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Context: quantization of a gauge theory (Xo, So) via a path integral approach v Z:= SXD eﬁ;SD[d/L] ﬂ
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©» Functorial Approach: TQFT = Functor of symmetric
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The BV construction

The BV construction: where it was discovered

Context: quantization of a gauge theory (Xo, So) via a path integral approach v Z:= SXD veSD[d/L] @
L)

path integral

Problem 1: the measure is not well-defined

P : TQFT = Functor of symmetric

. . implement
monoidal categories 3

. Fubini’s theorem

Cob, —> Vectc

P : implement the principle of stationary phase W0
Ig [ 5o (x —5 ign(Sp (X hxXV) X(r)

SXO en O[dﬂ] f,:o ZXUE{crit. pts Sp} eh 0(x0) |det (XO)‘ 2 € @ Hsign(Sy ( O))(27rh) ><[““/[ <>? <

= Feynman diagram Feynm\an d\lagrarr/;s\
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Problem 2: To apply the perturbative approach the critical points of Sy have to be isolated and regular but,
in a gauge invariant action, critical points appear in orbits

Roberta A. Iseppi

The BV Construction in NCG: Towards the In



The BV construction

The BV construction: where it was discovered

Context: quantization of a gauge theory (Xo, So) via a path integral approach v Z:= SXD veSD[d/L] @

[ ~
7
path integral
Problem 1: the measure is not well-defined

~ : TQFT = Functor of symmetric
monoidal categories

Cob, —> Vectc

implement
. Fubini’s theorem

P : implement the principle of stationary phase W0
Ig [ 5o (x —5 ign(Sp (X hxXV) X(r)

SXO en O[dﬂ] f,:o ZXUE{crit. pts Sp} eh 0(x0) |det (XO)‘ 2 € @ Hsign(Sy ( O))(27rh) ><[““/[ <>? <

= Feynman diagram Feynm\an d\lagrarr/;s\

Problem 2: To apply the perturbative approach the critical points of Sy have to be isolated and regular but,
in a gauge invariant action, critical points appear in orbits

- How to eliminate these
’ redundant symmetries?

Roberta A. Iseppi

The BV Construction in NCG: Towards the In



The BV construction

The BV construction: where it was discovered

Context: quantization of a gauge theory (Xo, So) via a path integral approach v Z:= SXD veSD[d/L] @
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= Feynman diagram Feynman diagrams

Problem 2: To apply the perturbative approach the critical points of Sy have to be isolated and regular but,
in a gauge invariant action, critical points appear in orbits

L take the quotient w.r.t. the action of the group v~ orbifolds ‘*

- How to eliminate these -~

’ redundant symmetries?
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The BV construction: where it was discovered

Context: quantization of a gauge theory (Xo, So) via a path integral approach v Z:= SXD veSD[d/L] @
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= Feynman diagram Feynman diagrams

Problem 2: To apply the perturbative approach the critical points of Sy have to be isolated and regular but,
in a gauge invariant action, critical points appear in orbits

L take the quotient w.r.t. the action of the group v~ orbifolds ‘*

- How to eliminate these -~

> H ?
redundant symmetries? "~ add extra auxiliary variables vw~» ghost fields v

+00 2 +00 ¢+ (P
ST e dx s (T2 (T e ) dxdly
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The BV construction
The introduction of ghost fields

Def. A ghost field ¢ is characterized by its ghost degree deg(y) € Z & its parity: €(p) € {0,1} where e(p) =0
is bosonic/real and e(¢) = 1 is fermionic/Grassm. s.t. deg(p) = e(p) mod Z/Z2. For a ghost ¢, its
antighost ™ has deg(¢™) = —deg(p)—1 & €(¢™*) = €(p)+1 mod Z/2Z.
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The BV construction
The introduction of ghost fields

Def. A ghost field ¢ is characterized by its ghost degree deg(y) € Z & its parity: €(p) € {0,1} where e(p) =0
is bosonic/real and e(¢) = 1 is fermionic/Grassm. s.t. deg(p) = e(p) mod Z/Z2. For a ghost ¢, its
antighost ™ has deg(¢™) = —deg(p)—1 & €(¢™*) = €(p)+1 mod Z/2Z.

Initial data: a gauge theory
» Xo: vector sp =~ Aﬂ’g
> So € OX() = ]R[Xl7 . ,an]

+ G = U(n) v
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The BV construction
The introduction of ghost fields

Def. A ghost field ¢ is characterized by its ghost degree deg(y) € Z & its parity: €(p) € {0,1} where e(p) =0
is bosonic/real and e(¢) = 1 is fermionic/Grassm. s.t. deg(p) = e(p) mod Z/Z2. For a ghost ¢, its
antighost ™ has deg(¢™) = —deg(p)—1 & €(¢™*) = €(p)+1 mod Z/2Z.

Initial data: a gauge theory BV extended theory
» Xo: vector sp = Aﬂ’g » X = (—DiEZ[)N(]i, Z-graded super-vect. sp., X = F@® F*[1], [X]° = Xo
>SOEOX0=R[X17...,XH2:| [ ‘

»G = U(n) nd graded locally free Ox;-mod.

with hom. comp. of finite rank

»Se[05]°, st -§|x0 =S & {55 =0 sol classical master eq.

(L} 0L x0F - O™ (o o) = 5
1-degree Poisson strut. on O
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The BV construction
The introduction of ghost fields

Def. A ghost field ¢ is characterized by its ghost degree deg(y) € Z & its parity: €(p) € {0,1} where e(p) =0
is bosonic/real and e(¢) = 1 is fermionic/Grassm. s.t. deg(p) = e(p) mod Z/Z2. For a ghost ¢, its
antighost ™ has deg(¢™) = —deg(p)—1 & €(¢™*) = €(p)+1 mod Z/2Z.

