Holographic Baryons as Quantum Hall Droplets

Aldo L. Cotrone Florence University

CORFU 2025 Workshop on Quantum Gravity and Strings

September 2025

Table of contents

No Skyrmions with one flavor

A proposal for the solution: baryons as quantum Hall droplets

3 Test of the proposal: holographic baryons as quantum Hall droplets

No Skyrmions with one flavor

Low-energy effective action for QCD for $N_f \ge 2$

Pion matrix

$$U=e^{i\sum_{a=1}^{N_f^2-1}\frac{\pi^a(x)T^a}{f_\pi}}$$

Chiral Lagrangian with Skyrme term (postulated)

$$\mathcal{L}_{\mathsf{eff}} = -rac{f_\pi^2}{4} extit{Tr} igl[\partial_\mu U \partial^\mu U^\dagger igr] + rac{1}{32 e^2} extit{Tr} igl[U^\dagger \partial_\mu U, U^\dagger \partial_
u U igr]^2$$

Low-energy description of baryons

Skyrme term allows for solitonic solutions, e.g. for $N_f = 2$

$$U=e^{i\frac{f(r)}{r}x^a\sigma^a}$$

(with known f(r)): a "Skyrmion".

If $f(0) = \pi k$, $k \in \mathbb{Z}$, then solution has winding number k for

$$\Pi_3(SU(N_f=2))=\mathbb{Z}$$

where the 3-sphere is in coordinate space.

This is interpreted as the baryon number

Low-energy description of baryons

Skyrme term allows for solitonic solutions, e.g. for $N_f = 2$

$$U=e^{i\frac{f(r)}{r}X^a\sigma^a}$$

(with known f(r)): a "Skyrmion".

If $f(0) = \pi k$, $k \in \mathbb{Z}$, then solution has winding number k for

But

$$\Pi_3(U(N_f=1))=0$$

⇒ No Skyrmions with one flavor

Is there a low-energy description of single flavor baryons?

A proposal for the solution

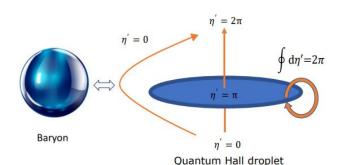
In single-flavor low-energy $SU(N\gg 1)$ QCD, baryons are charged sheets [Komargodski 2018 and many others before]

 η' (phase of quark condensate) light at ${\it N}\gg 1$ \Rightarrow low energy Lagrangian is

$$\mathcal{L}_{\mathsf{eff}} = \frac{1}{2} (\partial \eta')^2 - \frac{1}{2} \mathsf{m} \Lambda_{QCD} \cos{(\eta')} - \frac{1}{2} \mathsf{m}_{WV}^2 \mathsf{Min}_{k \in \mathbb{Z}} (\eta' + \theta_{QCD} + 2\pi k)^2$$

m: quark mass, Λ_{QCD} : dynamical scale, m_{WV} : Witten-Veneziano mass, take $\theta_{QCD}=0$.

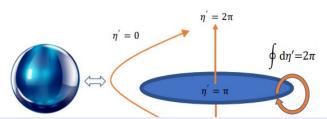
Potential is multi-valued with cusp-singularity at $\eta' = \pi \Rightarrow$ effective action breaks down there, extra (gluonic) degrees of freedom: sheet.


- Infinite sheet similar to domain-wall but no related charge: unstable.
- \bullet η' has non-trivial monodromy through the sheet.
- Sheet can be stabilized by baryonic charge.

(□▶◀∰▶◀불▶◀불▶ 불 쒸٩♡

Proposal: sheet hosts a $U(1)_N$ Chern-Simons theory on its world-volume "Quantum Hall Droplet"

If it has circular boundary \Rightarrow can have chiral edge modes: baryonic charge! Charge forbids shrinking of the sheet.


It has spin $J = N/2 \gg 1$, "pancake-shaped".

