
Corfu Summer Institute 2025:

Cost Action CaLISTA General Meeting 2025, September 2025

Phenomenological implications of
D = 4 braided NC gravity

Marija Dimitrijević Ćirić
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Challenges in high energy physics

Divergences in QFT,
Early/late Universe, ⇒ Quantum Gravity ⇒ Quantum spacetime?
Black hole physics

Different approaches: noncommutative geometry, loop quantum gravity, string
theory, relativistic quantum information... We will focus on noncommutative
geometry.

Noncommuting coordinates provide a discretization of spacetime

[x̂µ, x̂ν ] = iΘµν ⇒ ∆x̂µ∆x̂ν ≥
1

2
Θµν ,

with Θµν antisymmetric constant or a function of coordinates.

Quantum field theory on NC spaces,
NC deformation of Poincaré symmetry

NC spacetime =⇒
Gravity on NC spaces,

NC deformation of diffeomorphysim
symmetry



Different approaches

The concept of spacetime symmetry is difficult to generalize to NC spaces.
Different approaches related to different ways of deforming classical spacetime
symmetries.

NC spectral geometry [Chamseddine, Connes, Marcolli ’07; Chamseddine, Connes, Mukhanov ’14;

Glaser, Stern ’19].

Based on a spectral triple (A,H,D): algebra of functions A, Hilbert space
representation of spinors H and the Dirac operator D. Continuous and discrete
variables coexist as operators in Hilbert space: they do not commute.
Quantum spacetime: generalisation of the ”reconstruction theorem”, knowing
(A,H,D) one can reconstruct properties of the initial manifold.

Matrix models, emergent gravity [Steinacker ’10, ’16... ’24].
Dynamical noncommutative (quantum) geometry arises from NC gauge theory,
in particular from IKKT supersymmetric matrix model.



Frame formalism, fuzzy spaces [Madore ’92, Majid ’95; Burić, Madore ’14, Burić Latas ’19, Brkić

et al ’24; Beggs, Majid ’17;... Majid ’24].

Quantization of (curved) spacetimes: coordinates x̂µ are noncommuting
objects (matrices, operators). Fields are functions of x̂µ coordinates, NC
differential geometry can be defined. More recently: fuzzy BTZ black hole,
scalar field on fuzzy (A)dS...

Twist approach [Wess ’04; Chaichian et al ’04; Aschieri et al. ’05, ’06; Lukierski, Woronowicz ’06; Tolstoy

’08; Castellani, Aschieri ’09; Blumenhagen, Fuchs ’16; Aschieri et al, ’18; MDC et al ’21...].

The Hopf algebra of the spacetime symmetry is deformed to a twisted
spacetime symmetry Hopf algebra. Noncommutative algebras of functions,
fields are module algebras of the twisted symmetry algebra. NC gravity in the
1st order formalism: NC gauge theory of SO(1, 3)... NC gravity in the 2nd
order formalism: NC diffeomorphism symmetry.

Other approaches: Snyder’s spacetime [Snyder ’47],
Doplicher-Fredenhagen-Roberts spacetime [’94, ’95], Doubly Special Relativity
[Kowalski-Glikman ’04, ’06], NC double copy [Trojani, Szabo ’23; Jonke, Lescano ’25]...



Are there any connections between different NC gravity models? We focus on
the NC gravity models in the ?-product approach.

Our approach is based on:

Deformation

Drinfeld twist formalsim: a well defined way to deform a (Hopf) algebra of
classical symmetries to a twisted (noncommutative, defomed) Hopf algebra.
Module algebras (differential forms, tensors...) are consistently deformed into
?-module algebras: noncommutative differential geometry [Aschieri et al. ’05...’18].

Construction of NC field theories and gravity

L∞ algebra: Any classical (gauge) field theory described by the corresponding
L∞ algebra [Hohm, Zwiebach ’17; Jurco et. al ’19]. NC braided field theories can be
encoded in a braided L∞ algebra[MDC, Giotopoulos, Radovanovic, Szabo ’21; Giotopoulos, Szabo

’22].