Initial data: a gauge theory BV extended theory
» Xo: vector sp = Aﬂ’g » X = (—DiEZ[)N(]i, Z-graded super-vect. sp., X = F @ F*[1], [X]° = Xo
> SOGOXO :R[X17~-'axn2:| :”l./ t ‘

_ graded locally free Ox,-mod.
»g= U(n) with hom. comp. of finite rank

»Se [0]°, st -§|x0 =S & {55 =0 sol classical master eq.
{,}: 05 xOF > O™ {pk ¢} =6

Note: 1-degree Poisson strut. on O

[1] While F accounts for the ghost field sector, F*[1] describes the anti-ghost content «~~> there is a
symmetric structure between ghost fields and corresponding anti-ghost fields.
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The BV construction
The introduction of ghost fields

Def. A ghost field ¢ is characterized by its ghost degree deg(y) € Z & its parity: €(p) € {0,1} where e(p) =0
is bosonic/real and e(¢) = 1 is fermionic/Grassm. s.t. deg(p) = e(p) mod Z/Z2. For a ghost ¢, its
antighost ™ has deg(¢™) = —deg(p)—1 & €(¢™*) = €(p)+1 mod Z/2Z.

Initial data: a gauge theory BV extended theory
2 ~ ~_ . ~ ~

» Xo: vector sp =~ Ag » X = @,.,[X]', Z-graded super-vect. sp., X = F @ F*[1], [X|° = Xo
> SOEOXO =R[X17...,Xn2:| :*l/ i ‘ 2]

_ graded locally free Ox,-mod.
»g= U(n) with hom. comp. of finite rank

»Se [0]°, st E\xo =S & {55 =0 sol classical master eq.
[2]
{,}: 05 xOF > O™ {pk ¢} =6

Note: 1-degree Poisson strut. on O

[1] While F accounts for the ghost field sector, F*[1] describes the anti-ghost content «~~> there is a
symmetric structure between ghost fields and corresponding anti-ghost fields.

[2] In degree 0: only the initial fields. Restricting to Xo, one gets back the initial, physically relevant, theory.
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The BV construction
The introduction of ghost fields

Def. A ghost field ¢ is characterized by its ghost degree deg(y) € Z & its parity: €(p) € {0,1} where e(p) =0
is bosonic/real and e(¢) = 1 is fermionic/Grassm. s.t. deg(p) = e(p) mod Z/Z2. For a ghost ¢, its
antighost ™ has deg(¢™) = —deg(p)—1 & €(¢™*) = €(p)+1 mod Z/2Z.

Initial data: a gauge theory BV extended theory
» Xo: vector sp x~ Aﬂ’g » X = (—DiEZ[)N(]i, Z-graded super-vect. sp., X = F@®F*[1], [)N(]O =Xo

> SoGOXO =R[X17...,Xn2:| [ ‘ 2]
» G = U(n) v graded locally free Oxo—mod.

with hom. comp. of finite rank

»Se[05]° st Slx, =S & {5 S}=0 sol. classical master eq.
[2] [3]
{0 }: 05 x 08 > O™ o o} = 6y
Note: 1-degree Poisson strut. on O

[1] While F accounts for the ghost field sector, F*[1] describes the anti-ghost content «~~> there is a
symmetric structure between ghost fields and corresponding anti-ghost fields.

[2] In degree 0: only the initial fields. Restricting to Xo, one gets back the initial, physically relevant, theory.

[3] Each BV-extended theory naturally induces a cohomology complex: the BV-complex.
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The BV construction

The BV construction: the key idea

BV cohom. complex: » Cochain sp.: C/(X,dz) = [O3]' » Coboundary op.: dz := {5, ~}, dz=0
These cohomology groups capture relevant
physical information about (Xp, So):

Hu(X, dz) = {classical observables}

©» The BV construction ~~» cohomological
approach to the study of gauge theories.
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The classical /quantum BV construction

CEV(X dé/sq) = Chy(Xe, ds/5q,¢)

BV complex total complex

! !

(Xo, So) + gh./anti-gh. (X E'/Sq) + aux. ﬂdsr (Xe, S¢/Sa.0)
BV-extended th.

gauge-
—
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initial total th

gauge th.

CorsT(Xe, dSr/Sq,:) lc

BRST complex

f

(Xe, St/Sq.6) |2
gauge-fixed th.
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The BV construction: the key idea

BV cohom. complex: » Cochain sp.: C/(X,dz) = [O3]' » Coboundary op.: dz := {5, ~}, dz=0

These cohomology groups capture relevant | The classical/quantum BV construction
physical information about (Xg, Sp): < .
~ . (%o, 50) Cav(X, dé/sq) = Cpy(Xe, dsys, .) Cors(Xe, dse/sq.0)lz
I-,%V(X? dg) = {CIaSSICal ObSerVableS} BV complex total complex BRST complex
The BV construction v~ cohomological T T T
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Key idea: The integral () is invariant under the change of Lagrangian submanifold £ in the homotopy
[B-V]  class of [Xo] = X; and of action S, in the quantum BV of So
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The BV construction: the key idea

BV cohom. complex: » Cochain sp.: C'(X, dz) = [Ox]'

These cohomology groups capture relevant
physical information about (Xp, So):

Hu(X, dz) = {classical observables}
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» Coboundary op.: dg:= {5,-1, d‘%g =0

The classical /quantum BV construction
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BV complex total complex
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Key idea: The integral () is invariant under the change of Lagrangian submanifold £ in the homotopy
[B-V]  class of [Xo] = X; and of action S, in the quantum BV of So

(#) S, et

ES

[du] = S[c Jex, €7 dusv
The goal: To find » £ Lagrangian < X; ghost sector &
» 54 € CP(Xp)[[A]], sol. quant. master eq.
s.t. Sq|z has isolated and regular critical points.
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Noncommutative geometry and QFT

How noncommutative geometry?

Key idea: extend the classical notion of manifold by translating the geometrical concept in algebraic terms

Differential geometry Noncommutative geometry
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How noncommutative geometry?

Key idea: extend the classical notion of manifold by translating the concept in terms
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Noncommutative geometry and QFT

How noncommutative geometry?

