Transitions in minimally supersymmetric theories of quantum gravity

Gonzalo F. Casas

Work in progress [25xx. xxxx]

w/ Lorenzo Paoloni and Max Wiesner

Workshop on Quantum Gravity and Strings. Corfu25

Motivation

Topological transitions are expected in quantum gravity

Motivation

Topological transitions are expected in quantum gravity

They are well understood in theories with extended SUSY

Exact moduli spaces or mirror symmetry help!

Good control over shrinkable cycles

[Strominger 95]
[Greene, Morrison, Strominger 95]
[Greene, Morrison, Vafa 96]

Higgs branch

Coulomb branch

Complex structure

Kähler

[Strominger 95] [Greene, Morrison, Strominger 95] [Greene, Morrison, Vafa 96]

Higgs branch

Coulomb branch

Complex structure

Kähler

[Strominger 95]
[Greene, Morrison, Strominger 95]
[Greene, Morrison, Vafa 96]

Higgs branch

Kähler

Coulomb branch

Complex structure

Coulomb branch

Higgs branch

$$A_{\mu}^{m=0} + (4,0)_{H}^{D3} \leftarrow$$

$$A_{\mu}^{m \neq 0} = (5,3)$$

Kähler

Complex structure

- Topological transitions usually require non-perturbative effects.
- Well understood and trustable for theories with extended SUSY
- Clear separation between Higgs and Coulomb branch

- Topological transitions usually require non-perturbative effects.
- Well understood and trustable for theories with extended SUSY
- Clear separation between Higgs and Coulomb branch

<u>Goal</u>

- Use minimally supersymmetric set ups.
- First step: Look for sectors with enhanced supersymmetry.
- Use examples with extra SUSY as a guideline.

[Morrison, Vafa 96]

F-theory on CY3

$$\mathcal{E} \hookrightarrow X_3 \to \mathbb{F}_n$$

Heterotic E8XE8 on K3

$$24 = (12 - n) + (12 + n)$$

[Morrison, Vafa 96]

[Morrison, Vafa 96]

Matter content constraint by anomaly cancellation

$$273 + n_V = 29n_T + n_H$$

[Morrison, Vafa 96]

$$\mathcal{E} \hookrightarrow X_3 \to \mathbb{F}_n$$

Heterotic E8XE8 on K3

$$24 = (12 - n) + (12 + n)$$

Same n

Matter content constraint by anomaly cancellation

$$273 + n_V = 29n_T + n_H$$

In [Morrison, Vafa 96] was shown that $\,n=2\,$ and $\,n=0\,$

Also: [Aldazabal, Font, Ibañez, Quevedo 96]
[Witten 96]
[Seiberg, Witten 96]

 $\mathbb{T}_2 \leftrightarrow \mathbb{T}_0$, $\mathbb{T}_2 \subset \mathbb{T}_0$ Share the same moduli space!

[Morrison, Vafa 96]

Matter content constraint by anomaly cancellation

$$273 + n_V = 29n_T + n_H$$

In [Morrison, Vafa 96] was shown that $\,n=2\,$ and $\,n=0\,$

$$\mathbb{T}_2 \leftrightarrow \mathbb{T}_0$$
 , $\mathbb{T}_2 \subset \mathbb{T}_0$ Share the same moduli space!

Heterotic transition is extremal and not obvious! Remove instanton numbers from the E8s

$$\begin{bmatrix}
\mathbb{T}_2 \leftrightarrow \mathbb{T}_0 \\
\mathcal{E} \hookrightarrow X_3 \to \mathbb{F}_2
\end{bmatrix} \longleftrightarrow \begin{bmatrix}
\mathcal{E} \hookrightarrow X_3 \to \mathbb{F}_0
\end{bmatrix}$$

$$\begin{array}{c}
\mathbb{T}_2 \leftrightarrow \mathbb{T}_0 \\
\hline
\mathcal{E} \hookrightarrow X_3 \to \mathbb{F}_2 & \longleftrightarrow \mathcal{E} \hookrightarrow X_3 \to \mathbb{F}_0
\end{array}$$

