Measuring quantum complexity

in quantum spacetime

Goffredo Chirco

Universita degli Studi di Napoli Federico Il & INFN

v e ¢ INFN
FEDERICO Il NAPOLI

PRD 109, 126008 (2024) - arXiv:2402.07843v3

with S.Cepollaro, G.Cuffaro, G.Esposito, A.Hamma

Cost Action CaLISTA General Meeting 2025
September 17 2025



Lessons from Quantum Theory

1 — difference in quantum vs. classical physics comes in two layers:

® quantum correlations are stronger than classical correlations and
violate Bell's inequalities

® assuming P # NP, quantum physics is exponentially harder to
simulate than classical physics [Gottesman 98]

2 — there is a hierarchy in quantumness:

® highly entangled states created by quantum circuits made of Clifford
gates (CNOT,S,H), stabilizer operations, can be efficiently simulated
on a classical computer in polynomial time (Gottesman-Knill
Theorem) [Gottesman'98] ~ classical!

® set of gates beyond the Clifford group, e.g. (CNOT,H, & T), are
necessary to prepare a generic state that is complex = hard to
simulate classically and unlock quantum advantage [Campbell et a.'17]

> L entanglement & complexity <=> deeper layer of quantumness 1




Entanglement resource in quantum gravity

® entanglement/geometry correspondence: from (S o A)gy
[Bekenstein&Hawking] to (SSET oc Aags) bulk area scaling of

holographic entanglement entropy of boundary states in AdS/CFT
[Ryu&Takayanagi '06]

Sa([¥)) = —tr(palogpa), for [1) = |1ha) @ [hg) Sa=0
> entanglement as the spacetime fabric: classical geometry emergent

from the hierarchy of correlations of the quantum theory on the
boundary



Entanglement resource in quantum gravity

huge efforts in the last two decades

* in AdS/CFT

— which types of entanglement have smooth geometric
representations? [van Ramsdonk '10, Bianchi & Myers '12, Preskill '15, oo]

® in LQG & non-perturbative, background independent approaches

— featuring short-range entanglement in quantum spin networks (area
law, thermal behaviour) to select quantum geometry states with
“good” semiclassical behaviour
[Livine & Terno 05-08, Girelli & Livine 06, Donnelly 08-14, Bianchi & Myers 12,
GC, Rovelli 14, Livine & Charles 16-18, Bianchi &Yokomizo 15-18, Dittrich et
al.14-18, GC, D.Oriti, Zhang 17-18, Bianchi, Dona 19, Colafranceschi et al.
20-22, Bianchi, Livine 23]



Entanglement is n

we recently realize that entanglement is not enough — open issues

® BHs barrier: a lot of the geometry remains uninterpreted in terms of
quantum information
[Susskind 14, Brown, Roberts, Susskind, Swingle and Zhao 16, Myers et al.,...]

® tension between the geometric growth of the Einstein—Rosen bridge
and the early saturation of entanglement entropy > BHs interior
conjectured to dually evolve as quantum chaotic system [Hartman et
all4]

> quantum complexity necessary to extend the entanglement/geometry
correspondence and to fully describe black hole interior dynamics
[Harlow and P. Hayden13, Susskind16, Aaronsonl16, Stanford & Susskind14,
Caputa et al 17, Jefferson & Myers 17, Chapman et al 18, Chagnet et al. 22,
Policastro 22, Cao et al. 24,Leone et al 21].



Entanglement is not en

similar situation on discrete quantum gravity models.

® flat entanglement spectrum in toy models of holographic duality
based on quantum error correction codes (beside AdS/CFT):
constant Rényi entropy > absence of bulk fluctuations = missing
component in holography

> need quantum complexity in the CFT to have backreaction in the
bulk: non-local nonstabilizer complexity controls the level of
geometric response [Cao 23, Cao, Hamma et al 24]

> harnessing complexity of key importance for efficient simulation of
toy models of quantum geometry on quantum computers
[M.Han et al.’19, van der Meer et al. '22, Mielczarek '18-'19, Czelusta '20].



How do we measure quantum complexity?

[ How do we measure quantum complexity? J




How do we measure quantum complexity?