Key idea: extend the classical notion of manifold by translating the concept in

Differential geometry

terms

5 Noncommutative geometry

Topology: locally compact, Hausdorff «~~» commutative C*-algebras Gelfand-Naimark Th [1943]

topologial spaces
X -
A(A), weak*-top. «

Qo&Y

(CO(X), H Hsuw *) noncommut.w noﬂp—commut.
top. spaces C*-algebras
(A, (L] =)

Metric: closed, connected Riemannian <~

spin manifold
& m R

Roberta A. Iseppi

even, real spectral triples (A, H, D, J,v) Reconstruction th.
s.t. A= commutative & 8 axioms Connes [2008]

(Cm(M)v Lz(Mv 5)7 aI\/l7 J?’V)

» L2(M,S) = square-integrable sections of the spinor bundle S

» #1y:= —i(¢oVv®) Dirac operator
» J=c Clifford multiplication
>y =15
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Noncommutative geometry and QFT

The notion of spectral triple & more

Def: A spectral triple (A, H, D) consists of:

» an involutive unital algebra A, faithfully represented as operators on a Hilbert space H, A < B(H);
» a separable Hilbert space H;

» a self-adjoint operator D: H — H, with dense domain, such that the resolvent (i — D)~
compact operator and the commutators [D, a] are bounded for each a€ A

lisa
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Noncommutative geometry and QFT

The notion of spectral triple & more

Def: A spectral triple (A, H, D) consists of:

» an involutive unital algebra A, faithfully represented as operators on a Hilbert space H, A < B(H);
» a separable Hilbert space H;

» a self-adjoint operator D:H — H, with dense domain, such that the resolvent (i — D)™! is a
compact operator and the commutators [D, a] are bounded for each a€ A

Def: A spectral triple (A, H, D) is even if there is a Z/2-grading v: H — H s.t.
[v,a]=0 Vae A  and Dy =—yD
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Noncommutative geometry and QFT
The notion of spectral triple & more

Def: A spectral triple (A, H, D) consists of:
» an involutive unital algebra A, faithfully represented as operators on a Hilbert space H, A < B(H);
» a separable Hilbert space H;

» a self-adjoint operator D:H — H, with dense domain, such that the resolvent (i — D)™! is a
compact operator and the commutators [D, a] are bounded for each a€ A

Def: A spectral triple (A, H, D) is even if there is a Z/2-grading v: H — H s.t.
[v,a]=0 Vae A  and Dy =—yD

Def. A real structure on a spectral triple (A, H, D) consists of an antilinear isometry J: H — H such that:
[a,J6*J 1] =0 Vabe A and [[D,a],Jb*J '] =0, VabeA

commutation relation first-order condition
Moreover: KO-dim. o 1 2 3 4 5 6 7 it reflects the properties
P=+ld 1 1 -1 -1 -1 -1 1 1 of the periodicity of
JD=+DJ 1 —1 1 1 1 -1 1 1 KO-homology and real
g 1 -1 1 -1 K-theory
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Noncommutative geometry and QFT

From spectral triples to gauge theories

Classically: G B a gauge theory is understood as a over a manifold M describing
the spacetime, while the physics is modeled in terms of connections, sections of
M  the bundle and automorphisms of the structure group.
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From spectral triples to gauge theories

Classically: G B a gauge theory is understood as a over a manifold M describing
the spacetime, while the physics is modeled in terms of connections, sections of
M  the bundle and automorphisms of the structure group.

Def. A gauge theory (Xp, So,G) is a physical theory with
Xo = field configuration space So : Xo — R, action functional
and G a group acting on Xy through an action F: G x Xg — Xp, such that it holds:
So(F(g #)) = Solp)  Vpe Xo,Vgeg.
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Classically: G B a gauge theory is understood as a over a manifold M describing

the spacetime, while the physics is modeled in terms of connections, sections of

M  the bundle and automorphisms of the structure group.

Def. A gauge theory (Xp, So,G) is a physical theory with

Xo = field configuration space So : Xo — R, action functional

So(Flg, @) = So(p)  VpeXo,Vgeg.

and G a group acting on Xy through an action F: G x Xg — Xp, such that it holds:
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Classically: G B a gauge theory is understood as a over a manifold M describing

the spacetime, while the physics is modeled in terms of connections, sections of

M  the bundle and automorphisms of the structure group.

Def. A gauge theory (Xp, So,G) is a physical theory with

Xo = field configuration space So : Xo — R, action functional

So(Flg, @) = So(p)  VpeXo,Vgeg.

and G a group acting on Xy through an action F: G x Xg — Xp, such that it holds:

Each spectral
triple induces a
gauge theory

< For the action — : the physical action depends only on the spectrum of D
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Noncommutative geometry and QFT

From spectral triples to gauge theories

Classically: G B a gauge theory is understood as a over a manifold M describing
the spacetime, while the physics is modeled in terms of connections, sections of
M  the bundle and automorphisms of the structure group.

Def. A gauge theory (Xp, So,G) is a physical theory with
Xo = field configuration space So : Xo — R, action functional Each spectral
triple induces a

and G a group acting on Xy through an action F: G x Xg — Xp, such that it holds:
gauge theory

So(Flg, @) = So(p)  VpeXo,Vgeg.

< For the action — : the physical action depends only on the spectrum of D
Def. Given a spectral triple (A, H, D), its spectral action is defined as:
_ D+
where: Slee] = Tr(f( SD))
»pe{p=2,a[D bl:¢* =p,a,bie A} inner fluctuations of the operator D
» A fixes the energy scale
» f s a test function, plays a role only via its momenta fy:=f(0), fi:= S;OO flv)v " dv
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Noncommutative geometry and QFT

The Standard model as an almost-commutative spectral triple Chamseddine, Connes, Marcolli [2007]
spectral triple (A, H, D) D gauge theory  (Xo, So,G)
» A = unital *-alg., Ac B(#H) » Xo = {9 =3, 3[D, bj] : ¢* = o} v~ conf. sp = inner fluctuations
» H = Hilbert space » So[D+ ¢] = Tr(f(D + ¢)) v~ action func. = spectral action
» D:H — H = self-adj. operator » G =U(A) v~ gauge group = unitary elements in A
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The Standard model as an almost-commutative spectral triple Chamseddine, Connes, Marcolli [2007]
spectral triple (A, H, D) D gauge theory  (Xo, So,G)
» A = unital *-alg., Ac B(#H) » Xo = {9 =3, 3[D, bj] : ¢* = o} v~ conf. sp = inner fluctuations
» H = Hilbert space » So[D+ ¢] = Tr(f(D + ¢)) v~ action func. = spectral action
» D:H — H = self-adj. operator » G =U(A) v~ gauge group = unitary elements in A

~ Does all of this describe any physically relevant model?
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Noncommutative geometry and QFT

The Standard model as an almost-commutative spectral triple Chamseddine, Connes, Marcolli [2007]
spectral triple (A, H, D) D gauge theory  (Xo, So,G)
» A = unital *-alg., Ac B(#H) » Xo = {9 =3, 3[D, bj] : ¢* = o} v~ conf. sp = inner fluctuations
» H = Hilbert space » So[D+ ¢] = Tr(f(D + ¢)) v~ action func. = spectral action
» D:H — H = self-adj. operator » G =U(A) v~ gauge group = unitary elements in A

~ Does all of this describe any physically relevant model?

