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Lessons from Quantum Computation Theory

1 – difference in quantum vs. classical physics comes in two layers:

• quantum correlations are stronger than classical correlations and
violate Bell’s inequalities

• assuming P 6= NP, quantum physics is exponentially harder to
simulate than classical physics [Gottesman 98]

2 – there is a hierarchy in quantumness:

• highly entangled states created by quantum circuits made of Clifford
gates (CNOT,S,H), stabilizer operations, can be efficiently simulated
on a classical computer in polynomial time (Gottesman-Knill
Theorem) [Gottesman’98] ∼ classical!

• set of gates beyond the Clifford group, e.g. (CNOT,H, & T), are
necessary to prepare a generic state that is complex = hard to
simulate classically and unlock quantum advantage [Campbell et a.’17]

> entanglement & complexity <=> deeper layer of quantumness



Entanglement resource in quantum gravity

• entanglement/geometry correspondence: from (S ∝ A)BH
[Bekenstein&Hawking] to (SCFT

ent ∝ AAdS) bulk area scaling of
holographic entanglement entropy of boundary states in AdS/CFT
[Ryu&Takayanagi ’06]

Entanglement is needed to build op a connected spacetime 
(van Raamsdonk ‘10). 

The correlations in entangled states are reproduced by 
making spacetime connected. 

Exactly which types of entanglement have smooth geometric 
representations is not entirely clear. 

SA(|ψ〉) = −tr(ρA log ρA), for |ψ〉 = |ψA〉 ⊗ |ψB〉 SA = 0

> entanglement as the spacetime fabric: classical geometry emergent
from the hierarchy of correlations of the quantum theory on the
boundary



Entanglement resource in quantum gravity

huge efforts in the last two decades

• in AdS/CFT

– which types of entanglement have smooth geometric
representations? [van Ramsdonk ’10, Bianchi & Myers ’12, Preskill ’15, ∞]

• in LQG & non-perturbative, background independent approaches

– featuring short-range entanglement in quantum spin networks (area
law, thermal behaviour) to select quantum geometry states with
“good” semiclassical behaviour

[Livine & Terno 05-08, Girelli & Livine 06, Donnelly 08-14, Bianchi & Myers 12,

GC, Rovelli 14, Livine & Charles 16-18, Bianchi &Yokomizo 15-18, Dittrich et

al.14-18, GC, D.Oriti, Zhang 17-18, Bianchi, Donà 19, Colafranceschi et al.

20-22, Bianchi, Livine 23]



Entanglement is not enough

we recently realize that entanglement is not enough – open issues

• BHs barrier: a lot of the geometry remains uninterpreted in terms of
quantum information
[Susskind 14, Brown, Roberts, Susskind, Swingle and Zhao 16, Myers et al.,...]

• tension between the geometric growth of the Einstein–Rosen bridge
and the early saturation of entanglement entropy > BHs interior
conjectured to dually evolve as quantum chaotic system [Hartman et

al14]

> quantum complexity necessary to extend the entanglement/geometry
correspondence and to fully describe black hole interior dynamics
[Harlow and P. Hayden13, Susskind16, Aaronson16, Stanford & Susskind14,

Caputa et al 17, Jefferson & Myers 17, Chapman et al 18, Chagnet et al. 22,

Policastro 22, Cao et al. 24,Leone et al 21].



Entanglement is not enough

similar situation on discrete quantum gravity models.

• flat entanglement spectrum in toy models of holographic duality
based on quantum error correction codes (beside AdS/CFT):
constant Rényi entropy > absence of bulk fluctuations = missing
component in holography

> need quantum complexity in the CFT to have backreaction in the
bulk: non-local nonstabilizer complexity controls the level of
geometric response [Cao 23, Cao, Hamma et al 24]

> harnessing complexity of key importance for efficient simulation of
toy models of quantum geometry on quantum computers
[M.Han et al.’19, van der Meer et al. ’22, Mielczarek ’18-’19, Czelusta ’20].



How do we measure quantum complexity?

How do we measure quantum complexity?



How do we measure quantum complexity?

