution determines a canonical reg. normal parabolic
geometry of type (G2,P).

Homogeneous model: G2/P, where G2 is the split real form of the
14-dim. exceptional Lie group and P = P1 ⊂ G2 the parabolic subgroup

g3
g2

g1

g0g−1
g−2
g−3

p = g0 ⊕ g1 ⊕ g2 ⊕ g3
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Example: (2, 3, 5) distributions

Consider surfaces Σ1 ⊂ R3 and Σ2 ⊂ R3 rolling one on another w.o.
slipping or twisting. The configuration space is a 5-manifold and rolling
motions correspond to curves tangent to a rank 2 distribution D (the
rolling distribution).

Example: rolling balls

• If r1 ̸= r2 the rolling distribution
is (2, 3, 5).
The infinitesimal symmetry
algebra of D is so(3)⊕ so(3),

• except if the ratio of radii is
1 : 3, in which case it is the
14-dim. exceptional Lie algebra
of type G2.

(Picture Bor-Montgomery)
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Example: (3, 6) distributions

(3,6) distribution:
subbundle D ⊂ TM of the tangent bundle of 6-mf M s.t.

rank( D︸︷︷︸
T−1M

) = 3 and rank( [D,D]︸ ︷︷ ︸
T−2M=TM

) = 6.

Theorem
A (3, 6) distribution determines a canonical reg. normal parabolic
geometry of type (SO(3, 4),P) and P is the stabilizer of a null 3-plane in
R3,4.

Theorem (Nurowski, Bryant)
Both (2, 3, 5) and (3, 6) distributions determine canonical conformal
structures of signature (2, 3) and (3, 3), respectively.
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Correspondence space

Given indef. signature (M, [g ]), consider the projectivized null-cone
bundle

π : C̃ → M̃, C̃x = {[v ] ∈ P(TxM̃) : g(v , v) = 0}.

C̃ is equipped with canonical distribution T−1C̃, defined as

T−1
(x,[v ])C̃ := {X ∈ T(x,[v ])C̃ : π∗X ∈ Rv}.

It splits into the vertical bundle Ṽ and a line bundle Ẽ corresponding to
the foliation by lifts of null-geodesics. ⇝ generates filtration

T−1C̃ = Ẽ ⊕ Ṽ ⊂ T−2C̃ ⊂ T−3C̃ = T C̃.

Corank 1 distribution H̃ = T−2C̃ is quasi-contact, i.e.
L : Λ2H̃∗ → T C̃/H̃, L(X ,Y ) = pr([X ,Y ]), has max. rank rank =⇒
1-dim. kernel; Ẽ = ker(L|H̃) is characteristic line bundle.
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Correspondence space

Similarly, given D ⊂ TM̃, consider the projectivized distribution
bundle

π : C̃ → M̃, C̃x = P(Dx).

C̃ is equipped with distribution T−1C̃, defined as

T−1
(x,[v ])C̃ := {X ∈ T(x,[v ])C̃ : π∗X ∈ Rv}.

⇝ bracket generates filtration

T−1C̃ = Ẽ ⊕ Ṽ ⊂ T−2C̃ ⊂ · · · ⊂ T−k+1C̃ ⊂ T C̃.

(k = 4, 5). Here Ṽ is the vertical bundle. The corank 1 distribution

H̃ = T−k+1C̃

is quasi-contact =⇒ 1-dimensional kernel, Ẽ = ker(L|H̃)
(characteristic line bundle); its integral curves are called abnormal
extremals of D (Zelenko).
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Correspondence spaces

The spaces C̃ from previous slides are correspondence spaces.

Let Q ⊂ P ⊂ G be nested parabolic subgroups (P/Q connected)

Given a Cartan geometry (G → M, ω) of type (G ,P), then the
correspondence space is

C̃ = G/Q ∼= G ×P (P/Q),

C̃ → M is fibre bundle with fibre P/Q and (G → C̃, ω) is Cartan
geometry of type (G ,Q).

Proposition
The correspondence space construction gives local equivalence between
reg. normal parabolic geometries of type (G ,P) and reg. normal
parabolic geom. of type (G ,Q) (see next slide) in the distribution cases
and a subclass of such geometries in the conformal case.



Correspondence spaces

On the top the Lie group pairs (G ,Q):

1 (SO(p + 2, q + 2),Q = P12) (odd and even)

exceptional case: n = 4 here

2 (G2,Q = P12)

3 (SO(3, 4),Q = P23)

bottom left: Lie group pairs (G ,P) for conformal, (2, 3, 5) and (3, 6).
bottom right: (G ,R) corr. to contact gradings



Parabolic quasi-contact cone structures

Parabolic geometries of type (G ,Q) are equivalent to bracket generating
distributions with weak derived

T−1C̃ ⊂ T−2C̃ ⊂ · · · ⊂ T−k C̃ = T C̃

and symbol algebra q−. We call these structures parabolic quasi-contact
cone structures.