M = compact Riem. spin manifold 4 F= finite noncomm. space
with ) with finite real spectral triple
- (C*(M), L*(M, S), D, Jw, ym) (COH® M;3(C),C*, Dr, Jr, )
Gauge group: e ' .
Standard Model of particles, with neutrino U(1) x SU(2) x SU(3) 96 particles

mixing and minimally coupled to gravity,

Product: (C*(M)® [C@®H® Ms(CT)], L2(M,S) ® C*, D ® Id + v ® Dr, Ju ® Je, ym @ Yr)
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Noncommutative geometry and QFT

The Standard Model as an almost-commutative spectral triple [2]

Two notions of action: Spectral action: SID+ ] = Tr(AD+ ¢));

» for f a regular function (good decay, cut off...);

» for ¢ a self-adjoint element, with ¢ =3, 5[D,b], a;, bje A
Fermionic action: S[w] = (), Dy,

» for ¢, ) the inner product structure on #;

» for e HscH ) we can impose a Grassmannian nature to the elements in #;
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Noncommutative geometry and QFT

The Standard Model as an almost-commutative spectral triple [2]

Two notions of action:

Spectral action: SID+ ] = Tr(AD+ ¢));

» for f a regular function (good decay, cut off...);

» for ¢ a self-adjoint element, with ¢ =3, 5[D,b], a;, bje A
Fermionic action: S[w] = (), Dy,

» for ¢, ) the inner product structure on #;

» for e HscH ) we can impose a Grassmannian nature to the elements in #;

So(A, ) = Tr(f(Dsm/N))  +{Jsm(v), Dsuip)

fermionic action

& The full Lagrangian (in Euclidean signature) of the Standard Model can be obtained as asymptotic
expansion of the action determined by applying the spectral action principle, plus the fermioninc action.
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Noncommutative geometry and QFT

The Standard Model as an almost-commutative spectral triple [2]

Two notions of action: Spectral action: SID+ ] = Tr(AD+ ¢));

» for f a regular function (good decay, cut off...);

» for ¢ a self-adjoint element, with ¢ =3, 5[D,b], a;, bje A
Fermionic action: S[w] = (), Dy,

» for ¢, ) the inner product structure on #;

» for e HscH ) we can impose a Grassmannian nature to the elements in #;

So(A, ) = Tr(f(Dsm/N))  +{Jsm(v), Dsuip)

fermionic action

& The full Lagrangian (in Euclidean signature) of the Standard Model can be obtained as asymptotic
expansion of the action determined by applying the spectral action principle, plus the fermioninc action.

But: ©» Compactness: does not work well with the notion of causality v~~~ local version of spectral triples
» Riemannian: to describe gravity we need Lorentian signature v~~» at the moment still missing
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Towards a BV formalism in NCG

Towards the quantization of the spectral action

But... all of this is still classical. T How can we quantize our theory?
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Towards a BV formalism in NCG

Towards the quantization of the spectral action

But... all of this is still classical. / How can we quantize our theory? w~» Path integral approach

So := Tr(f{D/N)), spec\t:al action

Z= Sxo er [dp]

/

Xo = Qp(A)s.., inner-fluct. of D
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Towards a BV formalism in NCG

Towards the quantization of the spectral action

But... all of this is still classical. / How can we quantize our theory? w~» Path integral approach

So := Tr(f(D/N)), spectral action IF one considers the theory induced by the spectral triple:
‘ » D= @y := —i(¢o V®), Dirac op., » determines the Riem.
Z=¥, en*[du] » Xo = space of on M
/ > Possible approach to quantum gravity (Barrett, Glaser, Khalkhali, ...)

Xo = Qp(A)s.., inner-fluct. of D
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Towards a BV formalism in NCG

Towards the quantization of the spectral action

But... all of this is still classical. / How can we quantize our theory? w~» Path integral approach

So := Tr(f(D/N)), spectral action IF one considers the theory induced by the spectral triple:

‘ » D= @y := —i(¢o V®), Dirac op., » determines the Riem.
Z=¥, en*[du] » Xo = space of on M

/

<> Possible approach to quantum gravity (Barrett, Glaser, Khalkhali, ...
Xo = Qp(A)s..., inner-fluct. of D ( )

Problem 1: the measure [du] is not well defined
Idea: to see the manifold M as the limit of a finite object vw»> M,(C), n — 00, matrix models
Xo={Ae M,(C): A* = A} & D = fixed self-adjoint matrix
“ Theory induced by a spectral triple
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Towards a BV formalism in NCG

Towards the quantization of the spectral action

But... all of this is still classical. / How can we quantize our theory? w~» Path integral approach
So := Tr(f(D/N)), spectral action IF one considers the theory induced by the spectral triple:
‘ » D= @y := —i(¢o V®), Dirac op., » determines the Riem.
Z=¥, en*[du] » Xo = space of on M

/

<> Possible approach to quantum gravity (Barrett, Glaser, Khalkhali, ...
Xo = Qp(A)s..., inner-fluct. of D ( )

Problem 1: the measure [du] is not well defined
Idea: to see the manifold M as the limit of a finite object vw»> M,(C), n — 00, matrix models
Xo={Ae M,(C): A* = A} & D = fixed self-adjoint matrix
“ Theory induced by a spectral triple

Problem 2: as the induced theory is a gauge theory, the critical points of Sy appear in orbits
Idea: to develop a for spectral triples
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Towards a BV formalism in NCG

Towards the quantization of the spectral action

But... all of this is still classical. / How can we quantize our theory? w~» Path integral approach
So := Tr(f(D/N)), spectral action IF one considers the theory induced by the spectral triple:
‘ » D= @y := —i(¢o V®), Dirac op., » determines the Riem.
Z=¥, en*[du] » Xo = space of on M
/ > Possible approach to quantum gravity (Barrett, Glaser, Khalkhali, ...)