A degree 24 hypersurface in $\mathbb{P}_{1,1,2,8,12}$ can be viewed

$$\mathcal{E}\hookrightarrow X_3 \to \mathbb{F}_2\,, \qquad n_V=0\,, n_T=1\,, n_H=243$$

$$273+0=29\times 1+243+ extbf{1} \qquad \text{Missing a hyper}$$

$$\begin{array}{c}
\mathbb{T}_2 \leftrightarrow \mathbb{T}_0 \\
\hline
\mathcal{E} \hookrightarrow X_3 \to \mathbb{F}_2 & \longleftrightarrow \mathcal{E} \hookrightarrow X_3 \to \mathbb{F}_0
\end{array}$$

A degree 24 hypersurface in $\mathbb{P}_{1,1,2,8,12}$ can be viewed

$$\mathcal{E}\hookrightarrow X_3 \to \mathbb{F}_2\,, \qquad n_V=0\,, n_T=1\,, n_H=243$$

$$273+0=29\times 1+243+ extbf{1} \qquad \text{Missing a hyper}$$

In [Morrison, Vafa 96] is described as a non-polynomial deformation

$$y_1y_2+y_3^2=0$$
 Blowing down a (-2)-curve in \mathbb{F}_2 \downarrow $y_1y_2+y_3^2=\psi_{n.p}\,y_4$ Topologically \mathbb{F}_0

$$\begin{array}{c}
\mathbb{T}_2 \leftrightarrow \mathbb{T}_0 \\
\mathcal{E} \hookrightarrow X_3 \to \mathbb{F}_2 & \longleftrightarrow \mathcal{E} \hookrightarrow X_3 \to \mathbb{F}_0
\end{array}$$

A degree 24 hypersurface in $\mathbb{P}_{1,1,2,8,12}$ can be viewed

$$\mathcal{E}\hookrightarrow X_3 \to \mathbb{F}_2\,, \qquad n_V=0\,, n_T=1\,, n_H=243$$

$$273+0=29\times 1+243+ extbf{1} \qquad \text{Missing a hyper}$$

In [Morrison, Vafa 96] is described as a non-polynomial deformation

$$y_1y_2+y_3^2=0 \qquad \begin{array}{l} \text{Blowing down a} \\ \text{(-2)-curve in} \quad \mathbb{F}_2 \end{array}$$

$$\mathbb{T}_2 \leftrightarrow \mathbb{T}_0 \qquad \qquad \qquad \downarrow \\ \text{Smooth} \\ \text{transition} \qquad \qquad y_1y_2+y_3^2=\psi_{n.p} \ y_4 \qquad \text{Topologically } \mathbb{F}_0 \\ +\text{1 hyper} \end{array}$$

$$\bar{K}_{\mathbb{F}_2} = 2h + 4f$$

$$\mathbb{F}_2$$
 :

$$h \cdot_{\mathbb{F}_2} h = -2$$
, $f \cdot_{\mathbb{F}_2} f = 0$, $f \cdot_{\mathbb{F}_2} h = 1$

 \mathbb{F}_2 :

$$\bar{K}_{\mathbb{F}_2} = 2h + 4f$$

 $h \cdot_{\mathbb{F}_2} h = -2, \quad f \cdot_{\mathbb{F}_2} f = 0, \quad f \cdot_{\mathbb{F}_2} h = 1$

The vicinity of h locally realized enhanced supersymmetry [Witten 96]

A D3 on
$$h$$
 \longrightarrow $\bar{K}_{\mathbb{F}_2}\cdot_{\mathbb{F}_2}h=0$ \longrightarrow Not intersected by 07-planes

The vicinity of $\,h\,$ looks like a hyper Kähler geometry, and dilaton does not vary.

$$\bar{K}_{\mathbb{F}_2}=2h+4f$$

$$\mathbb{F}_2:$$

$$h\cdot_{\mathbb{F}_2}h=-2\,,\quad f\cdot_{\mathbb{F}_2}f=0\,,\quad f\cdot_{\mathbb{F}_2}h=1$$

The vicinity of h locally realized enhanced supersymmetry [Witten 96]

A D3 on
$$h$$
 $\mathcal{N}=(2,0)$ SCFT string \longrightarrow $\bar{K}_{\mathbb{F}_2}\cdot_{\mathbb{F}_2}h=0$ \longrightarrow Not intersected by 07-planes

The vicinity of h looks like a hyper Kähler geometry, and dilaton does not vary.