• most work focused so far on quantum computational complexity –
given a reference state how hard it is to construct a quantum target
state within a given precision – in discrete systems and FT:
Jefferson & Myers 17, Hackl 18, Chapman et al 18, Chagnet et al. 22]

e.g. Nielsen’s geometric approach

C(U) = min
γ:I→U

∫
ds F (γ̇(s))

(geodesic length in unitary space)

our focus on qualitative approach based on quantum resource theory:

• since stabilizer quantum channels ∼ classical!, quantum channels
that do not belong to this class are called resource operations or
dynamical resources

• free states F(H) are created by the set of stabilizer quantum
channels, hence elements of S(H)/F(H) are resource states

> measure quantum complexity via nonstabilizerness (MAGIC)



Stabilizer resource theory for n-qubit systems

let H ' C2⊗n n-qubit system; Pn the group of all n-qubit Pauli strings:

• operations that leave Pauli strings invariant define the normalizer of
the Pauli group

C(n) := {C ∈ U(n) , s.t. ∀P ∈ Pn ,CPC
† = P ′ ∈ Pn}

that is a subset of the unitary group known as the Clifford group

• the Clifford group consists of unitaries generated by the circuits
using Hadamard, Phase, and CNOT gates

• given a computational basis {|i〉} of H, free states are defined as the
set of pure stabilizer states of H corresponding to the full Clifford
orbit of {|i〉}

STAB = {C |i〉 ,C ∈ C(n)} [Veitch14]



Measuring non-stabilizerness

• measuring MAGIC amounts to quantify which resources allow me to
leave the orbit

<latexit sha1_base64="b10CIWdWjzfOl1ID27UNFQotHaA=">AAAB9HicbVC7TsNAEDzzDOEVQKKhsYiQqCKbAihDaCgTkZeUWNH5sklOOZ/N3ToisvIdNBQgRAlfwRfQ0fAtXB4FJIy00mhmV7s7fiS4Rsf5spaWV1bX1lMb6c2t7Z3dzN5+VYexYlBhoQhV3acaBJdQQY4C6pECGvgCan7/euzXBqA0D2UZhxF4Ae1K3uGMopG8JsI9Jrflq8KoJVuZrJNzJrAXiTsj2fxh6Zu/FT6Krcxnsx2yOACJTFCtG64ToZdQhZwJGKWbsYaIsj7tQsNQSQPQXjI5emSfGKVtd0JlSqI9UX9PJDTQehj4pjOg2NPz3lj8z2vE2Ln0Ei6jGEGy6aJOLGwM7XECdpsrYCiGhlCmuLnVZj2qKEOTU9qE4M6/vEiqZzn3POeWTBoFMkWKHJFjckpcckHy5IYUSYUwckceyBN5tgbWo/VivU5bl6zZzAH5A+v9B5ggla8=</latexit>

STABn
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how far?

> to we quantify non-stabilizerness (magic), we need a monotone
function M which is

(i) faithful: M(|ψ〉) = 0 iff (|ψ〉) ∈ STAB, otherwise M(|ψ〉) > 0;

(ii) Clifford invariant: for C ∈ C(n),M(C |ψ〉) = Mα(|ψ〉);

(iii) additive: M(|ψ〉 ⊗ |φ〉) = M(|ψ〉) + M(|φ〉)

how focus on Pauli spectrum: nonstabilizerness reflects in the spread of
the Pauli spectrum decomposition > entropic measure do the job



Entropic measure of non-stabilizerness

• For any |ψ〉 ∈ H (d = dim(H) = 2n), take the decomposition of
ψ = |ψ〉〈ψ|, in the Pauli operator basis

ψ =
1

d

∑

P∈Pn

Tr(ψP)P

– the Pauli spectrum is spec(|ψ〉) = {Tr(Pψ) = 〈ψ|P |ψ〉 | P ∈ Pn}
• the empirical distribution function in operator space

Π(x) =
1

d2

∑

xP∈spec(|ψ〉)
δ(x − xP)

captures statistically how aligned the state is with each Pauli
observable

• IPR: define the α-moment of Π(x) as

Ξα(|ψ〉) := d

∫
dx Π(x) x2α = d−1

∑

P∈Pn

tr2α(Pψ)