® most work focused so far on quantum computational complexity —
given a reference state how hard it is to construct a quantum target
state within a given precision — in discrete systems and FT:
Jefferson & Myers 17, Hackl 18, Chapman et al 18, Chagnet et al. 22]
e.g. Nielsen’s geometric approach

C(U) = min / ds F(3(s))

vy:l—-U

(geodesic length in unitary space)
our focus on qualitative approach based on quantum resource theory:

® since stabilizer quantum channels ~ classical!, quantum channels
that do not belong to this class are called resource operations or
dynamical resources

e free states F(#H) are created by the set of stabilizer quantum
channels, hence elements of S(H)/F(#H) are resource states

> measure quantum complexity via | nonstabilizerness (MAGIC) J




Stabilizer resource theory for n-qubit systems

let H ~ C?®" n-qubit system; P, the group of all n-qubit Pauli strings:

® operations that leave Pauli strings invariant define the normalizer of
the Pauli group

C(n):={CeU(n),st. YPeP,,CPCT =P cP,}

that is a subset of the unitary group known as the Clifford group

® the Clifford group consists of unitaries generated by the circuits
using Hadamard, Phase, and CNOT gates

® given a computational basis {|/)} of H, free states are defined as the
set of pure stabilizer states of H corresponding to the full Clifford
orbit of {|i)}

STAB = {C|i),CeC(n)}  [Veitchig]



Measuring non-stabilizerness

® measuring MAGIC amounts to quantify which resources allow me to
leave the orbit

ol eH

how far?

> to we quantify non-stabilizerness (magic), we need a monotone
function M which is

(i) faithful: M(|y)) = 0 iff (J¢)) € STAB, otherwise M(|2))) > 0;
(i) Clifford invariant: for C € C(n), M(C |¢)) = M (|¥));
(iii) additive: M(|¢) ® |¢)) = M([¢)) + M(|¢))

how focus on Pauli spectrum: nonstabilizerness reflects in the spread of
the Pauli spectrum decomposition > entropic measure do the job



Entropic measure of non-stabilizerness

® Forany [¢) € H(d =dim(H) = 2"), take the decomposition of
¥ = [¢)X1|, in the Pauli operator basis

1
v=—2 > Tr(wP)P

pPeP,

— the Pauli spectrum is spec(|v)) = {Tr(Py) = (W| P|Y) | P € Py}
® the empirical distribution function in operator space

Nx)=— > dx—=xp)

xpEspec(|19))

captures statistically how aligned the state is with each Pauli
observable

® IPR: define the a-moment of M(x) as

=) = d /dxl_l(x)xzo‘ =d ') tr**(Py)

PGPN



Entropic measure of non-stabilizerness

e for a = 1, tr’¥(P1)) gives the probability of finding P in the
representation of |1)

— = large = spectrum localized in operator space

— =% small: state’s Pauli expectations are broadly distributed
(delocalized)

> quantify the spread by computing the Rényi entropy of =Z%(|¢)):

[Leone, Oliviero, Hamma'22]

[ Ma(|9)) := (1 — @)~ log Z*(|¢)) ]

— 1 € STAB it has support on a subspace of the operator space
spanned by the stabilizers with exactly d elements (e.g. one qubit
dH)=2C(1)={1,2}): = =1 = M,(|¢))) =0

- M,(])) > 0 otherwise (good monotone) [Leone & Bittel 24]



Stabilizer Rényi Entropy (SE)

> My(]1)) quantifies the effective number of Pauli operators with
non-negligible expectation in v: how spread-out the state is in the
operator space

— low My(|#)) localization in operator basis > low complexity
— high M, (]©)) delocalization > high complexity

7 how do we try this notion in quantum gravity? proper definition of
complexity outside the traditional spin-chain formulation, in
particular for quantum field theory (QFT) states in progress
[Cao, White, Swingle 20,23,24]

> natural framework given by spin-network states, an orthonormal
basis of the Hilbert space of loop quantum gravity
[Rovelli & Smolin 95, Baez 96]

® minimal example: quantum tetrahedron —| is it MAGIC free?




Minimal example: quantum tetrahedron

® consider F vectors J7 € R3 with norms |J7| = ji s.t. they sum up to
zero. Non-coplanar normals identify a unique polyhedron
[Minkowski 1897]

. (e.g. F=4)

e each vector live on a sphere: J; € S7 C R®. The space of such
vectors modulo rotations has the structure of a symplectic manifold
[Kapovich & Millson 98]

N
Sk = {n; € (Sz)XF|Zj;n; = 0} /50(3)

® Sr space of shapes of polyhedra at fixed areas (moduli space of
closed F-gons in R® with edge lengths j;, modulo rotations)



Quantum F-gon = intertwiner space

quantization:

® each S? is quantized as the SU(2) irreducible representation V/(jj),
of spin j;, dimension 2j; + 1.