The tensor + hyper form a $\mathcal{N}=(2,0)$ matter mult. in 6d $\qquad \qquad \qquad \psi_{n.p} \text{ is predicted by susy enhancement}$

Lessons:

- Transition well understood in F-theory. Heterotic transition goes through extremal points
- 2. Local enhanced supersymmetry requires an additional hypermultiplet in \mathbb{F}_2 . This allows us to transition to \mathbb{F}_0

SUSY enhancement

Topological transitions

Guideline: Mimic the 6d F-theory strategy:

$$\bar{K}_{\mathbb{F}_2} \cdot_{\mathbb{F}_2} h = 0 \longrightarrow \text{Enhanced susy subsector}$$

Flop transitions in 4d

We follow same idea as in 6d F-theory

Flop transitions in 4d

We follow same idea as in 6d F-theory

Assume a curve with,

Flop transitions in 4d

We follow same idea as in 6d F-theory

Assume a curve with,

plus floppable

$$\mathcal{N}_{C_0/B_3} = \mathcal{O}(-1) \oplus \mathcal{O}(-1)$$

$$C_0$$
 \longrightarrow C_0

Back to F-theory:

Non-perturbative phase structure of C_0 :

Back to F-theory:

Non-perturbative phase structure of C_0 :

Natural n.p deformation candidate: birational factorization of the flop ${\color{blue} \frown}$ Similar to 6d F-theory

Back to F-theory:

Non-perturbative phase structure of C_0 :

Natural n.p deformation candidate: birational factorization of the flop $\begin{array}{c} \longrightarrow & \text{Similar to 6d} \\ \text{F-theory} \end{array}$

$$\bar{K}(\hat{B}_3) = \phi^*(\bar{K}(B_3)) - E$$
 with $E \simeq \mathbb{P}^1 \times \mathbb{P}^1$

Back to F-theory:

Non-perturbative phase structure of C_0 :

Natural n.p deformation candidate: birational factorization of the flop ${\color{blue} \frown}$ Similar to 6d F-theory

$$\bar{K}(\hat{B}_3) = \phi^*(\bar{K}(B_3)) - E \qquad \text{ with } \qquad E \simeq \mathbb{P}^1 \times \mathbb{P}^1 \qquad \text{ Similar to 6d heterotic}$$

Invisible from perturbative type IIB on CY orientifolds. Since violates the CY condition

$$T_E = rac{1}{2g_s} \int_E J_{\hat{B}_3}^2 + i \int_E C_4 \longrightarrow {
m Extra\,chiral}$$

$$T_E = \frac{1}{2q_s} \int_E J_{\hat{B}_3}^2 + i \int_E C_4 \longrightarrow \text{Extra chiral}$$

The Euler characteristic changes

$$-744 = \delta \chi = \chi(\hat{X}_4) - \chi(X_4) = 6 \left(\delta h^{3,1} + \delta h^{1,1} - \delta h^{2,1}\right)$$

$$T_E = \frac{1}{2q_s} \int_E J_{\hat{B}_3}^2 + i \int_E C_4 \longrightarrow \text{Extra chiral}$$

The Euler characteristic changes

$$-744 = \delta \chi = \chi(\hat{X}_4) - \chi(X_4) = 6 \left(\delta h^{3,1} + \delta h^{1,1} - \delta h^{2,1}\right)$$

We find

$$\delta h^{1,1} = \delta h^{2,1} = 1 \qquad \delta h^{3,1} = -124$$

Local data

Two extra chirals from the local geometry deformation

$$(T_E):(2,0)_C + (\chi_0):(2,0)_C$$

Still missing one!

$$T_E = \frac{1}{2q_s} \int_E J_{\hat{B}_3}^2 + i \int_E C_4 \longrightarrow \text{Extra chiral}$$

The Euler characteristic changes

$$-744 = \delta \chi = \chi(\hat{X}_4) - \chi(X_4) = 6 \left(\delta h^{3,1} + \delta h^{1,1} - \delta h^{2,1}\right)$$

More in [25xx. xxxx]

We find

$$\delta h^{1,1} = \delta h^{2,1} = 1 \qquad \delta h^{3,1} = -124$$

Local data

Two extra chirals from the local geometry deformation

$$(T_E):(2,0)_C + (\chi_0):(2,0)_C$$

Still missing one!

$$\delta h^{3,1} = -124$$

Global data

Along with a change in the number of D3-branes

Decoupled sector!