Xo = Qp(A)s.., inner-fluct. of D

Problem 1: the measure [du] is not well defined
Idea: to see the manifold M as the limit of a finite object vw»> M,(C), n — 00, matrix models
Xo={Ae M,(C): A* = A} & D = fixed self-adjoint matrix

“ Theory induced by a spectral triple

Problem 2: as the induced theory is a gauge theory, the critical points of Sy appear in orbits
Idea: to develop a for spectral triples

Recall: the fully noncommutative case has:
Xo = infinite-dim. vector space & D = unbounded self-adjoint op., with compact resolvant
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Towards a BV formalism in NCG

The BV construction for finite spectral triples

> We want to study the BV construction for gauge theories induced by finite spectral triples
(MH(C)>Cn> D7 f)
Questions and goals:

» Can the BV construction be described in terms of spectral triples?

» Can the BRST cohomology be related to other (better understood) cohomological theories?
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Towards a BV formalism in NCG

The BV construction for finite spectral triples

> We want to study the BV construction for gauge theories induced by finite spectral triples
(MH(C)>Cn> D7 f)
Questions and goals:

» Can the BV construction be described in terms of spectral triples?
» Can the BRST cohomology be related to other (better understood) cohomological theories?

Noncommutative geometry

n 7
(Ma(C),C", D, f) —> < —_— ———
initial spectral triple BV spej:ral triple total sp]:tral triple gauge-fixing fermion
L ~ B [ ~ B [ ~ 3
CBV(Xa dE) = @& CBV(XU dSt) = & CBRST(Xh dSt)|W = <@
BV complex = 77 BV tot complex = 77 BRST complex =~ 7?7
(X0,%) ——> (X,5) —— > (X,S) > (Xe, Se)lw
initial gauge theory extended theory total theory gauge-fixed theory

BV construction & BRST cohomology
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Towards a BV formalism in NCG

The BV construction for finite spectral triples

> We want to study the BV construction for gauge theories induced by finite spectral triples
(MH(C)>Cn> D7 f)
Questions and goals:

» Can the BV construction be described in terms of spectral triples?
» Can the BRST cohomology be related to other (better understood) cohomological theories?

Noncommutative geometry arXiv:2410.11823

(Mn(C),C", D, f) —= (Agv, Hsv, Dpv, Jpy) ———> (A¢, He, Dt Jy) ———————> Ve fé)l( (Hav,r® Haux,f)

initial spectral triple BV spej:ral triple total sp]:tral triple gauge-fixing fermion
o v ~ . ~ . ~
CBV(X7 dE) = CH(87M) CBV(XUdSt) = CH(BUM) CBRST(XUdSt)“U = CH(B“”M)
BV/ Hochschild complex BV tot / Hochschild complex BRST/ Hochschild complex
(X0,%) ——> (X,5) —— > (X,S) > (Xe, Se)lw
initial gauge theory extended theory total theory gauge-fixed theory

BV construction & BRST cohomology
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Towards a BV formalism in NCG

The BV construction for finite spectral triples [2]

Step 1: ’(AO,HO, Do) & f BYconstruction (Asv, Hsv, Dsv, Jsv) ‘ Jpv: to go from C to R.

: How to extract the information from the initial spectral triple (Ao, Ho, Do)?
ghost fields: Which role are the ghost fields going to play in the BV-spectral triple?

extended action: How can we determine Sgy starting from (Do, f)?
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Towards a BV formalism in NCG

The BV construction for finite spectral triples [2]

Step 1: ’(AO,HO, Do) & f BYconstruction (Asv, Hsv, Dsv, Jsv) ‘ Jpv: to go from C to R.

I How to extract the information from the initial spectral triple (Ao, Ho, Do)?

ghost fields: Which role are the ghost fields going to play in the BV-spectral triple?

extended action: How can we determine Sgy starting from (Do, f)?

initi Ao, Ho, Do) & f Asv, Hsv, Dsv, Jsv

initial spectral tr. ( ) BV spectral tr. ( )
v / I v /

induced BV-extended §
gallgeutcheeory Xo = Q'(Ao) So = TH(f(Do + ¢)) sﬁeg?y X =Xo+ X3+ Havr Sev= }Sem
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Towards a BV formalism in NCG

The BV construction for finite spectral triples [2]

Step 1: ’(AO,HO, Do) & f BYconstruction (Asv, Hsv, Dsv, Jsv) ‘ Jpv: to go from C to R.

: How to extract the information from the initial spectral triple (Ao, Ho, Do)?
ghost fields: Which role are the ghost fields going to play in the BV-spectral triple?

extended action: How can we determine Sgy starting from (Do, f)?
initial spectral tr. (Ao, Ho, Do) & f BV spectral tr. (Asv, Hav, Dsv, Jsv)

¢ /T y /

induced BV-extended §
gallgeutcheeory Xo = Q'(Ao) So = TH(f(Do + ¢)) sﬁeg?y X =Xo+ X3+ Havr Sev= }Sem

The Hilbert space: describes the ghost sector of the BV-extended theory.

Ho = O _tshesfmtighost s 9,0 [M,(C)]_o @ [Ma(C)] 1 @ tM,,(C)]o @ [My(C)]1 ‘

h
e av = [isu(n)]—2 @ [isu(n)]—1 @ [isu(m)]: @ [su(n)]. & fully determined by

=0®Q*[1] su(n) = u(Ao)/Z(u(Ao))

Roberta A. Iseppi
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Towards a BV formalism in NCG

The BV construction for finite spectral triples [3]

The operator Dpy determines the BV-action Sgy := S— So as induced fermionic action.
D ( 0 R) R:Q — Q*[1] The linear operators R and S are represented, as block matrices, by
By =

R* S H —
s:@-Q 1 0 —ad0 e[ 0 )
2 \ad(0) —ad(x) )’ ©\ad(x*)  ad(C*)
where ad(z) : Ma(C) — M,(C); Explicitly, the matrix representation of these linear operators has

o> [a(z),p]-. I position (p,r) the term: — 37 i+ foqr 24

Structure constants
of su(n)
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Towards a BV formalism in NCG

The BV construction for finite spectral triples [3]

The operator Dpy determines the BV-action Sgy := S— So as induced fermionic action.

