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Black holes & chaos

State of the art: fast scrambling (Susskind), MSS bound and
near-horizon isometries

Near-horizon AdS throat and its SL(2,R) isometry imply strong
chaos in dual holographic quantum field theory (SYK model,
Yang-Mills plasmas etc)

The same symmetry arguments lead to integrable geodesics in the
bulk (black hole geometry)
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Black holes & chaos

State of the art: fast scrambling (Susskind), MSS bound and
near-horizon isometries

Near-horizon AdS throat and its SL(2,R) isometry imply strong
chaos in dual holographic quantum field theory (SYK model,
Yang-Mills plasmas etc)

The same symmetry arguments lead to integrable geodesics in the
bulk (black hole geometry)

Qualitatively: integrable geodesics (AdS black hole) ↔ maximum
chaos (CFT)

This talk and some other recent works: nonintegrable (chaotic)
geodesics (microstate geometries) ↔ ???
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Black holes & averaging

Big question: are black holes ensemble-averaged solutions?

Hint 1: microstate solutions, fuzzballs etc.

Hint 2: replica wormholes and the factorization problem: does
AdS/CFT secretly perform ensemble averaging?

JT gravity (Saad, Shenker, Stanford, Iliesiu) and AdS3 gravity (Belin,
Perlmutter): ensemble average over theories

In higher dimension: unlikely, but perhaps ensemble average over
solutions or states
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LLM geometries & averaging

Lin-Lunin-Maldacena (LLM) 1/2 BPS geometries: mapping to black
and white patterns in the x − y plane

Lots of supersymmetry + mapping to the 2D plane ⇒ very
convenient for work

But: this is clearly not a black hole!

So why bother?
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LLM geometries & averaging

Lin-Lunin-Maldacena (LLM) 1/2 BPS geometries: mapping to
black-and-white patterns in the x − y plane

Lots of supersymmetry + N = 4 SYM CFT + mapping to the 2D
plane ⇒ very convenient for work

But: this is clearly not a black hole!

So why bother?

Because it does provide us with a singularity: superstars and grayscale
LLM geometries. And it remains more approachable than e.g. D1-D5
CFT
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Idea: how is the singularity born out of bulk chaos and
averaging?

Study the dynamics of bulk probes in LLM geometries (for now
mainly geodesics, can be upgraded to fields)

Do we get more black-hollish behavior of geodesics after averaging
over black-and-white ensembles? – Yes, but with caveats (Berenstein,
Čubrović and Djukić 2508.09669)

Can we identify the consequences of chaos and averaging on the CFT
operators? – Yes, but they are probably system-dependent
(Berenstein, Čubrović and Djukić, to appear)
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1 LLM solutions

2 Geodesic chaos in black & white geometries

3 Weak geodesic chaos and averaging in grayscale geometries

4 CFT picture: toward the dictionary entry for chaos
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1 LLM solutions
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LLM solution

Lin, Lunin & Maldacena 2004 ”bubbling AdS” – 1/2 BPS solutions
with symmetry SO(4) × SO(4) × R
CFT interpretation: only one complex scalar in N = 4 SYM on S3 ×R
is excited ⇒ extra R symmetry
Ground state: AdS5 × S5 (one S3 in AdS and one on S5)
Gravity + RR 5-form field
Metric:

ds2 = 1

h2
[ − (dt +Vadx

a)2 + h4 (dξ2 + dxadxa) +

+(1
2
− z)dΩ̃2

3 + (
1

2
+ z)dΩ2

3]

h2 = 1

ξ

√
1

4
− z2, ∂aVb = ϵab

∂ξz

ξ
+ ∂bVa, ∂ξVa =

ϵab∂bz

ξ

BPS condition to have a solution of type IIB SUGRA:

∂a∂az + ξ∂x (
∂ξz

ξ
) = 0.
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Black & white patterns and bubbling AdS

Everything determined by the single function z(ξ, x , y)
Finite curvature requires z(ξ = 0) = −1/2 (”black”) or z(ξ = 0) = +1/2
(”white”)
Exactly one 3-sphere vanishes at every point in the plane: in AdS /
on S5 for black / white
In the matrix model black / white corresponds to electrons/holes
(Berenstein 2004)
Geometry of black & white patterns:

▸ Black disk – AdS
▸ Multi-disk patterns – ”bubbling AdS”
▸ Black half-plane – pp-wave limit
▸ Small deformations (rings, droplets etc) – small fluctuations

Disk + concentric thin ring ≈ giant graviton excitation on AdS
Charge and momentum (0th and 2nd moment of the blackness
distribution in the LLM plane)

Q = 1

4π2ℓ4P
intDd2x , J = 1

16π3ℓ8P
[∫D d2x(x21 + x22 ) −

1

2π
(∫D d2x)

2

]
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Grayscale solutions

Constructed as ”superstars” (Myers & Tafjord 2001) even before
LLM: naked singularity

In LLM terms: −1/2 < z(ξ = 0) < 1/2 ⇒ both 3-spheres shrink to zero

gµν(ξ → 0) ∼ h2 ∼
√
1/4 − z2/ξ ⇒ R ∼ 1/ξ3

”Good” singularity a la Gubser (potentials remain finite ⇒ enclose it
by a horizon?)

Matrix-wise: coarse-grained Young tableaux – smoothen the edges
(Balasubramanian, Berenstein Levkowycz, Miller, Parrikar 2019) ⇒
can be pictured as ”grayscale” areas

Natural arena for averaging: we expect to get grayscale physics by
averaging over small deformations of black & white solutions
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2 Geodesic chaos in black & white
geometries
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Why study geodesic chaos?

As a toy model for fields (otherwise: solve time-dependent 3D PDEs
⇒ forget it)

To compare bulk dynamics in smooth geometries as opposed to the
integrable behavior in black hole backgrounds

To construct explicitly the effective averaging (i.e. coarse-graining)
procedure that will yield grayscale singularities

To gain insight into statistical properties of two-point functions for ∆
large
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Equations of motion

Geodesic Hamiltonian:

H = 1

2h2
[P2

ξ + (Px + EVx)2 + (Py + EVy)2 − h4 (E 2 − 2L2

1 − 2z −
2L̃2

1 + 2z )]

Vx ,y – effective ”magnetic” fields in the LLM plane

In the LLM plane: magnetic billiard (Berenstein, Maderazo, Mancilla,
Ramirez 2023)

Ground state (black disk = AdS) integrable

Two representative excited (CFT) and nonintegrable (bulk)
configurations: disk+ring and 3-disk

Disk+ring described by the Schur polynomials of Z = Φ1 + ıΦ2

Both are nonintegrable but disk+ring has Pϕ as an extra integral of
motion ⇒ 2 degrees of freedom instead of 2 and a half
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Backgrounds and geodesics

Disk+ring background and geodesic 3-disk background and geodesic

Two representative configurations: disk+ring and 3-disk

Both are nonintegrable but disk+ring has Pϕ as an extra integral of
motion ⇒ 2 degrees of freedom instead of 2 and a half

Nonintegrability from normal variational equation or simply by
inspection of orbits

16 / 43



Chaos in disk+ring case
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phase-space with remnants of KAM
tori and the chaotic sea
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3 disks: KAM tori still present but do
not present a barrier (3 degrees of
freedom)

Nonintegrable geodesics, unlike (most) black holes

But: sticky trajectories provide trapping and mimic the black hole
behavior

Very different from the trapping in superstrata etc: stickynes (KAM
tori remnants), not long (but eventually capped) throat as in
superstrata
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Escape rates and the fractal structures
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Disk+ring: several populations with
different escape rates γ1, γ2, γ3, γ4,
plus sticky trajectories with very slow
(subexponential) escape.
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3 disks: uniform escape rate γ.
Sticky trajectories are still present
but do not divide the phase space
into disjoint populations.

Expect multifractal scaling for disk+ring

Escaping geodesics ↔ geodesics from boundary to boundary ↔
eikonal limit of two-point functions

What is the holographic dictionary entry for chaotic scattering in the
bulk?
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Escape rates and the fractal structures
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Photon ring?