Drinfeld twist formalism and NC differential geometry

Guiding principle: Differential geometry on M is covariant under UVec(M)
(diffeomorphism symmetry).

NC differential geometry on M should be covariant under UVecF (M) [Aschieri et

al. ’06; Aschieri, MDC, Szabo ’18].

In practice: UVec(M)-module algebra A (functions, forms, tensors) and
a, b ∈ A, ξ ∈ Vec(M)

ξ(ab) = ξ(a)b + aξ(b), ξ acts via Lie derivative, Leibniz rule (coproduct).

The twist: UVec(M)→ UVecF (M) and A → A? with · → · ◦ F−1

a · b → a ? b = · ◦ F−1(a⊗ b) = f k(a) · f k(b).

Commutativity: a ? b = Rk(b) ? Rk(a).

A? is a UVecF (M)-module algebra:

ξ̃(a ? b) = ξ̃ ¯(1)(a) ? ξ̃ ¯(2)(b),

for ξ̃ ∈ UVecF (M) and using the twisted coproduct ∆F ξ̃ = ξ̃ ¯(1) ⊗ ξ̃ ¯(2).



Twisted gravity
One of the first applications of the twisted diffeomorphism symmetry in [Aschieri

et al 05, 06]: twisted NC gravity.

The diffeomorphism algebra is undeformed, but the coproduct (Leibniz rule)
changes: Transformation law of the scalar field φ is given by the commutative
Lie derivative, with a deformed Leibniz rule:

δξφ(x) =− ξλ∂λφ(x)

δξ(φ1 ? φ2) =(δξφ1) ? φ2 + φ1 ? (δξφ2)

−
i

2
θρσ
((
δ(∂ρξ)φ1

)
∂σφ2 + (∂ρφ1)

(
δ(∂σξ)φ2

)
+ . . .

)
.

The deformed EH action, with Gβγ = 1
2

(
e a
µ ? e b

ν + e a
ν ? e b

µ

)
ηab:

SEH =
1

2

∫
d4x

(
E? ? R + h.c.

)
=S

(0)
EH +

∫
d4x

(
det(e a

µ )R(2) + E?(2)R(0)
)

+ . . .

In [Alvarez-Gaume et al ’06] this expansion is compared with the expansion of the
gravitational action induced on the brane in the presence of a constant B-field:
twisted gravity is not reproducing terms form the string theory, string theory
contains richer dynamics. Twisted gravity solutions (black holes, cosmological)
in [Ohl, Schenckel ’09]. More formal approach in [Aschieri, Schenkel ’14].



Gravity as a gauge theory: 1st order formalism
Gravity in the 1st order formalism, ECP gravity. Fields: Spin connection
ω = 1

2
ωab
µ Σabdx

µ and vierbein e = eaµγadx
µ, with Σab = 1

2
[γa, γb].

R =dω +
1

2
[ω, ω] = RabΣab, T = de + ω ∧ e = T aγa

S =
1

2
Tr

∫
e ∧ e ∧ Rγ5 =

∫
εabcde

a ∧ eb ∧ Rcd .

S is invariant under SO(1, 3) gauge symmetry and the diffeomorphism
symmetry.

δρe =i [ρ, e], δξe = Lξe

δρω =dρ+ i [ρ, ω], δξω = Lξω.

Varying the action with respect to ωµ and vielbeins eµ gives

Einstein equation: e ∧ R = 0, Torsion free condition: e ∧ T = 0.

The spin connection in not dynamical (the equation of motion is algebraic, the
zero-torsion condition) and can be expressed in terms of vielbeins, 2nd order
formalism, GR (if e invertible).

Generalization to NC spaces ⇒ NC gauge theory!



Braided NC gauge theories
?-gauge transformations: Gauge field A = Aa

µT
adxµ transforms as (ρ = ρaT a)

[ρ ?, A] =ρ ? A− A ? ρ

=
1

2
{ρa ?, Ab}[T a,T b] +

1

2
[ρa ?, Ab]{T a,T b}.