Entropic measure of non-stabilizerness

• for α = 1, tr2α(Pψ) gives the probability of finding P in the
representation of |ψ〉

− Ξα large = spectrum localized in operator space

− Ξα small: state’s Pauli expectations are broadly distributed
(delocalized)

> quantify the spread by computing the Rényi entropy of Ξα(|ψ〉):
[Leone, Oliviero, Hamma’22]

Mα(|ψ〉) := (1− α)−1 log Ξα(|ψ〉)

– ψ ∈ STAB it has support on a subspace of the operator space
spanned by the stabilizers with exactly d elements (e.g. one qubit
d(H) = 2, C(1) = {1,Z}) : Ξα = 1 → Mα(|ψ〉) = 0

– Mα(|ψ〉) > 0 otherwise (good monotone) [Leone & Bittel 24]



Stabilizer Rényi Entropy (SE)

> Mα(|ψ〉) quantifies the effective number of Pauli operators with
non-negligible expectation in ψ: how spread-out the state is in the
operator space

− low Mα(|ψ〉) localization in operator basis > low complexity

− high Mα(|ψ〉) delocalization > high complexity

? how do we try this notion in quantum gravity? proper definition of
complexity outside the traditional spin-chain formulation, in
particular for quantum field theory (QFT) states in progress
[Cao, White, Swingle 20,23,24]

> natural framework given by spin-network states, an orthonormal
basis of the Hilbert space of loop quantum gravity
[Rovelli & Smolin 95, Baez 96]

• minimal example: quantum tetrahedron – is it MAGIC free?



Minimal example: quantum tetrahedron

• consider F vectors ~Ji ∈ R3 with norms | ~Ji | = ji s.t. they sum up to
zero. Non-coplanar normals identify a unique polyhedron
[Minkowski 1897]
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Aini

(e.g. F = 4)

• each vector live on a sphere: ~Ji ∈ S2
ji
⊂ R3. The space of such

vectors modulo rotations has the structure of a symplectic manifold
[Kapovich & Millson 98]

SF =

{
ni ∈ (S2)×F |

N∑

i=1

jini = 0

}
/SO(3)

• SF space of shapes of polyhedra at fixed areas (moduli space of
closed F-gons in R3 with edge lengths ji , modulo rotations)



Quantum F-gon = intertwiner space

quantization:

• each S2
ji

is quantized as the SU(2) irreducible representation V (ji ),
of spin ji , dimension 2ji + 1.

• up to a dimensionful constant, the generators Ĵi of SU(2) give the

quantization of the vectors ~Ji

> then Hunconstrained =
⊗F

i=1 V (ji )

• quantization of the closure constraint = zero total angular
momentum (Gauss constraint of a SU(2) Yang-Mills)

> the physical Hilbert space is the SU(2)-invariant intertwiner space

HF = InvSU(2)

[
F⊗

i=1

V (ji )

]

! intertwiners states in HF are the building blocks (nodes) of
F − valent quantum spin-networks in LQG (similarly in lattice gauge
theory) [Baez 96]



Mapping quantum geometry to qubits system

focus on 4-valent intertwiner state |I 〉 ∈ HF=4 ≡ HI with all j = 1/2,

– as V1/2 → C2 |j = 1/2, ~m〉 spins map to qubits

! (Shur) V⊗4
1/2 =

∑
J D

J
1/2 ⊗ VJ = 2V0 ⊕ 3V1 ⊕ V2

• the intertwiner space HI corresponds to the 2dim degeneracy space
D0

1/2, which again maps to C2

> think of |I 〉 ∈ HI := InvSU(2)[H⊗4
1/2] as a logical intertwiner qubit

• given the basis {|0〉s , |1〉s} ∈ HI , the generic LIQ state reads

|I 〉 = cos
θ

2
|0s〉+ sin

θ

2
e iφ |1s〉

with θ ∈ [0, π] and φ ∈ [0, 2π) angles on the Bloch sphere



Quantum tetrahedron as a logical qubit

• can represent |I 〉 ∈ HI both in the logical basis {|0s〉 , |1s〉} ∈ HI and
in the computational basis {|0〉 , |1〉}⊗4 of the 4-qubits space V⊗4