For a black hole: the only unstable periodic orbit at r = r∗, positive
Lyapunov exponent but no chaos (no skeleton of unstable periodic
orbits)

Cardoso et al: Lyapunov exponent on the photon ring determines the
imaginary part of the quasi-normal mode spectrum for n≫ 1

Here: chaotic dynamics, infinite skeleton of unstable periodic orbits
⇒ photon ring has no special significance

Effective potential: Q = H∣Pξ=Px=Py=0
Find the turning points r∗ with Q(E , r∗) = ∂rQ(E , r∗) = 0
Wave quantization condition in the WKB approximation:

Q(E∗, r∗)√
2Q ′′(r∗,E∗)

= −ı(n + 1

2
) , n ∈ N

En = −(2n + 1)
√
Q ′′(r∗,E∗)

∂EQ(r∗,E∗)
√
2

When the dust settles: En = E∗ − ı(2n + 1)λ – the Cardoso relation
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Photon ring? – Yes but who cares

Scalar wave energy En in the WKB approximation exactly determined
by the energy E∗ and position r∗ of the photon ring geodesic
Nontrivial: would not expect this for a horizonless metric
But again, the meaning is very different: the photon ring orbit does
not imply quasinormal modes: confirmed by the numerics
No poles in the bottom complex plane, just the branch cut along
Rω = 0
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Photon ring insignificant for the Lyapunov spectrum

Lyapunov exponent (left) and the Pesin relation for the sum of positive
Lyapunov exponents Λ, Kolmogorov-Sinai entropy hKS and escape rate γ
(right):

Λ ≡ ∑
λi>0

λi = hKS + γ
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Λ=γ+hKS relation

At the photon ring we have λ∗ ≈ 0.001 – much less than the typical
exponent
Cardoso relation remains but it does not influence dynamics and
presumably observable quantities
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Take-home message 1

Smooth geometries indeed show geodesic chaos, contrary to black holes,
which always have integrable geodesics (modulo some pathological cases).
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Take-home message 2

We know that LLM geometries are not black holes. So just because in
sufficiently complicated configurations there is some trapping and some
photon rings and a Cardoso relation does not mean the microstate comes
close to a black hole.
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3 Weak geodesic chaos and
averaging in grayscale geometries
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Grayscale geodesics

Same Hamiltonian ⇒ still nonintegrable. But different z function
leads to a potential well which is never present in black & white:

Veff;BW(ξ) =
J2−Θ(ρ − Ri) + J2+Θ(Ri − ρ)

ξ2
≥ 0

Veff;gray(ξ) =
−(E2 )

2 (1 − g2) + J2−+J2+
2

g
2
(J2− − J2+) sgn(ρ − Ri)

ξ2

Now both escapes (γ > 0) and captures by the singularity (γs > 0) are
possible

Dynamics is now much simpler. In terms of Kolmogorov-Sinai
entropy: hKS = ∑λi>0 λi − γ − γs ≈ 0
Still nonintegrable, but hKS ≈ 0 just like for black holes!
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Grayscale escape rates

Left: escape/capture rate for black & white (blue) vs gray (red)

Right: the photon ring separates captures (r < r∗) and escapes (r > r∗)
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Smooth escape rate dependence, no fractal structure

The photon ring is again observable and crucial: separates captures
from escapes

More black-hollish than black & white
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Averaged black & white vs. gray backgrounds

Disk + multiring + ring vs. disk + gray area + ring

Gray background = average of black & white backgrounds with the
same total flux

2N+1
∑
i=1
(−1)i+1R2

i = R2
1 − R2

2N + R1
2N+1 + g (R2

2N − R2
1)

Does the same hold for geodesics?