Braided gauge transformations:

δ?ρA =dρ+ i [ρ,A]? = dρ+ i
(
ρ ? A− Rk (A) ? Rk (ρ)

)
,

[ρ,A]? =ρaT a ? AaT a − Rk (AaT a) ? Rk (ρaT a)

=ρa ? Ab[T a,T b] = −f abcρb ? AcT a.

Gauge transformations have the braided Leibniz rule

4(δ?ρ) = δ?ρ ⊗ id + Rk ⊗ δ?Rk (ρ)
.

and close the braided algebra[
δ?ρ1

, δ?ρ2

]?
◦ = δ?ρ1

◦ δ?ρ2
− δ?Rk (ρ2) ◦ δ

?
Rk (ρ1)

= δ?−i [ρ1,ρ2]?
.

How to formulate an action invariant under these transformations and how to

quantize theories with braided symmetries? A concept of L∞-algebra!



Braided L∞-algebra

Braided cyclic L∞-algebra (V , {`?n}) consists of:.

• Z-graded real vector space V =
⊕

k∈Z Vk . Usually we work with

V = V0 ⊕ V1 ⊕ V2 ⊕ V3.

• multilinear maps/brackets: `?n :⊗n
V → V

`?n(v1 ⊗ · · · ⊗ vn) = `n(v1 ⊗? · · · ⊗? vn),

with v ⊗? v ′ := F−1(v ⊗ v ′) = f̄k(v)⊗ f̄k(v ′) for v , v ′ ∈ V . The brackets
are graided and braided symmetric!

`?n(. . . , v , v ′, . . . ) = −(−1)|v| |v
′| `?n

(
. . . ,Rk(v ′),Rk(v), . . .

)
.



• braided homotopy relations:

`?1
(
`?1 (v)

)
= 0 ,

`?1
(
`?2 (v1, v2)

)
= `?2

(
`?1 (v1), v2

)
+ (−1)|v1| `?2

(
v1, `

?
1 (v2)

)
,

`?2
(
`?2 (v1, v2), v3

)
−(−1)|v2| |v3| `?2

(
`?2 (v1,Rk (v3)),Rk (v2)

)
+(−1)(|v2|+|v3|) |v1| `?2

(
`?2 (Rk (v2),Rj (v3)),RjR

k (v1)
)

= −`?3
(
`?1 (v1), v2, v3

)
− (−1)|v1| `?3

(
v1, `

?
1 (v2), v3

)
− (−1)|v1|+|v2| `?3

(
v1, v2, `

?
1 (v3)

)
− `?1

(
`?3 (v1, v2, v3)

)
,

. . .

• (V , {`?n}, 〈−,−〉?) is a braided cyclic L∞-algebra: the braided cyclic
pairing 〈−,−〉? : V ⊗ V → R:

〈v1, v2〉? = 〈̄fk(v1), f̄k(v2)〉 .

Naturally braided cyclic 〈v1, v2〉? = 〈Rk(v2),Rk(v1)〉?: problems with the
variational principle! Instead, we demand strict cyclicity:

〈v2, v1〉? = 〈Rk (v1),Rk (v2)〉? = 〈v1, v2〉?,
〈v0, `

?
n (v1, v2, . . . , vn)〉? = 〈vn, `?n (v0, v1, . . . , vn−1)〉?.

Twist operator fulfilling this is a compatible Drinfel’d twists. It define a
strictly cyclic braided L∞-algebra.



Braided gauge theory via braided L∞-algebra

Any classical filed theory is fully described by the corresponding L∞-algebra
[Hohm, Zwiebach ’17; Jurco et al ’17]. Analogously for the braided field theories:

Braided gauge transformations

δ?ρA = `?1 (ρ) +
∞∑
n=1

1

n!
(−1)

1
2
n (n−1) `?n+1(ρ,A, . . . ,A) .