Structure of gradings:

g = q−k ⊕ · · · ⊕ q−1︸ ︷︷ ︸
q−

⊕q0 ⊕ q1 ⊕ · · · ⊕ qk , dim(q±k) = 1, where

• [, ]−k : Λ2(q−k+1 ⊕ · · · ⊕ q−1)→ q−k is 2-form of maximal rank
with 1-dim. kernel e

• splitting q−1 = (q−1 ∩ r−)⊕ (q−1 ∩ r0) = v⊕ e

• The brackets e⊗ v→ q−2, e⊗ q−i → q−i−1, for i < k − 1, define
isomorphisms (and these are all non-triv. brackets on q−)
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Symmetry Reduction

Let ξ be a conformal Killing field resp. infinitesimal symmetry of the
distribution D ⊂ TM̃.

• It lifts to an infinitesimal symmetry ξ of the parabolic quasi-contact
cone structure on C̃.

• Now restrict to open subset of C̃ where it is transversal, i.e.
ξx /∈ H̃ for any x ∈ U, and form a local leaf space π : C̃ → C s.t.
ker(π∗) is spanned by ξ.

Question:
What is the induced geometric structure on the local leaf space?

⇝ adapt results by Čap and Salač parabolic conformally symplectic
structures to our setting
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Parabolic conformally quasi-symplectic structures

A parabolic conformally quasi-symplectic structure (PCQS) is given by:

a) a bracket generating distribution T−1C with weak derived

T−1C ⊂ T−2C ⊂ · · · ⊂ T−k+1C = TC

and symbol algebra gr(TxC) =: s− ∼= q−/q−k

b) a reduction of structure group of the graded frame bundle with
respect to Q0 ↪→ Autgr (s−)

c) ⇝ canonical line bundle ℓ ⊂ Λ2T ∗C s.t. each ϕx ∈ ℓx has max. rank
and one further requires that ℓ has closed local sections.



Quasi-contactification

Theorem
The quotient of a parabolic quasi-contact cone structure by a transversal
symmetry ξ ∈ X(C̃) has a natural PCQS structure. Conversely, locally,
any PCQS structure can be realized as a quotient of a quasi-contact cone
structure.

• Filtered structure on C̃ descends to filtered structure on C.
• Let α ∈ Ω1(C̃) be quasi-cont. form, i.e. ker(α) = H̃, s.t. α(ξ) = 1.

dα(ξ, η) = −α([ξ, η]) ∀η ∈ Γ(H̃) =⇒ ιξdα = 0 =⇒ Lξdα = 0

=⇒ dα descends to closed 2-form Ω.

• For the converse, suppose Ω = dβ ∈ Γ(ℓ) on U ⊂ C̃, define

π : C̃ := U × R→ C̃ and α := π∗β + dt.

Then T−k C̃ := ker(α) is quasi-contact structure, the rest of the
filtration lifts and has symmetry ∂t .
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π : C̃ := U × R→ C̃ and α := π∗β + dt.

Then T−k C̃ := ker(α) is quasi-contact structure, the rest of the
filtration lifts and has symmetry ∂t .
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The G2-case

Filtration on C corresponds to 4th order ODE y ′′′′ = f (x , y , y ′, y ′′, y ′′′)
up to contact transformations:

ODE def. submf C ⊂ J4(R,R) diff. to J3(R,R)

⟨∂y ′′′⟩ = V⟨∂y ′′⟩⟨∂y ′⟩⟨∂y ⟩
-1-2-3-4

⟨∂x + y ′∂y + · · ·+ f ∂y ′′′⟩ = E -1

Closed 2-form Ω (with given algebraic structure) =⇒ ODE is variational,
i.e., up to multiple EL equations of non-deg. second order Lagrangian

L = L(x , y , y ′, y ′′), ∂2L
∂y ′′2 ̸= 0.

(Anderson-Thompson, Fels)
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The G2-case

Corollary
The leaf space C, obtained from a (2, 3, 5) distribution and an inf.
symmetry, inherits the structure of a scalar 4th order ODE modulo
contact transformations, which is variational. Conversely, any variational
scalar 4th order ODE geometry can be locally realized in this way.

The geometry of a scalar 4th order ODE has 4 (scalar) fundamental
invariants:

• w3, w4 (Wünschman invariants)

• c3, c4

Proposition
The 4th order ODE is variational ⇐⇒ w3 = 0 and c3 = 0 (Fels)
The corresponding (2, 3, 5) distribution is flat ⇐⇒ in addition w4 = 0.
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