0 R R:Q — Q*[1] The linear operators R and S are represented, as block matrices, by
DBV=(R>I< S) SQ—>Q
’ Rl 0 —ad(C) . 0 ad(x*)
2 \ad(0) —ad(x) )’ ©\ad(x*)  ad(C*)
where ad(z) : Ma(C) — M,(C); Explicitly, the matrix representation of these linear operators has
¢ [a(z),p]_. in position (p,r) the term: — 37 i+ foqr 24

Structure constants

The self-adjoint operator Dgy is completely obtained by: of su(n)

= linearity in the antifields, which enforces the zero-block matrix in position (1,1) in Dgy; e By

} Conditions of
construction

©» degree condition, that is, the induced fermionic action has to have total ghost degree 0,

which determines the variables to insert in each block;

, o oo . h
“ structure constants of su(n) = u(Ag)/Z(u(Ao)), which dictate the entries in each block matrix. ] bsyyrtmf,ft?i“egse
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Towards a BV formalism in NCG

The BV construction for finite spectral triples [3]

The operator Dpy determines the BV-action Sgy := S— So as induced fermionic action.

0 R R:Q — Q*[1] The linear operators R and S are represented, as block matrices, by
DBV=(R>I< S) SQ—>Q
’ Rl 0 —ad(C) s 0 ad(x*)
2 \ad(0) —ad(x) )’ ©\ad(x*)  ad(C*)
where ad(z) : Ma(C) — M,(C); Explicitly, the matrix representation of these linear operators has
¢ [a(z),p]_. in position (p,r) the term: — 37 i+ foqr 24

Structure constants

The self-adjoint operator Dgy is completely obtained by: of su(n)

= linearity in the antifields, which enforces the zero-block matrix in position (1,1) in Dgy; By

} Conditions of
construction

©» degree condition, that is, the induced fermionic action has to have total ghost degree 0,

which determines the variables to insert in each block;

o o . h
“ structure constants of su(n) = u(Ag)/Z(u(Ao)), which dictate the entries in each block matrix. ] bsyy;,f,i?f;gse

7 How extend the construction to the general case (Ao, Ho, Do), with Ay an infinite dim, noncomm. =-algebra?
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Towards a BV formalism in NCG

The variation of the spectral action under inner fluctuations Chanseddine, Connes 2006

The canonical spectral triple: , M = compact Riem. spin mfld, dim(M) < 4

Theorem: Let's supposed the vanishing of the tadpole. Then, for M a spin manifold of dim. 4, the inner
fluctuation of the scale-independent part of the spectral action is given by

TrH(|D+ A°) — Tr(|D|°) = 1§ dA+A2f—§gw(AdA+§A3)
1]
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Towards a BV formalism in NCG

The variation of the spectral action under inner fluctuations Chanseddine, Connes 2006

The canonical spectral triple: , M = compact Riem. spin mfld, dim(M) < 4

Theorem: Let's supposed the vanishing of the tadpole. Then, for M a spin manifold of dim. 4, the inner
fluctuation of the scale-independent part of the spectral action is given by

TrH(|D+ A°) — Tr(|D|°) = 1§ dA+A2}2—§gw(AdA+§A3)
1]

[1] Yang-Mills functional with

To= positive Hochschild 4-cycle
where the positivity in Hochschild
cohomology is the condition:

STO ww* =0, YweQ?

where the adjoint w* is defined by:

(aodardax)™ = dal das ay
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Towards a BV formalism in NCG

The variation of the spectral action under inner fluctuations Chanseddine, Connes 2006

The canonical spectral triple: , M = compact Riem. spin mfld, dim(M) < 4

Theorem: Let's supposed the vanishing of the tadpole. Then, for M a spin manifold of dim. 4, the inner
fluctuation of the scale-independent part of the spectral action is given by

Tr|D+ Al°) — Tr(|D|°) = 1§, (dA+ A%*)? — 2§ (AdA + 2A°)

(1] (2]
[1] Yang-Mills functional with [2] Chern-Simons functional with 1= cyclic 3 cocycle
To= positive Hochschild 4-cycle . .

where the positivity in Hochschild Note: under the gauge transformation
cohomology is the condition: Yu(A) = udu™® + uAu*, ue U(A)

STO ww* >0, YweQ? the CS function fulfills the following invariance rule
where the adjoint w™ is defined by: CSy(7u(A)) = CSy(A) + 3, up

(aodardax)™ = dal das ay where (1, u) is the pairing between HC*(A) and K1(A)
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Towards a BV formalism in NCG

The variation of the spectral action under inner fluctuations Chanseddine, Connes 2006

The canonical spectral triple: , M = compact Riem. spin mfld, dim(M) < 4

Theorem: Let's supposed the vanishing of the tadpole. Then, for M a spin manifold of dim. 4, the inner
fluctuation of the scale-independent part of the spectral action is given by

Tr|D+ Al°) — Tr(|D|°) = 1§, (dA+ A%*)? — 2§ (AdA + 2A°)
(1] 2]

[1] Yang-Mills functional with [2] Chern-Simons functional with 1= cyclic 3 cocycle

To= positive Hochschild 4-cycle

where the positivity in Hochschild Note: under the gauge transformation

cohomology is the condition: Yu(A) = udu™® + uAu*, ue U(A)

STO ww* >0, YweQ? the CS function fulfills the following invariance rule
where the adjoint w™ is defined by: CSy(7u(A)) = CSy(A) + 3, up

(aodardax)™ = dal das ay where (1, u) is the pairing between HC*(A) and K1(A)

» Under the tadpole hypothesis the pairing of a 3-cyclic cocycle with an element in K1(A) vanishes
v~ gauge invariance of the CS functional
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Towards a BV formalism in NCG

Chern—Simons and Yang—l\/lills as “building blocks” Van Nuland, Van Suijlekom, 2022

Can we extend this result to noncommutative infinite-dimensional *-algebras?