* up to a dimensionful constant, the generators J; of SU(2) give the
quantization of the vectors J;

F .

> then Hunconstrained = ®,':1 V(J/)

® quantization of the closure constraint = zero total angular
momentum (Gauss constraint of a SU(2) Yang-Mills)

> the physical Hilbert space is the SU(2)-invariant intertwiner space

F
Q) Vi)
i=1

I intertwiners states in He are the building blocks (nodes) of
F — valent quantum spin-networks in LQG (similarly in lattice gauge
theory) [Baez 96]

HF = Invsy(2)




Mapping quantum geometry to qubits system

focus on 4-valent intertwiner state |/} € Hp_q = H,; with all j =1/2,
— as Vyp — C? |j = 1/2, i) spins map to qubits
L (Shur) Vi3 =30,D{, @ Vi =2Vo ®3V1 & Vs

® the intertwiner space #H, corresponds to the 2dim degeneracy space
DY ,, which again maps to C

> [ think of |I) € H, := Invsu(g)[’l-ti@/‘;] as a logical intertwiner qubit J

® given the basis {|0),,|1),} € H,, the generic LIQ state reads

6 .0
|I) = cos |0s) + sin Ee’d’ I15)

with 6 € [0, 7] and ¢ € [0,27) angles on the Bloch sphere



Quantum tetrahedron as a logical qubit

® can represent |/) € H; both in the logical basis {|0s),|1s)} € H,; and
in the computational basis {|0),|1)}®* of the 4-qubits space er;g

® use the definition of intertwiner state as recoupling of four spin-j
2j K
_ KM ~K,—M |+ =
- N Z Z Z ijljmz ijgjm4 L’7 m>
K=0 M=—K {ri}

to express the LIQ basis in terms of the computational basis

0,) = = (]0101) + |1010) — |0110) — |1001))

MII—‘

1) = [|oo11> + |1100) — %( 0101) + |1010) + [0110) + |1001) )}

V3

Q [ making |/) from 7-(1/2 requires non-stabilizer resources? 1




Quantum tetrahedron as a logical qubit

goal: investigate non-stabilizerness of the logic basis states

e start from the reference state [0)®* in the 4-qubit Hilbert space and
look for the unitary transformations such that

05) = U, 0)**  |1,) =14, |0)**

® express the unitary operators Up, and U, in terms of a set of unitary
gates acting on the reference state

e for the generic intertwiner state, the associated circuit reads
[Han'19, Czelusta et al.’20]

s =
&
(<}
P—
S
S

=
=
P
Pan
&
Pan
&



Quantum intertwiner circuit

® reduced 2-qubit system: U(0, ¢), V (0, ¢) € SU(2) are the only
non-Clifford gates

10)
10)

|0s) for (Uo, Vo,8 = 0,¢ = 0) the reduced 2-qubit system given by the
action of CVq (Up © 1) on |0)¥?

1
105), = 7 (110) —[11))

® the state 1o, = |0s), (0s|, expressed in the Pauli basis reads

(191-10X-ZR1+Z®X)

N

1
Yo, = > tr(vo,P)P =

PeP;



Stabilizer 2-Rényi Entropy of the logical basis

® computing the Stabilizer 2-Rényi Entropy of |0,) we get

Ma(|0s)) = —logd ™' > tr*(¢ho,P)=0 => |0)is STAB
PeP;

|15) for (Ui, V4,0 =0,¢ = 7) the reduced 2-qubit system returns

1), = \/§|oo> - \i@ 110) - % 11)

® the state ¢, in the Pauli basis (10 non-vanishing terms)

1 1 2 2 2

P, —Z(1®1+§1®X+§1®Z—§X®1—§X®X
2 2 1 1 2

—§X®Z+§Y®Y+§Z®1—§Z®X+§Z®Z)

® we find Ma(v)1,) = 0,847997: |15) needs NSTAB resources

> |I) not a tensor product state: both entanglement and magic are
necessary for the gauge structure



Maximal SE at volume eigenstates

® by varying (0, ¢), compute the SE of the generic intertwiner

II' SE has two maxima My (|V4)) = 1.16993 corresponding to
1 !
V2 V2

® the eigenstates of the LQG volume operator on the Bloch sphere
placed at the equator with angular coordinates (0 = Z;¢ = Z,¢ = 3F).