Idea: generate an ensemble of disk + multiring + ring backgrounds,
compute geodesics, average them over the ensemble
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Averaged black & white vs. gray potential

Quadratic fluctuations yield an ensemble of disk + multiring + ring
solutions with (random Gaussian) radii Ri centered at Ri ;0

VBW(ξ, ρ) =
1

ξ2

⎡⎢⎢⎢⎢⎣
J2−

2N+1
∑
j=1
(−1)jΘ(ρ − Rj) + J2+

2N+1
∑
j=1

Θ(Rj − ρ)
⎤⎥⎥⎥⎥⎦

Distribution with the flux conservation constraint:

P(R2, . . .R2N−2) = N e−∑
2N−1
j=2

(Rj−Rj ;0)2
2σ2 δ

⎛
⎝
2N+1
∑
j=1

R2
j −
A0

π

⎞
⎠
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Averaged black & white vs. gray potential

Without the constraint just a bunch of Gaussian integrals but the
constraint introduces effective interactions:

⟨Veff⟩ =
1

Zξ2

2N−1
∏
j=2
∫ dRj ∫ dλVBW;eff exp [−R ⋅ M̂ ⋅R −K ⋅R − ıλΣ−]

M̂ = diag ( 1

2σ2
+ (−1)j ıλ) , K = (Rj ;0

σ
) , j = 2, . . .2N − 1

Mean field: fixed M̂. Nonlinear fluctuations: make M̂ dynamical.

In mean field exactly solvable
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Averaged black & white vs. gray potential

Partition function for 2N + 1 disks:

Z = πN−1

(M+M−)
N−1
2

2N−1
∏
j=2

e

R2
j ;0

4σ2M(−1)j
⎡⎢⎢⎢⎢⎣
1 −Erf

⎛
⎝

Rj ;0

2σ
√
M(−1)j

⎞
⎠

⎤⎥⎥⎥⎥⎦
Averaged effective potential:

⟨Veff(ξ, ρ)⟩ =
1

2ξ2 ∫ dλe−ıλΣ−
2N−1
∑
j=2

Aj

Z1;(j)

Aj

Z1;(j)
=
(J2− + J2+)Erf (xj + ρ

√
M(−1)j ) + J2+ − J2−Erf(xj)

1 −Erf(xj)

xj ≡
Rj ;0

2σ
√
M(−1)j

λ-integral doable but the outcome is a few pages long
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Averaged black & white vs. gray potential

4 6 8 10

-4000

-2000

0

2000

4000

6000

8000

r

V
e
ff
(r
)

4 6 8 10

-500 000

0

500 000

1.0×10
6

1.5×10
6

ρ

V
e
ff
(ρ

)

Effective potential: black – microscopic; blue, magenta, red – grayscale
with different g ; green – ensemble average

Effective potential for Gaussian ensemble (left) vs uniform ensemble
(right), for black-and-white (black), grayscale with different g (blue,
magenta, red), averaged black-and-white (green)

Averaged potential has a potential well of the form −c/ξ2 ⇒ but it
eventually truncates and remains finite: falling into the center for
times up to ta
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Averaged black & white geodesics vs. gray geodesics

At short timescales (t < ta): perfect agreement xµgray(t) ≈ ⟨xµBW(t)⟩
Averaging over orbits is roughly equivalent: xµgray(t) ≈ x̄µBW(t), also
for t < ta
At longer timescales: no averaging

Compare to the results on 5-brane stars in Martinec & Zigdon 2023,
2024
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Take-home message 3:

Take-home message 3: The same averaging procedure that leads to the
superstar singularity also leads to black-hollish geodesic dynamics and
proper trapping. However, this is only true for short times/high excitations.

34 / 43



4 CFT picture: toward the
dictionary entry for chaos
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Chaos in the bulk vs the boundary

Naiveley: black hole ⇒ integrable geodesics and maximal CFT chaos;
microstate ⇒ usually nonintegrable geodesics and submaximal CFT
chaos

Check this and make it precise!