Theorem: Given (A, H, D) any spectral triple, the inner fluctuation of the spectral action is given by:
THAD + A)) — TH(AD) = 532, & 5. YMi(A) + 5§, CSu 1(A)

In the above theorem:

» YMy: higher Yang-Mills th., SM F, F= dA+ A® » CSyk—1: generalised Chern-Simons theory
» ok: Hochschild cocycle » Yok_1: odd (b, B)—cocycle
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Towards a BV formalism in NCG

Chern—Simons and Yang—l\/lills as “building blocks” Van Nuland, Van Suijlekom, 2022

. Can we extend this result to noncommutative infinite-dimensional #-algebras?

Theorem: Given (A, H, D) any spectral triple, the inner fluctuation of the spectral action is given by:
THAD + A)) — TH(AD) = 532, & 5. YMi(A) + 5§, CSu 1(A)

In the above theorem:

» YMy: higher Yang-Mills th., SM F, F= dA+ A® » CSyk—1: generalised Chern-Simons theory
» ok: Hochschild cocycle » Yok_1: odd (b, B)—cocycle

Note:

= This theorem holds for any spectral triples, commutative or not, of any dimension, beyond the case of
4-dim. spin manifolds,

= This theorem holds at any order in the scale parameter A.
= The spectral action is globally invariant under the action of the gauge group.

But... each Yang-Mills term is, individually, gauge invariant, while the Chern-Simons terms are gauge
invariant only if taken all together, at the same time
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Towards a BV formalism in NCG

Chern—Simons and Yang—l\/lills as “building blocks” Van Nuland, Van Suijlekom, 2022

. Can we extend this result to noncommutative infinite-dimensional #-algebras?

Theorem: Given (A, H, D) any spectral triple, the inner fluctuation of the spectral action is given by:
THAD + A)) — TH(AD) = 532, & 5. YMi(A) + 5§, CSu 1(A)

In the above theorem:

» YMy: higher Yang-Mills th., SM F, F= dA+ A® » CSyk—1: generalised Chern-Simons theory
» ok: Hochschild cocycle » Yok_1: odd (b, B)—cocycle

Note:

= This theorem holds for any spectral triples, commutative or not, of any dimension, beyond the case of
4-dim. spin manifolds,

= This theorem holds at any order in the scale parameter A.
= The spectral action is globally invariant under the action of the gauge group.

But... each Yang-Mills term is, individually, gauge invariant, while the Chern-Simons terms are gauge
invariant only if taken all together, at the same time

Roberta A. Iseppi
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Towards a BV formalism in NCG

Chern-Simons theory in the noncommutative setting

joint with T. Krajewski and C. Perez-Sanchez

Classically:

» M = compact oriented 3-dim. manifold Field content: Fcs = Q'(M, g)

» G= simple, simply connected Lie group . . ) 1 1

» 7 P— M, principal G-bundle “ Action functional: Scs[A] = §,, 3(A, dA) + 5(A,[A A])
» s: M — P, section of the bundle P Gauge transformation: A — A8 = gAg™! + gdg™*
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Towards a BV formalism in NCG

Chern-Simons theory in the noncommutative setting

joint with T. Krajewski and C. Perez-Sanchez

Classically:

» M = compact oriented 3-dim. manifold Field content: Fcs =~ Q! ( ,9)

» G= simple, simply connected Lie group . .

» 7: P— M, principal G-bundle 7 Action functional: Scs[A] :={,, 3(A, dA) + :(A,[A, A])

» s: M — P, section of the bundle P Gauge transformation: A — A8 = gAg™! + gdg™!

Note: The action Scs is not invariant under gauge transformation but this holds for , for h = keZ.

2k'
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Towards a BV formalism in NCG

Chern-Simons theory in the noncommutative setting

joint with T. Krajewski and C. Perez-Sanchez

Classically:

» M = compact oriented 3-dim. manifold Field content: Fcs = Q'(M, g)

» G= simple, simply connected Lie group . . . 1 1

» 7: P— M, principal G-bundle “ Action functional: Scs[A] = §,, 3(A, dA) + 5(A,[A A])

» s: M — P, section of the bundle P Gauge transformation: A — A8 = gAg™! + gdg™!

Note: The action Scs is not invariant under gauge transformation but this holds for , for h = ﬁ keZ.
In NCG:

Def. A cycle of dim. n is denoted by (Q°(A), d,§), where
» A = unital *-algebra over C
» Q°(A) = ®r=0Q"(A), graded algebra s.t. there exists a representation p: A — Q°(A)
» d:Q°(A) > Q*F1(A), derivation of deg 1, with graded Leibniz rule: d(wn) = d(w)n + (—1)"“!d(n)
» {:Q"(A4) > C, C— linear map s.t.
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Towards a BV formalism in NCG

Chern-Simons theory in the noncommutative setting

joint with T. Krajewski and C. Perez-Sanchez

Classically:

» M = compact oriented 3-dim. manifold Field content: Fcs = Q'(M, g)

» G= simple, simply connected Lie group . . . ¢ 1 1

» 7: P— M, principal G-bundle “ Action functional: Scs[A] = §,, 3(A, dA) + 5(A,[A A])

» s: M — P, section of the bundle P Gauge transformation: A — A8 = gAg™! + gdg™!

Note: The action Scs is not invariant under gauge transformation but this holds for , for h = ﬁ keZ.
In NCG:

Def. A cycle of dim. n is denoted by (Q°(A), d,§), where
» A = unital *-algebra over C
» Q°(A) = ®r=0Q2"(A), graded algebra s.t. there exists a representation p: A — Q°(A)
» d:Q°(A) > Q*F1(A), derivation of deg 1, with graded Leibniz rule: d(wn) = d(w)n + (—1)"“!d(n)
» {:Q"(A4) > C, C— linear map s.t.