Vi) = —=(10s) — i[1s)), [V-) (10s) +7[1s)



Averaged NSTAB of the intertwiner subspace

Q [ what is the NSTAB gap of the intertwiner subspace Hg? ]

® a meaningful answer requires averaging (linearized) SE; in
He = NeHior

Mi = EUGMII;n(d}UG) =1- di_:l Z tr(P®4 EUG¢%:)
PGPII

with i = {0, G} labelling register and G-inv space, E, the unitary
group average with respect to the Haar measure over Hg and
Yus = Ust U

* we find (lemma) Ey, v§* = ca(d, de) NP Eyyf¥, then

M =1—¢(d,d;)d " Z tr [P By
PeP,

® define SE-gap | AM(H¢) :== M© — m(©) ’find AM(H,) = 8/45




Averaged NSTAB of the intertwiner subspace

> AM(H,) > 0: projecting a generic 4-qubit state onto the gauge
invariant subspace has a cost in terms of non-stabilizer resources

Il AM(#H;) > 0: non-stabilizer resource is an intrinsic feature of the
quantum geometry state — and gauge reduction more generally

® coming back to quantum computing:

Il M(H,) > 0 also reflects in the computational complexity in
simulating such states:

> in the experimental realization (1) of a state |1))
(e.g.[CzeIusta'21], IBM superconducting quantum computer)

2
Ng > €2 In <5> eXP[M2(|1/J>)]? ]:max <l-c¢
the minimum number of preparations needed to achieve a desired

value of fidelity within a desired accuracy ¢, is bounded from below
by SE [Leone et al. '23]



Summary of results

— Interpretative impact

® constructing the quantum tetrahedron out of a collection of four
qubits — general gauge invariant states in LGT — inherently requires
non-stabilizer resources (MAGIC)

SE quantifies MAGIC and is easy to compute

® eigenstates of the oriented volume have near-maximal amount of SE:

> possible magic/geometry correspondence in these states to be
investigated gravity extends at a deeper layer of quantumness

— Experimental impact

® non-stabilizer resources reflect in the computational complexity of a
simulation of quantum gravity states (amplitudes): M, sets bounds
on fidelity

> harnessing complexity necessary to efficient simulations of quantum
geometry states running on a quantum computer



Ongoing directions

>

extend to qudits with Heisenberg-Weyl group for d—level systems
(see e.g. [Wang '23]) to include generic intertwiners

check whether for a generic intertwiner the volume eigenstates are
states with maximum SE (~> complexity=volume [Susskind'16])

extend to collection of intertwiners (spin network states):

expect extra non-stabilizer resources coming from graph connectivity
and non-trivial holonomies dressing the links

is NSTAB complexity extensive?

measure SE of quantum geometry amplitudes: e.g. quantum
6,/-symbol (path integral of topological field theory, low dim

gravity,...)

vr({ge}) = (01" Ul ({ge}) Uy 10)**"




Thank You



faithful measure of magic, what for?

® essential resource to achieve universal quantum computation

® the non-stabilizing power - how much stabilizer entropy a unitary
operator can achieve - of a quantum evolution can be cast in terms
of out-of-time-order correlation functions (OTOCs) and that is thus
a necessary ingredient of quantum chaos
[Leone, Oliviero, Hamma’22, Goto et al '22]

® in AdS/CFT, classical spacetime emerges from the chaotic nature of
the dual quantum system: magic of dual quantum sys strongly
involved in the emergence of spacetime geometry
[White, Cao, Swingle 21, Hamma, Cao '23]

> what is the role of this second layer of quantumness on other fields of
physics (quantum space, gauge field theory, particle physics, etc...)?
[GC et al '24, Esposito et '24 Savage et al'24]



Stabilizer Resource Theory

> the Clifford group on n qubits is generated by {H,S, CNOT}:
- Hadamard H —swaps X <+ Z: HXH' =2Z, HzZHT =X

- Phase S - rotates X — Y, leaves Z invariant: SXSt =
SZST = Z where S = diag(1, i)

- for two qubits, the CNOT acts on qubits 1 (control) and 2 (target),
transforming Pauli operators according to:

CNOT(X @ I)CNOTT = X ® X, CNOT(/ ® X)CNOT' = / @ X,
CNOT (Z ®/)CNOT' = Z® I, CNOT(/® Z)CNOT' =Z® Z

® (C(2") U Measurements defines the set of free operations of the
stabilizer QRT

® the set of free states of # F(#) is the set of n-qubit stabilizer
states STAB(n) that is the full Clifford orbit of {|/)}

STAB(n) ={C|i) ,C €C,} [Veitch14]



Stabilizer Formalism

® let H ~ C?®" 3 p-qubit system and P, the group of Pauli strings on
H.