Study the statistics of the CFT operators corresponding to the LLM
patterns

Match the escape rates and fractal dimensions to the CFT correlators

Make use of the precision holography results in Turton & Trukov
2024, 2025, Giusto, Russo, Rosso, Aprile 2023, 2024, 2025
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LLM precision holography

At linear order, light CFT primaries Tr(Z k) are given by the ripple
deformation of the black disk (AdS) black-white boundary R(ϕ):

R(ϕ) = R0 ↦ R(ϕ) = R0 (1 + ϵ cos kϕ)
Heavy primaries Ok,p = (TrZ k)p with p ≫ 1 have a SUGRA
description only if combined into coherent states of the form

Ok,p0;SUGRA = ∑
p

ck,pOk,p

The distribution of p’s peaks at some p0 ∝ ϵ2

Generally we expect these (recently also rigorously shown) to be given
by

R2(ϕ) = R2
0 (1 + ϵ cos kϕ + d2ϵ2 cos 2kϕ + . . .)

Rings are conjectured in the LLM paper to correspond to symmetric
polynomials Sk,p(TrZ ,TrZ 2 . . .TrZ k).
Ripples are easier to work with and importantly we get the same gray
disk after averaging over ripples
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Averaging over ripples: the CFT side

Ensemble of ripple deformations R2(ϕ) with k = const.≫ 1 (geodesic
regime – heavy field), ϵ = const. < 1 (ripple radius i.e. grayscale ring
radius) and thus p0 = p0(k, ϵ) = const.
Average over the coefficients ck,p drawn from a distribution P (ck,p)
Constraint: maxP (ck,p) = p0
Highly non-unique. Reduce by requiring the conservation of charge Q
and momentum J

This is the CFT picture. But we start from solutions in the bulk so
we know Ok,p0;SUGRA and want to invert this to find ck,p
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Averaging over ripples: p = 2 in CFT

Bulk equations of motion and the basis for the ripples:

2AdS5bk = k(k − 4)bk , 2S5Yk = −k(k + 4)Yk

bk = cosh−k ρeıkτ , Yk = cosk θeık(ϕ−t)

The known case: Giusto et al result for Ok,2 (valid also in classical
supergravity when operators do not mix different p’s, e.g. the energy)

R2(ϕ) = R0 (1 −
ϵ

2
cos 2ϕ + 3

16
ϵ2 cos 4ϕ) +O(ϵ3)

Use these as building blocks when inverting the distribution of
Ok,p0;SUGRA to find P(ck,p)
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Averaging over geodesics in the bulk LLM

In the eikonal approximation we know Ok,p;disk+ring(ϕ, t)
From these find ck,p

Grayscale values Ok,p;disk+ring(ϕ, t) yield the moments of P(ck,p)
From the escape rates we find the scaling of escape times map (see
e.g. Dorfman’s book):

tesc ∼
∞
∑
n=0
(∣x1∣∣x2∣

)
n M

∑
m=1

cos (γnmθ)

We find four populations of orbits with γ1,2,3,4

The scaling exponents /escape rates γm are the only ingredients from
the numerics
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Statistical properties of Ok,p;disk+ring(ϕ, t)

When the dust settles:

⟨Ok,p;disk+ring(ϕ, t)⟩ ∼ R2∆
1

∞
∑
n=0
∑
m

( γm
R2 − R1

)
n sinh (R1γ

n
mt)

sin (R1γnmϕ)

Weierstrass-function-like behavior – very different both from AdS and
thermal correlators

Take an ensemble of geodesics with different escape rates γm and
perform the linear fit to ∑p ck,p with 3 constraints: p0, Q, J

Compare grayscale ck,p with an average over black and white ck,p
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Statistical properties of ck ,p
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Black and white (blue), average over black and white (magenta) and
grayscale (red) coefficients: in grayscale a broad distribution, more
complex, no clear exponential decay. The maximum is shifted toward
heavier states!
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Conclusions
Black & white LLM microstates vs gray LLM states vs black holes:
no horizon and geodesic chaos vs naked singularity and weak chaos vs
horizon and integrable geodesics

Averaging to singular grayscale geometries works directly on orbits
and correlation functions

Strongly chaotic black-and-white orbits have parametrically lighter
CFT operators than the weakly chaotic grayscale orbits

Can we redo this e.g. in D1-D5 and show that averaging over chaotic
operators yields a heavy operator in a thermal CFT?
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