1/2

• use the definition of intertwiner state as recoupling of four spin-j

|I 〉 = N

2j∑

K=0

K∑

M=−K

∑

{~m}
CK ,M
jm1jm2

CK ,−M
jm3jm4

|j , ~m〉

to express the LIQ basis in terms of the computational basis

|0s〉 =
1

2
(|0101〉+ |1010〉 − |0110〉 − |1001〉)

|1s〉 =
1√
3

[
|0011〉+ |1100〉 − 1

2

(
|0101〉+ |1010〉+ |0110〉+ |1001〉

)]

Q making |I 〉 from H⊗4
1/2 requires non-stabilizer resources?



Quantum tetrahedron as a logical qubit

goal: investigate non-stabilizerness of the logic basis states

• start from the reference state |0〉⊗4 in the 4-qubit Hilbert space and
look for the unitary transformations such that

|0s〉 = U0s |0〉⊗4 |1s〉 = U1s |0〉⊗4

• express the unitary operators U0s and U1s in terms of a set of unitary
gates acting on the reference state

• for the generic intertwiner state, the associated circuit reads
[Han’19, Czelusta et al.’20]

4

mations such that

|0si = U0s
|0i⌦4

(13)

|1si = U1s
|0i⌦4

(14)

Any intertwiner qubit state |Ii can be realized via the
following circuit [12]

|0i H • • •

|0i U •

|0i V

|0i

with U and V special unitary operators whose elements
depend on the parameter ✓ and � of the output state
|Ii (see [12] for further details). We can preliminarily
understand that nonstabilizerness of an intertwiner state
is at most a consequence of the non-Cli↵ordness of the
gates U and V since the remaining gates (Hadamard,
CNOT and anti-CNOT) are free operations. On this line,
knowing that the basis state are the south and north pole
of the Bloch sphere (i.e. ✓ = 0 and ✓ = ⇡), it is possible
to explicitly write the unitary operators U0,V0,U1,V1 as:

U0 =

✓
0 1
�1 0

◆
V0 =

1p
2

✓
�1 �1
1 �1

◆
(15)

U1 =

r
2

3

 
1 1p

2

� 1p
2

1

!
V1 =

1p
2

✓
1 �1
1 1

◆
(16)

In order to estimate the magic of a intertwiner state
we can focus our analysis on the 2-qubit system

|0i U •

|0i V

and prove that the magic produced by the operators U0

and V0 is 0, i.e. |0si is a stabilizer state. Let us write the
matrix form of the operators:

U0 ⌦ =

0
BB@

0 0 1 0
0 0 0 1
�1 0 0 0
0 �1 0 0

1
CCA (17)

CV0 =

0
BB@

1 0 0 0
0 1 0 0
0 0 � 1p

2
� 1p

2

0 0 1p
2

� 1p
2

1
CCA (18)

The action of CV0(U0⌦ ) on |0i⌦2
returns the realization

of |0si as a 2-qubit state

|0si2 =
1p
2

(|10i � |11i) (19)

We write the state  0s
= |0si2 h0s|2 in the Pauli basis

 0s
=

1

d

X

P2 2

Tr( 0s
P )P

=
1

4
( ⌦ � ⌦ X�Z⌦ + Z⌦X) (20)

The magic of the basis state is

M2( 0s
) = � log d�1

X

P2P2

Tr4( 0s
P ). (21)

Since the trace of the product of Pauli matrices is equal
to d only if the product returns ⌦ and 0 otherwise,
among the terms of the sum in (21) there are only four
non vanishing contributions, which are the ones with P
equal to one of the terms in the Pauli decomposition of
the state. Equation (21) returns

M2( 0s
) = 0 (22)

Namely, the intertwiner state |0si is a stabilizer state.