Def the Pauli group on one qubit:

Py = {&/, il ,+£X, £iX, £Y, £iY,+Z, +iZ},

0 1 0 —i 1 0
wee x= (0 v (D) 22 2).

® the n-qubit Pauli group is the n-fold tensor product single-qubit
Pauli operator, with phases in {£1, £+/}:

Po={aP,® - ®P,: P {I,X,Y,Z}, a € {&1,+i}}.

Def Suppose S is a subgroup of P,, and define Vs to be the set of n
qubit states for which V |[¢) € V5,VPs € S, Ps |[¢) = |¢)

® Vs is defined as the vector space stabilized by S: elements of Vs are
stabilizer states of S and S is said to be the stabilizer group of Vs.



Stabilizerness & Clifford Group

® apply a unitary operator U to a space Vs stabilized by S. For any
1) € Vs and g,

Uly) = Ug [v) = (UgU")U [v)

the space UVs is stabilized by the group USU' := {UgUT, g € S}
I it is not guaranteed that Ugy UT, ..., Ug U are still Pauli strings
(generally any linear combination of Pauli strings)

Def (Normalizer of a subset of a group). Given a group G and a subset
S of said group the normalizer Ng(S) is defined as

Ng(S) :={U € G| UgU™ € G,Vg € G}

® the normalizer of the Pauli group is a subset of the unitary group
also referred to as the Clifford group C(n) on n-qubit systems

C(n):={CecU(n),st. YPeP,, CPCT =P cP,}



Logical Qubit & Intertwiners

Define the logical qubit encoded in the invariant (singlet) subspace of
four spin-3 representations, i.e.

Invsye) [ (H1/2)%*].

® Each H;/, = C? carries the spin-3 representation of SU(2).
® The tensor product of 4 qubits decomposes into irreps of SU(2).

® We want the invariant subspace:
Invsye) [(3)%] = { ) € (C*)®* | U**y) = [¢), YU € SU(2) }.

This is also called the intertwiner space, since it consists of
SU(2)-intertwiners mapping the trivial rep into (3)%*.



) ®4

1
2

Decomposition of (

The Clebsch-Gordan series: (3)® (3) =0® 1.
for four spins: (%)®4 =081)2(0a1)
Expanding = (0®0) @ (0®1) @ (1®0) @ (1®1). with

°* 0®0=0.
*0®l=1
°*1®0=1.
°

11=0p1d2.
So total decomposition:(3)®*=2-0 @& 3-1 @ 2.

The trivial representation j = 0 appears twice. Then

dim IIIVSU(Q) [(%)®4] = 2.

The degeneracy space is a two-dimensional space, i.e. a logical qubit.



Basis for the intertwiner qubit

There are several natural bases. One convenient way is to pair spins:

(a)

Pairing (12)(34):

Couple qubits 1-2 into a singlet or triplet.
Couple qubits 3-4 into a singlet or triplet.
Then fuse the two pairs.

Two independent singlet states are:
Singlet—singlet state

|Zo) = ¥ 7 )12 @ [t )34,
where [)~) = (|01) — [10))/V/2.

Triplet-triplet singlet state

Z1) = %(M)lz [t )3a + [t)12 |t )34 — [to)12 [t0)34),

where [t;) =(00), [t-) = [11), |to) = (/01) +[10))/V2.
These two are orthonormal and span the invariant subspace.



Logical Qubit Structure

® We can interpret this invariant subspace as encoding a logical qubit:
® Define |0.) = |Zo),
® Define |1L> = |Il>
® Any linear combination «|0;) + §|1) is invariant under global
SU(2) action.
® Thus this space is robust against global SU(2) rotations — a natural
decoherence-free subspace and also the intertwiner qubit used in
spin networks and loop quantum gravity.
® The logical intertwiner qubit in Invsy)[(H1/2)®*] is the
two-dimensional singlet (invariant) subspace of four spins-1/2. A
natural basis is

00) = [ )12 ® [Y7 )34,
1) = \/%(|t+>12|t—>34 + [t )12]ty )34 — [t0)12]t0)34),

which together span the intertwiner qubit