Braided equations of motion

F?A =
∞∑
n=1

1

n!
(−1)

1
2
n (n−1) `?n (A, . . . ,A)

follow from the braided gauge invariant action

S(A) =
∞∑
n=1

1

(n + 1)!
(−1)

1
2
n (n−1) 〈A, `?n (A, . . . ,A)〉 ,

using the variational principle and the strict cyclicity.



Braided L∞ algebra of 4D ECP gravity

Vector space: V = V0 ⊕ V1 ⊕ V2 ⊕ V3 and

• symmetry parameters (ghosts): (ξ, ρ) ∈ V0, fields: (e, ω) ∈ V1,

• antifields, EoM (E ,Ω) ∈ V2, antifields for ghosts, Noether identities
((X ,P) ∈ V3.

Some of the `? brackets:

`
?
2

((
ξ
ρ

)
,

(
e
ω

))
=

(
L?ξe + i[ρ, e]?
L?ξω + i[ρ, ω]?

)
,

`
?
2

((
e1
ω1

)
,

(
e2
ω2

))
=

(
−e1 ∧? dω2 − Rk (e2) ∧? Rk (dω1)− dω1 ∧? e2 − Rk (dω2) ∧? Rk (e1)

−d[e1, e2]?

)
,

`
?
3

((
e1
ω1

)
,

(
e2
ω2

)
,

(
e3
ω3

))
=

i
(
e1 ∧? [ω2, ω3]? + Rk (e2) ∧? [Rk (ω1), ω3]? + Rk (e3) ∧? Rk ([ω1, ω2]?)

+ Rk ([ω2, ω3]?) ∧? Rk (e1) + [ω1,Rk (ω3)]? ∧? Rk (e2) + [Rk (ω2),Rk (ω1)]? ∧? e3

+ Λ
6

(
e1 ∧? [e2, e3]? + Rk (e2) ∧? [Rk (e1), e3]? + Rk (e3) ∧? Rk ([e1, e2]?)

))
i
([
ω1, [e2, e3]?

]
?

+
[
Rk (ω2), [Rk (e1), e3]?

]
?

+
[
Rk (ω3),Rk ([e1, e2]?)

]
?

)

 .



The braided commutators

[ρ1, ρ2]? = [̄fkρ1, f̄kρ2] = ρ1 ? ρ2 − Rkρ2 ? R
kρ1

[ξ1, ξ2]? = [̄fkξ1, f̄kξ2] = ξ1 ? ξ2 − Rkξ2 ? R
kξ1 .

close in the corresponding Lie algebras, SO(1, 3) and the Lie algebra of vector
fields, respectively. No new degrees of freedom!

Strictly cyclic pairing〈(e
ω

)
,

(
E
Ω

)〉
?

=

∫
Tr
(
(e ∧? E + ω ∧? Ω)γ5

)
,〈(ξ

ρ

)
,

(
X
P

)〉
?

= −
∫
ι?ξX −

∫
Tr(ρ ? Pγ5)

What do we obtain?



Gauge invariant action with a good commutative limit

S?(e, ω) = 1
2

〈
(e, ω) , `?1 (e, ω)

〉
?
− 1

6

〈
(e, ω) , `?2

(
(e, ω) , (e, ω)

)〉
?

− 1
24

〈
(e, ω) , `?3

(
(e, ω) , (e, ω) , (e, ω)

)〉
?∫

εabcd

[
R?ab ∧? ec ∧? ed −

Λ

6
ea ∧? eb ∧? ec ∧? ed

−
1

3

(
ωaf ∧? ωf

b ∧? ec ∧? ed + ωaf ∧? ec ∧? ωf
b ∧? ed

)]
.

Covariant equations of motion

F?e =
1

2

(
e ∧? dω + Rk (e) ∧? Rk (dω) + dω ∧? e + Rk (dω) ∧? Rk (e)

)
−

i

6

(
e ∧? [ω, ω]? + Rk (e) ∧? [Rk (ω), ω]? + Rk (e) ∧? Rk ([ω, ω]?)