We now repeat the same procedure for the state |1si.
First, we realize the operators as matrix:

U1 ⌦ =

0
BBBBBB@

q
2
3 0 1p

3
0

0
q

2
3 0 1p

3

� 1p
3

0
q

2
3 0

0 � 1p
3

0
q

2
3

1
CCCCCCA

(23)

CV1 =

0
BB@

1 0 0 0
0 1 0 0
0 0 1p

2
� 1p

2

0 0 1p
2

1p
2

1
CCA (24)

The action of this operators on |0i⌦2
returns the ket

|1si2 =

r
2

3
|00i � 1p

6
|10i � 1p

6
|11i (25)

We write the state  1s
as

 1s
=

1

4

 
⌦ +

1

3
⌦ X +

2

3
⌦ Z�2

3
X⌦

� 2

3
X⌦X�2

3
X⌦Z +

2

3
Y⌦Y +

1

3
Z⌦

� 1

3
Z⌦X +

2

3
Z⌦Z

!
(26)



Quantum intertwiner circuit

• reduced 2-qubit system: U(θ, φ),V (θ, φ) ∈ SU(2) are the only
non-Clifford gates

|0s〉 for (U0,V0, θ = 0, φ = 0) the reduced 2-qubit system given by the

action of CV0 (U0 ⊗ 1) on |0〉⊗2

|0s〉2 =
1√
2

(|10〉 − |11〉)

• the state ψ0s = |0s〉2 〈0s |2 expressed in the Pauli basis reads

ψ0s =
1

d

∑

P∈P2

tr(ψ0sP)P =
1

4
(1⊗ 1− 1⊗ X−Z⊗1 + Z⊗X)



Stabilizer 2-Rényi Entropy of the logical basis

• computing the Stabilizer 2-Rényi Entropy of |0s〉 we get

M2(|0s〉) = − log d−1
∑

P∈P2

tr4(ψ0sP) = 0 => |0s〉 is STAB

|1s〉 for (U1,V1, θ = 0, φ = π) the reduced 2-qubit system returns

|1s〉2 =

√
2

3
|00〉 − 1√

6
|10〉 − 1√

6
|11〉

• the state ψ1s in the Pauli basis (10 non-vanishing terms)

ψ1s =
1

4

(
1⊗ 1 +

1

3
1⊗ X +

2

3
1⊗ Z−2

3
X⊗1− 2

3
X⊗X

− 2

3
X⊗Z +

2

3
Y⊗Y +

1

3
Z⊗1− 1

3
Z⊗X +

2

3
Z⊗Z

)
• we find M2(ψ1s ) = 0, 847997: |1s〉 needs NSTAB resources

> |I 〉 not a tensor product state: both entanglement and magic are
necessary for the gauge structure



Maximal SE at volume eigenstates

• by varying (θ, φ), compute the SE of the generic intertwiner 5

FIG. 2. Mapping magic on the Bloch sphere associated to the
intertwiner space. In figure state 1s and 0s TBD

There are ten non vanishing contributions to the magic
of this state, each of which is equal to the fourth power of
one of the coe�cients of (26). Direct calculation returns

M2( 1s
) = 0, 847997 (27)

Recalling the form of a generic LIQ

|Ii = cos
✓

2
|0si + sin

✓

2
ei� |1si (28)

we understand that, by construction, 4-valent intertwin-
ers are typically magic. Indeed, it is possible to plot the
values of the Magic of a generic intertwiner state on the
block sphere (FIG 2). By doing that, we can qualitatively
highlight the behavior of volume eigensates

|u"i =
���I(✓ =

⇡

2
, � =

⇡

2
)
E

=
1p
2
(|0si � i |1si) (29)

|u#i =

����I(✓ =
⇡

2
, � =

3⇡

2
)

�
=

1p
2
(|0si + i |1si (30)

They represent remarkable points on the sphere as they
are located at the equator and have a polar angular dif-
ference of ⇡. These states belong to the red regions of the
plot, in which magic reaches its maximum value. Indeed,

M2(
��u"/#

↵
) = 1.16993 (31)

i.e. these states belong to the same Cli↵ord orbit. The
magnitude of the magic of volume eigenstate is nearly
the highest that can be achieved by the system[14].

