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They are well understood in theories with extended SUSY

Exact moduli spaces or
mirror symmetry help!
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e Topological transitions usually require non-perturbative effects.
e \Well understood and trustable for theories with extended SUSY
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e Topological transitions usually require non-perturbative effects.
e \Well understood and trustable for theories with extended SUSY

e Clear separation between Higgs and Coulomb branch

Goal

e Use minimally supersymmetric set ups.
e First step: Look for sectors with enhanced
supersymmetry.

e Use examples with extra SUSY as a guideline.
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[S eiberg, Witten 267

Share the same moduli space!

Heterotic transition is extremal and not obvious! Remove instanton numbers

from the E8s
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From F-theory is simpler
TQ < TO

E— X3 > Fyk— & — X3 — F

A degree 24 hypersurface in ]P’171,2,8,12 can be viewed
g‘—>X3—>IF2, nv:O,nTzl,nH:243

2734+0=29 x1+4+243+1
Missing a hyper

N [Morricon, Vafa 767 is described as a non-polynomial deformation

Blowing down a

2
Y1y +y3 = 0 (-2)-curvein  Fy
Ty < Ty l

Smooth D
transition Y1y2 + y3 — wn.p Y4 Topologically Fy

+1 hyper



Actually, wn,p has a susy enhancement origin!



Actually, wn,p has a susy enhancement origin!

KFZ = 2h + 4f
Fs :

hgp,h=-2, fg, f=0, fy,h=1



Actually, wn,p has a susy enhancement origin!

Kr, =2h +4f
Fs .
hreph=-2, fwr,f=0, frph=1
The vicinity of h locally realized enhanced supersymmetry [Witten 767

AD3onh

¢ == __ . Notintersected by
N = (2,0) SCFT string Ky, 7, h=0

07-planes

The vicinity of h looks like a hyper Kahler geometry, and dilaton does not vary.



Actually, wn,p has a susy enhancement origin!

Fs :

KF2 = 2h + 4f

hrph=-2, fx f=0,

The vicinity of h locally realized enhanced supersymmetry

AD3onh
N = (2,0) SCFT string

Tty =10

fr,h=1

[W/tteu 767

Not intersected by
07-planes

The vicinity of h looks like a hyper Kahler geometry, and dilaton does not vary.

The tensor + hyper forma N = (2,0) matter mult. in 6d

L\_/ wn.p is predicted by susy enhancement



Lessons:

1.  Transition well understood in F-theory. Heterotic transition

goes through extremal points

2. Local enhanced supersymmetry requires an additional

hypermultiplet in 5 . This allows us to transition to Fy,

SUSY enhancement %‘iﬁv Topological transitions

Guideline: Mimic the 6d F-theory strategy:

> — Enhanced susy
KF2 T h=0 subsector
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plus floppable
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Take the type IIB limit: TE s Wq — oo

= Push far away
iim QO7 loci
O7-planes N=2->N=1
) effects can be
made weak
Remember | assumed \ o N (C) : (2,0)c +MaSSiV9 (V) : (3, 1)vim0
\ -planes
KB:,) g C() =0 AN P (C) g (2,0)0 2 X (C) ; (2,0)0
(H):(4,0)m Massive (V') : (5, 3)v,ms0

As in 6d, they are related to a n.p deformation
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Back to F-theory:

Non-perturbative phase structure of Cj:

Exceptional divisor
' r

/

- Cv// E’ —

C

v
—CU

S ~

Bs B3 Bs

. . .. . . Similar to 6d
Natural n.p deformation candidate: birational factorization of the flop — F-theory

K(B3) = ¢*(K(B3)) — E with E~P' xP! Similar to 6d

heterotic

Invisible from perturbative type IIB on CY orientifolds. Since violates the CY
condition
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New geometric light states
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New geometric light states

The Euler characteristic changes

—744 = §x = x(X4) — x(X4) = 6 (68> 4+ SRV —

We find
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New geometric light states

AE— L J2 + z/ Cy Extra chiral
295 E
CV/
The Euler characteristic changes I_. o'l E
—744 = §x = x(X4) — x(X4) = 6 (6h>! + 6hM! — 5R2Y)

We find
ohtl =6n%1 =1 |i| 631 =—-124

More in [25xX. XxXxX]

Local data Global data

Along with a change in the number of
D3-branes

Two extra chirals from the
local geometry deformation

(Te) : (2,0)c +  (x0):(2,0)c

Decoupled sector!

Still missing one!
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Missing charged chiral (like in conifold)

The excitations of the string carry U(1)
charge

The string tension

/\ Axion turned on

TS” KB;; . C// 7£ 0
M
pert.

i
oyl
i 2

Like heterotic gauge enhancements

states
Finite Finitely many
tension massless excitation

D3 string

@y 7-brane
C//

Stuckelberg massive U(1)

There has to be a light charged
state even though full quantization
is not known!

Chiral comes
from the string

/
C Cll

NUAVAYAY

C//
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Summary: multiplets and origin

7-brane

D3 string
Cl

C//

Stlckelberg massive U(1)

: Due to local enhanced
(€):(2,0)c SUSY we must to fill out

N=2 supermultiplets
Massive (V) : (3,1)v.m=0 ¥ i

Massive (V) : (3, 1)v.m=o

+(C) :(2,0)c N (C) : (2,0)¢ Extra h®!
New divisor (C) :(2,0)¢ (C) : (2,0)c D3 string exc.
(H): (4,0)g Massive (V') : (5, 3)v.m=0



Conclusions

e Topological transitions are well understood in theories with extended
supersymmetry.

e As afirst step, we search for sectors with enhanced supersymmetry in
minimally supersymmetric theories.

e Our guiding principle is
Kp,-Cp=0
e While perturbative type |IB does not capture all the physics, F-theory

does provide the necessary degrees of freedom to fill out N=2
supermultiplets

More in [25xX. XxxxX]

e Enhanced SUSY in the c.s moduli space/conifold transitions
e Global SUSY breaking effects are discussed

e The heterotic duality of this F-theory setup
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Heterotic point of view

TQHTO

(12,12) <— (10,

From Heterotic-M-theory on K3 x S*/Zs

M5 charge

14)

M2 string

|_— Higgs branch singularity

[

(9+) brane

24 =104 14

TQHTO

four extremal
transitions

Not obvious!

(9-) brane



The missing chiral comes from n.p state (like in conifold transitions)

7-brane

Massive (V') : (5, 3)v.m=0 Stlckelberg massive U(1)

After the transition, a closed string U(1) is replaced by an open string U(1). In

F-theory, closed and open string moduli are treated equally.

Same as in N=2. Different origin whether: Higgs or Coulomb branch.
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