+ Rk ([ω, ω]?) ∧? Rk (e) + [ω,Rk (ω)]? ∧? Rk (e) + [ω, ω]? ∧? e

+
Λ

6

(
e ∧? [e, e]? + Rk (e) ∧? [Rk (e), e]? + Rk (e) ∧? Rk ([e, e]?)

))
= 0 ,

F?ω =
1

2
d[e, e]?

−
i

6

([
ω, [e, e]?

]
?

+
[
Rk (ω), [Rk (e), e]?

]
?

+
[
Rk (ω),Rk ([e, e]?)

]
?

)
= 0.

Commutative limit: standard torsion free condition and Einstein equation.



Phenomenological implications

The braided NC 4D ECP gravity exhibits simple solutions:

• Minkowski spacetime

ds2 = −dt2 + dx2 + dy2 + dz2.

• flat de Sitter spacetime

ds2 = −dt2 + e
2t
Λ (dx2 + dy2 + dz2) .

Three graviton vertex

We expand the braided NC gravity action around the flat spacetime

gµν = ηµν + 2κhµν ,

in the transverse-traceless gauge

∂µh
µν = 0, hµµ = 0 .

There is no linear (in θ) NC correction, as expected. Terms contributing to the
NC correction to the three graviton vertex are quadratic in θµν and cubic in κ.



We find exactly the same result as in the twisted NC gravity [Alvarez-Gaume et al ’06]

S?
3,θ2 =

κ3

2
θαβθγδ

∫
d4x
[
2(∂α∂γh

µρ)(∂β∂δh
νσ)(∂µ∂νhρσ)

− (∂α∂γh
µν)(∂β∂δh

ρσ)(∂µ∂νhρσ))
]
.

Some subtitles related with the 1st order formalism:

Basic fields are expanded as:

eaµ = δaµ + κηabhµνδb
ν ,

ωab
µ = ω

ab(0)
µ + κω

ab(1)
µ + κ2ω

ab(2)
µ ,

with ω
ab(0)
µ = 0 and ω

ab(2)
µ does not contribute to the (θ2, κ3) terms.

ω
ab(1)
µ = δaρδ

b
σ(∂σhµ

ρ − ∂ρhµσ), hµ
ν = δρa δ

ν
b η

abhµρ

follows form

ωµ[νρ] = ωab
µ(e)ea

νea
ρ + Kµ[νρ], ωab

µ(e) = 2eν[a∂[µe
b]
ν]
− eν[aeb]σeµc∂νeσ

c ,

Kµ[νρ] = −
1

2

(
T[µν]ρ − T[νρ]µ + T[ρµ]ν

)
and T[µν]ρ = Tµν

aea
ρ.

No Kµ[νρ] contribution in (θ2, κ3) terms; Nontrivial contributions in θ3 and higher.



Outlook

Can we connect/compare different NC gravity models (in the ?-product
approach)?

• 4D braided and twisted gravity models

-different symmetries, different action

-same simple solutions and the three graviton vertex

-find and compare nontivial solutions.

• SW expanded NC gravity and NC gravity from double copy

-are they related and how?

• Different NC gravity models from double copy: is braided gravity double
copy of a braided gauge theory?
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Abstract

A deformation of the algebra of diffeomorphisms is constructed for canonically

deformed spaces with constant deformation parameter θ . The algebraic

relations remain the same, whereas the comultiplication rule (Leibniz rule)

is different from the undeformed one. Based on this deformed algebra, a

covariant tensor calculus is constructed and all the concepts such as metric,

covariant derivatives, curvature and torsion can be defined on the deformed

space as well. The construction of these geometric quantities is presented in

detail. This leads to an action invariant under the deformed diffeomorphism

algebra and can be interpreted as a θ -deformed Einstein–Hilbert action. The

metric or the vierbein field will be the dynamical variable as they are in the

undeformed theory. The action and all relevant quantities are expanded up to

second order in θ .