2 – Edge states

We now focus on the structure of the edges states in
the spin network. If we consider the Hilbert space of
2 qubits and decompose it in singlet and triplet Hilbert

space we get

V ⌦2
1
2

= V (0) � V (1) (32)

V (0) = span {|si} (33)

V (1) = span {|t+i , |t0i , |t�i} (34)

where

|si =
1p
2
(|01i � |10i) (35)

|t+i = |11i (36)

|t0i =
1p
2
(|10i + |01i) (37)

|t�i = |00i (38)

Bivalent intertwiners |Ii 2 H(0) correspond to Bell pairs,
whose role in spin networks has been extensively studied,
as they link quantum polyhedra by connecting their faces
[15] via a maximally entangled states. The quantum cir-
cuit associated with the bivalent intertwiner is:

|0i X H •

|0i X

Since this circuit is realized with only Cli↵ord operators,
the magic of a bivalent intertwiner is

M2(|si) = 0 (39)

The more general gluing map in LQG allows for edges
dressed with a holonomy ge 2 SU(2). Consider a path �
associated with an edge of the graph. We label with s and
t the source and target of the edge. The group element
ge corresponds to a rotation R(ge) from the source to the
target spin frame, that is

ge : V s
1
2
! V t

1
2

(40)

The edge states in V
s(�)
1
2

⌦ V̄
t(�)
1
2

reads

|e(g)i =
X

ab

(�1)j�aDj
ab(g)p

2j + 1
|j, ai ⌦ |j,�bi (41)

with Dj
mn(ge) = hj, m| R(ge) |j, ni the unitary Wigner

matrix in the spin-j irreducible representation of the ele-
ment ge 2 SU(2). The edge state in (41) realizes a gluing
between couples of spins at nodes weighted by Dj

mn(ge).

If we choose to parameterize the rotation operators
associated with Euler angles, we have

R(g) = e�i↵
2 Z e�i �

2 Y e�i �
2 Z, (42)

then we can explicitly calculate the Wigner matrix ele-

!! SE has two maxima M2(|V±〉) = 1.16993 corresponding to

|V+〉 =
1√
2

(|0s〉 − i |1s〉), |V−〉 =
1√
2

(|0s〉+ i |1s〉

• the eigenstates of the LQG volume operator on the Bloch sphere
placed at the equator with angular coordinates (θ = π

2
;φ = π

2
, φ = 3π

2
).



Averaged NSTAB of the intertwiner subspace

Q what is the NSTAB gap of the intertwiner subspace HG?

• a meaningful answer requires averaging (linearized) SE2 in
HG = ΠGHtot

M i := EUG
M i

lin(ψUG
) = 1− d−1

i

∑

P∈Pn

tr
(
P⊗4 EUG

ψ⊗4
UG

)

with i = {0,G} labelling register and G-inv space, EUG
the unitary

group average with respect to the Haar measure over HG and
ψUG

:= UGψU
†
G

• we find (lemma) EUG
ψ⊗kUG

= cG (d , dG ) ΠG
⊗kEUψ

⊗k
U , then

M i = 1− ci (d , di ) d
−1
i

∑

P∈Pn

tr
[
P⊗4ΠG

⊗4EUψ
⊗4
U

]

• define SE-gap ∆M(HG ) := M(0) −M(G) find ∆M(HI ) = 8/45



Averaged NSTAB of the intertwiner subspace

> ∆M(HI ) > 0: projecting a generic 4-qubit state onto the gauge
invariant subspace has a cost in terms of non-stabilizer resources

!! ∆M(HI ) > 0: non-stabilizer resource is an intrinsic feature of the
quantum geometry state – and gauge reduction more generally

• coming back to quantum computing:

!! M(HI ) > 0 also reflects in the computational complexity in
simulating such states:

> in the experimental realization (ψ̃) of a state |ψ〉
(e.g.[Czelusta’21], IBM superconducting quantum computer)

Nψ̃ ≥
2

ε2
ln

(
2

δ

)
exp[M2(|ψ〉)]; Fmax ≤ 1− ε

the minimum number of preparations needed to achieve a desired
value of fidelity within a desired accuracy ε, is bounded from below
by SE [Leone et al. ’23]



Summary of results

– Interpretative impact

• constructing the quantum tetrahedron out of a collection of four
qubits – general gauge invariant states in LGT – inherently requires
non-stabilizer resources (MAGIC)