Note: The notion of dimension is encoded by the integral, not by the algebra of forms as there is not a
top-degree for forms here.
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Towards a BV formalism in NCG

Chern-Simons theory in the noncommutative setting [2]

joint with T. Krajewski and C. Perez-Sanchez
Given a 3-cycle, one can define the induced Chern-Simons theory:

» Field content: Fyc = Q'(A)

» Action functional: Scsnc[A] := [ AdA + %A3

» Gauge transformation: A — A8 = gAg™! + gdg™! |, for ge U(A)

Note: the theory is

under infinitesimal gauge transformations which are connected to the
identity
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Towards a BV formalism in NCG

Chern-Simons theory in the noncommutative setting [2] Joint with . Krajewski and C. Perez-Sanchez

Given a 3-cycle, one can define the induced Chern-Simons theory:
» Field content: Fyc = Q'(A)

» Action functional: Scsnc[A] := [ AdA + %A3

» Gauge transformation: A — A8 = gAg™! + gdg™! |, for ge U(A)

Note: the theory is under infinitesimal gauge transformations which are connected to the
identity

Step 1: The study of the critical locus

Classically: the critical points of the action functional Scs are flat connections, that is, connections
Ae QY (M, g) st. F=0.
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Towards a BV formalism in NCG

Chern-Simons theory in the noncommutative setting [2] Joint with . Krajewski and C. Perez-Sanchez

Given a 3-cycle, one can define the induced Chern-Simons theory:
» Field content: Fyc = Q'(A)

» Action functional: Scsnc[A] := [ AdA + %A3

» Gauge transformation: A — A8 = gAg™! + gdg™! |, for ge U(A)

Note: the theory is under infinitesimal gauge transformations which are connected to the
identity

Step 1: The study of the critical locus

Classically: the critical points of the action functional Scs are flat connections, that is, connections
Ae QY (M, g) st. F=0.

NCG:  0Scsnc[Al=§6A-F=0. % [1]] F=0 v
[2] 3F#0s.t. {6A-F=0, V6A %
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Towards a BV formalism in NCG

Chern-Simons theory in the noncommutative setting [2] Joint with . Krajewski and C. Perez-Sanchez

Given a 3-cycle, one can define the induced Chern-Simons theory:
» Field content: Fyc = Q'(A)

» Action functional: Scsnc[A] := [ AdA + %A3

» Gauge transformation: A — A8 = gAg™! + gdg™! |, for ge U(A)

Note: the theory is under infinitesimal gauge transformations which are connected to the
identity

Step 1: The study of the critical locus
Classically: the critical points of the action functional Scs are flat connections, that is, connections
Ae QY (M, g) st. F=0.
NCG: 5SCS,NC[A] = S(SA -F=0. @ [1] F=0 v
[2] 3F#0s.t. {6A-F=0, V6A %
The bilinear form {(w,n) := fwn is . To solve this problem we
JA) ={weQ*(A),w#0 s. t.¥YneQ*(A) with || =n—|w|,n#0,{wn= (—1)|w”"‘ §nw = 0}

Roberta A. Iseppi

The BV Construction in NCG: Towards the Infinite-Dim. Case



Towards a BV formalism in NCG

Towards a BV formalism for NC Chern-Simons theory s it . e el ©. Peree s
Classically BV-extended field sp. Fev =NQ°(M,g)® Q' (M, g) ®NQ*(M, g) ® (M, g)
ghost fields, initial fields antifields, antighosts,
Grassmannian fermionic bosonic
BV-action Sy = Scs + SM<A*, daC) + % SM<C*, [C CD
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Towards a BV formalism for NC Chern-Simons theory s it . e el ©. Peree s
Classically BV-extended field sp. Fev =NQ°(M,g)® Q' (M, g) ®NQ*(M, g) ® (M, g)
ghost fields, initial fields antifields, antighosts,
Grassmannian fermionic bosonic
BV-action Sev = Scs + SM<A*, daC) + % SM<C*, [C C
NCG BV-extended field sp. Fev =TNQ(A) @ Q' (A) @ NQ%(A) @ Q3 (A)

< There is an intrinsic notion of dim. related to the integration functional.: we can consider n — k-forms.

BV-action SvaNC = SCS,NC + SA*(CIC-{- 2AC) + 2C* C2
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Towards a BV formalism for NC Chern-Simons theory s it . e el ©. Peree s
Classically BV-extended field sp. Fev =NQ°(M,g)® Q' (M, g) ®NQ*(M, g) ® (M, g)
ghost fields, initial fields antifields, antighosts,
Grassmannian fermionic bosonic
BV-action Sev = Scs + SM<A*, daC) + % SM<C*, [C C
NCG BV-extended field sp. Fev =TNQ(A) @ Q' (A) @ NQ%(A) @ Q3 (A)

< There is an intrinsic notion of dim. related to the integration functional.: we can consider n — k-forms.

BV-action SvaNC = SCS,NC + SA*(CIC-{- 2AC) + 2C* C2

Note: A similar construction can be performed for the case of a (noncommutative) Yang-Mills theory.
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Towards a BV formalism for NC Chern-Simons theory s it . e el ©. Peree s
Classically BV-extended field sp. Fev =NQ°(M,g)® Q" (M, g) ®NQ*(M, g) ® (M, g)
ghost fields, initial fields antifields, antighosts,
Grassmannian fermionic bosonic
BV-action Sy = Scs + SM<A*, dAQ + % SM<C*, [C, C]>
NCG BV-extended field sp. Fev=NQ°A) @ Q' (A) N (A) © Q3(A)

< There is an intrinsic notion of dim. related to the integration functional.: we can consider n — k-forms.

BV-action SvaNC = SCS,NC + SA*(CIC-{- 2AC) + 2C* C2

Note: A similar construction can be performed for the case of a (noncommutative) Yang-Mills theory.

5 » How to merge all the different BV-extensions, coming from the different contributions of CS and YM
theories to the full spectral triple?

» How to perform all the other steps in the BV construction, including establishing the BV/BRST complexes
and determining the gauge-fixing Lagrangian?
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Towards a BV formalism in NCG

What is coming? Some interesting open problems

Project 1: The BV formalism for Chern-Simons theory in NCG

Idea: To extend the BV construction for the Chern-Simons theory from classical differential forms

to universal forms induced by cyclic cocycles. /A
T. Krajewski

Project 2: the BV formalism for fuzzy geometries
Idea: To apply the previous result to a fuzzy geometry, which induces a Yang-Mills matrix model:

Swm = —% Trv@n([Dys Dv][Dy; Du]) ) compute SMN(C)4 e 5Pl towards quantum gravity LN

skew-ad] C. Perez-Sanchez

Project 3: The BV formalism for noncommutative manifolds

Idea: To rethink the BV formalism in a purely noncommutative and infinite dimensional
setting.

Project 4: Spectral triples and higher-groups
Idea: To extend the notion of spectral triple to have induced gauge theory with a higher-group

as gauge group A. Frabetti
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