PACS numbers: 02.40.Gh, 02.20.Uw, 04.20.−q, 04.60.−m, 11.10.Nx

1. Introduction

Several arguments are presently used to motivate a deviation from the flat-space concept

at very short distances [1, 2]. Among the new concepts are quantum spaces [3–6]. They

have the advantage that their mathematical structure is well defined and that, based on

this structure, questions on the physical behaviour of these systems can be asked. One of

0264-9381/05/173511+22$30.00 © 2005 IOP Publishing Ltd Printed in the UK 3511
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Abstract

We study a deformation of infinitesimal diffeomorphisms of a smooth manifold.

The deformation is based on a general twist. This leads to a differential

geometry on a noncommutative algebra of functions whose product is a star

product. The class of noncommutative spaces studied is very rich. Non-

anticommutative superspaces are also briefly considered. The differential

geometry developed is covariant under deformed diffeomorphisms and is

coordinate independent. The main target of this work is the construction

of Einstein’s equations for gravity on noncommutative manifolds.

PACS numbers: 02.04.Gh, 02.20.Uw, 04.20.−q, 11.10.Nx, 04.60.−m

1. Introduction

The study of the structure of spacetime at Planck scale, where quantum gravity effects

are non-negligible, is one of the main open challenges in fundamental physics. Since

the dynamical variable in Einstein general relativity is spacetime itself (with its metric

structure), and since in quantum mechanics and in quantum field theory the classical dynamical

variables become noncommutative, one is strongly led to conclude that noncommutative

spacetime is a feature of Planck-scale physics. This expectation is further supported by

Gedanken experiments that aim at probing spacetime structure at very small distances.

They show that due to gravitational backreaction one cannot test spacetime at Planck

0264-9381/06/061883+29$30.00 © 2006 IOP Publishing Ltd Printed in the UK 1883



S? = S(0) + S(2)

=

∫
εabcdR

ab ∧ ec ∧ ed +
1

8
εabcdθ

αβ
θ
γδ

(
−

2

3
∂α∂γdω

ab ∧ ∂β∂δe
c ∧ ed

−
1

3
dω

ab ∧ ∂α∂γec ∧ ∂β∂δe
d −

1

2
∂α∂γω

ae ∧ ∂β∂δωe
b ∧ ec ∧ ed

−
2

3
∂α∂γω

ae ∧ ∂δωe
b ∧ ∂βe

c ∧ ed − 2∂α∂γω
ae ∧ ωe

b ∧ ∂β∂δe
c ∧ ed

−
1

3
∂α∂γω

ae ∧ ωe
b ∧ ∂βe

c ∧ ∂δe
d −

1

3
∂αω

ae ∧ ∂γωe
b ∧ ∂β∂δe

c ∧ ed

−
2

3
∂αω

ae ∧ ωe
b ∧ ∂β∂δe

c ∧ ∂γed −
1

2
ω
ae ∧ ωe
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d
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ρ
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ν

)(
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c
ρ

)
δ
d
σ
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3
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∂µω

ab (1)
ν

) (
∂α∂γτ

c
ρ
) (
∂β∂δτ

d
σ

)
−
(
∂α∂γω
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µ

)(
∂β∂δωe

b (1)
ν

)
τ
c
ρδ

d
σ

−
(
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µ

)(
∂β∂δωe

b (1)
ν

)
δ
c
ρδ

d
σ −

2

3

(
∂α∂γω

ae (1)
µ

)(
∂δωe

b (1)
ν

) (
∂βτ

c
ρ
)
δ
d
σ

− 2
(
∂α∂γω

ae (1)
µ

) (
∂β∂δτ

c
ρ

)
ωe

b (1)
ν δ

d
σ −

1

3

(
∂αω
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µ

)(
∂γωe

b (1)
ν

)(
∂β∂δτ

c
ρ

)
δ
d
σ

]
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