• SE quantifies MAGIC and is easy to compute

• eigenstates of the oriented volume have near-maximal amount of SE:

> possible magic/geometry correspondence in these states to be
investigated gravity extends at a deeper layer of quantumness

– Experimental impact

• non-stabilizer resources reflect in the computational complexity of a
simulation of quantum gravity states (amplitudes): M2 sets bounds
on fidelity

> harnessing complexity necessary to efficient simulations of quantum
geometry states running on a quantum computer



Ongoing directions

• extend to qudits with Heisenberg-Weyl group for d−level systems
(see e.g. [Wang ’23]) to include generic intertwiners

> check whether for a generic intertwiner the volume eigenstates are
states with maximum SE (∼> complexity=volume [Susskind’16])

• extend to collection of intertwiners (spin network states):

> expect extra non-stabilizer resources coming from graph connectivity
and non-trivial holonomies dressing the links

> is NSTAB complexity extensive?

• measure SE of quantum geometry amplitudes: e.g. quantum
6j-symbol (path integral of topological field theory, low dim
gravity,...)

ψΓ({ge}) = 〈0|⊗4n U†E({ge})UI |0〉⊗4n



Thank You



faithful measure of magic, what for?

• essential resource to achieve universal quantum computation

• the non-stabilizing power - how much stabilizer entropy a unitary
operator can achieve - of a quantum evolution can be cast in terms
of out-of-time-order correlation functions (OTOCs) and that is thus
a necessary ingredient of quantum chaos
[Leone, Oliviero, Hamma’22, Goto et al ’22]

• in AdS/CFT, classical spacetime emerges from the chaotic nature of
the dual quantum system: magic of dual quantum sys strongly
involved in the emergence of spacetime geometry
[White, Cao, Swingle 21, Hamma, Cao ’23]

> what is the role of this second layer of quantumness on other fields of
physics (quantum space, gauge field theory, particle physics, etc...)?
[GC et al ’24, Esposito et ’24 Savage et al’24]



Stabilizer Resource Theory

> the Clifford group on n qubits is generated by {H,S ,CNOT}:
- Hadamard H – swaps X ↔ Z : HXH† = Z , HZH† = X

- Phase S – rotates X 7→ Y , leaves Z invariant: SXS† = Y ,
SZS† = Z where S = diag(1, i)

- for two qubits, the CNOT acts on qubits 1 (control) and 2 (target),
transforming Pauli operators according to:

CNOT(X ⊗ I )CNOT† = X ⊗X , CNOT(I ⊗X )CNOT† = I ⊗X ,

CNOT (Z ⊗I )CNOT† = Z ⊗ I , CNOT(I ⊗ Z )CNOT† = Z ⊗ Z

• C(2n) ∪Measurements defines the set of free operations of the
stabilizer QRT

• the set of free states of H F(H) is the set of n-qubit stabilizer
states STAB(n) that is the full Clifford orbit of {|i〉}

STAB(n) = {C |i〉 ,C ∈ Cn} [Veitch14]



Stabilizer Formalism

• let H ' C2⊗n a n-qubit system and Pn the group of Pauli strings on
H.

Def the Pauli group on one qubit:

P1 = {±I ,±iI ,±X ,±iX ,±Y ,±iY ,±Z ,±iZ},

where X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

• the n-qubit Pauli group is the n-fold tensor product single-qubit
Pauli operator, with phases in {±1,±i}:

Pn = {αP1 ⊗ · · · ⊗ Pn : Pk ∈ {I ,X ,Y ,Z}, α ∈ {±1,±i}}.

Def Suppose S is a subgroup of Pn, and define VS to be the set of n
qubit states for which ∀ |ψ〉 ∈ VS ,∀PS ∈ S , PS |ψ〉 = |ψ〉

• VS is defined as the vector space stabilized by S : elements of VS are
stabilizer states of S and S is said to be the stabilizer group of VS .