Stückelberg massive U(1)

The excitations of the string carry U(1) charge

$$E \cdot_{\hat{B}_3} C'' = 1$$

Stückelberg massive U(1)

The excitations of the string carry U(1) charge

$$E \cdot_{\hat{B}_3} C'' = 1$$

The string tension
$$\left.\frac{T_{\rm S''}}{M_s^2}\right|_{\rm pert}=\left|t''+\frac{i}{2}\right| \qquad \bar{K}_{\hat{B}_3}\cdot C''\neq 0$$

Like heterotic gauge enhancements states

Stückelberg massive U(1)

The excitations of the string carry U(1) charge

$$E \cdot_{\hat{B}_3} C'' = 1$$

The string tension $\left.\frac{T_{{\bf S}''}}{M_s^2}\right|_{\rm pert.}=\left|t''+\frac{i}{2}\right|\qquad {\bar K}_{\hat B_3}\cdot C''\neq 0$

Like heterotic gauge enhancements states

Finite Finitely many tension massless excitation

Stückelberg massive U(1)

There has to be a light charged state even though full quantization is not known!

Summary: multiplets and origin

$$(C):(2,0)_{C}$$

 $\text{Massive} \quad (V): (3,1)_{V,m\neq 0}$

Due to local enhanced SUSY we must to fill out N=2 supermultiplets

Summary: multiplets and origin

$$(C):(2,0)_C$$
 Massive
$$(V):(3,1)_{V,m\neq 0}$$

Due to local enhanced SUSY we must to fill out N=2 supermultiplets

$$(C): (2,0)_C \\ + (C): (2,0)_C \\ + (C): (2,0)_C \\ \hline (H): (4,0)_H \\ \\ \\ \text{Massive } (V): (3,1)_{V,m\neq 0} \\ + (C): (2,0)_C \text{ Extra } h^{2,1} \\ (C): (2,0)_C \text{ D3 string exc.} \\ \\ \text{Massive } (V): (5,3)_{V,m\neq 0} \\ \\ \\ \text{Massive } (V): (5,3)_{V,m\neq 0} \\ \\ \text{Massive } (V): (5,3)_{V,m\neq 0$$

Conclusions

- Topological transitions are well understood in theories with extended supersymmetry.
- As a first step, we search for sectors with enhanced supersymmetry in minimally supersymmetric theories.
- Our guiding principle is

$$\bar{K}_{B_3} \cdot C_0 = 0$$

 While perturbative type IIB does not capture all the physics, F-theory does provide the necessary degrees of freedom to fill out N=2 supermultiplets

More in [25xx. xxxx]

- Enhanced SUSY in the c.s moduli space/conifold transitions
- Global SUSY breaking effects are discussed
- The heterotic duality of this F-theory setup

Ευχαριστώ πολύ

$$\mathbb{T}_2 \leftrightarrow \mathbb{T}_0$$

$$(12, 12) \longleftrightarrow (10, 14)$$

The missing chiral comes from n.p state (like in conifold transitions)

After the transition, a closed string U(1) is replaced by an open string U(1). In F-theory, closed and open string moduli are treated equally.

Same as in N=2. Different origin whether: Higgs or Coulomb branch.

Take the type IIB limit: $T^2 \hookrightarrow X_4 \to X_3$. After to orientifolding

$$t_0 = g_s^{-1/2} \int_{C_0} J_{X_3}, \quad b_2^{(0)} = \int_{C_0} B_2, \quad c_2^{(0)} = \int_{C_0} C_2, \quad c_4^{(0)} = \left(\int_{C_0} C_4 \right)^{\vee}$$

In the vicinity of C_0

Conifold setup

Higgs branch

Remember I assumed

$$\bar{K}_{B_3} \cdot C_0 = 0$$

$$H$$
): $(4,0)_H$

$$(C):(2,0)_{C}$$

Massive
$$(V):(5,3)_{V,m\neq 0}$$

Massive
$$(V):(3,1)_{V,m\neq 0}$$