Stabilizerness & Clifford Group

• apply a unitary operator U to a space VS stabilized by S . For any
|ψ〉 ∈ VS and g ,

U |ψ〉 = Ug |ψ〉 = (UgU†)U |ψ〉

the space UVS is stabilized by the group USU† := {UgU†, g ∈ S}
! it is not guaranteed that Ug1U

†, . . . ,UglU† are still Pauli strings
(generally any linear combination of Pauli strings)

Def (Normalizer of a subset of a group). Given a group G and a subset
S of said group the normalizer NG (S) is defined as

NG (S) := {U ∈ G | UgU−1 ∈ G ,∀g ∈ G}

• the normalizer of the Pauli group is a subset of the unitary group
also referred to as the Clifford group C(n) on n-qubit systems

C(n) := {C ∈ U(n) , s.t. ∀P ∈ Pn ,CPC
† = P ′ ∈ Pn}



Logical Qubit & Intertwiners

Define the logical qubit encoded in the invariant (singlet) subspace of
four spin- 1

2 representations, i.e.

InvSU(2)

[
(H1/2)⊗4

]
.

• Each H1/2
∼= C2 carries the spin- 1

2 representation of SU(2).

• The tensor product of 4 qubits decomposes into irreps of SU(2).

• We want the invariant subspace:

InvSU(2)

[
( 1

2 )⊗4
]

= { |ψ〉 ∈ (C2)⊗4 | U⊗4|ψ〉 = |ψ〉, ∀U ∈ SU(2) }.

This is also called the intertwiner space, since it consists of
SU(2)-intertwiners mapping the trivial rep into ( 1

2 )⊗4.



Decomposition of (1
2)⊗4

• The Clebsch–Gordan series: ( 1
2 )⊗ ( 1

2 ) = 0⊕ 1.

• for four spins:
(

1
2

)⊗4
= (0⊕ 1)⊗ (0⊕ 1)

• Expanding = (0⊗ 0) ⊕ (0⊗ 1) ⊕ (1⊗ 0) ⊕ (1⊗ 1). with
• 0⊗ 0 = 0.
• 0⊗ 1 = 1.
• 1⊗ 0 = 1.
• 1⊗ 1 = 0⊕ 1⊕ 2.

• So total decomposition:( 1
2 )⊗4 = 2 · 0 ⊕ 3 · 1 ⊕ 2.

• The trivial representation j = 0 appears twice. Then

dim InvSU(2)

[
( 1

2 )⊗4
]

= 2.

• The degeneracy space is a two-dimensional space, i.e. a logical qubit.



Basis for the intertwiner qubit

There are several natural bases. One convenient way is to pair spins:

(a) Pairing (12)(34):
Couple qubits 1-2 into a singlet or triplet.
Couple qubits 3-4 into a singlet or triplet.
Then fuse the two pairs.

• Two independent singlet states are:

1 Singlet–singlet state

|I0〉 = |ψ−〉12 ⊗ |ψ−〉34,

where |ψ−〉 = (|01〉 − |10〉)/
√

2.

2 Triplet-triplet singlet state

|I1〉 =
1√
3

(
|t+〉12 |t−〉34 + |t−〉12 |t+〉34 − |t0〉12 |t0〉34

)
,

where |t+〉 = |00〉, |t−〉 = |11〉, |t0〉 = (|01〉+ |10〉)/
√

2.

• These two are orthonormal and span the invariant subspace.



Logical Qubit Structure

• We can interpret this invariant subspace as encoding a logical qubit:
• Define |0L〉 = |I0〉,
• Define |1L〉 = |I1〉.

• Any linear combination α|0L〉+ β|1L〉 is invariant under global
SU(2) action.

• Thus this space is robust against global SU(2) rotations – a natural
decoherence-free subspace and also the intertwiner qubit used in
spin networks and loop quantum gravity.

• The logical intertwiner qubit in InvSU(2)[(H1/2)⊗4] is the
two-dimensional singlet (invariant) subspace of four spins-1/2. A
natural basis is

|0L〉 = |ψ−〉12 ⊗ |ψ−〉34,

|1L〉 = 1√
3

(
|t+〉12|t−〉34 + |t−〉12|t+〉34 − |t0〉12|t0〉34

)
,

which together span the intertwiner qubit