Proposal: sheet hosts a $U(1)_N$ Chern-Simons theory on its world-volume "Quantum Hall Droplet"

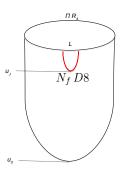
If it has circular boundary \Rightarrow can have chiral edge modes: baryonic charge! Charge forbids shrinking of the sheet.

It has spin $J = N/2 \gg 1 \Rightarrow$ "pancake-shaped".

Effective field theory singular around the sheet, how can we test the proposal and compute properties of this baryon?

The holographic model

Holographic QCD


[Witten 1998, Sakai-Sugimoto 2004]

- Type IIA background from N D4-branes wrapped on circle $S^1 + N_f$ D8/anti-D8-brane pairs in probe approximation (no backreaction).
- Low energy: dual to (non-susy) 4d YM + KK modes + chiral quarks.
- Confinement, mass gap, chiral symmetry breaking.
- Gravity description reliable if $N\gg 1$, $\lambda=g_{YM}^2N\gg 1$

$$ds^{2} = \left(\frac{u}{R}\right)^{3/2} \left(dx^{\mu}dx_{\mu} + f(u)dx_{4}^{2}\right) + \left(\frac{R}{u}\right)^{3/2} \frac{du^{2}}{f(u)} + R^{3/2}u^{1/2}d\Omega_{4}^{2}$$

• N units of flux of F_4 through S^4 .

$$ds^{2} = \left(\frac{u}{R}\right)^{3/2} \left(dx^{\mu} dx_{\mu} + f(u) dx_{4}^{2}\right) + \left(\frac{R}{u}\right)^{3/2} \frac{du^{2}}{f(u)} + R^{3/2} u^{1/2} d\Omega_{4}^{2}$$

Baryons [Hata et al. 2007]: instantonic configurations of gauge field on D8-branes, but only for $N_f \geq 2!$

→ロト 4回ト 4 三ト 4 三ト 9 Q (*)

Holographic baryons as quantum Hall droplets

Dual of sheet identified as follows ($N_f = 1$):

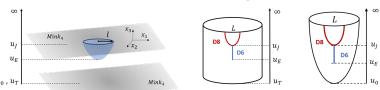
From potential

$$\frac{1}{2} m_{WV}^2 \mathit{Min}_{k \in \mathbb{Z}} (\eta' + \theta_{QCD} + 2\pi k)^2$$

 η' transforms as θ_{QCD} .

• On D4 in holographic QCD

$$\int_{S^1\times\mathbb{R}^4} C_1 \wedge F \wedge F = \int_{\mathbb{R}^4} \theta_{YM} F \wedge F \quad \Rightarrow \quad \theta_{YM} = \int_{S^1} C_1$$


• η' non-trivial monodromy trough the sheet realized if sheet is a D6-brane (wrapped on S^4), since D6 magnetically charged under C_1 . [Witten 1998, Dubovsky-Lawrence-Roberts 2011, Bigazzi-ALC-Olzi 2022].

4日 → 4日 → 4 目 → 4 目 → 9 Q ○

• D6-brane hosts a $U(1)_N$ Chern-Simons theory on its world-volume [Acharya-Vafa 2001, Argurio-Bertolini-Bigazzi-ALC-Niro 2018]

$$\int_{S^4 \times M_3} C_3 \wedge f \wedge f = \int_{S^4 \times M_3} F_4 \wedge a \wedge f = N \int_{M_3} a \wedge f$$

• D6-brane can end on flavor D8-brane with circular boundary: [Bigazzi-ALC-Olzi 2024, Bigazzi-ALC-Olzi-Raymond 2025]

Set $f|_{\partial M_3} = 0$ for gauge invariance.

• D6 wants to shrink due to tension, but theory has $U(1)_B \Rightarrow$ D6 could be stabilized by baryonic charge at its boundary.

Baryon charge:

- Baryon vertex is a D4-brane wrapped on S^4 [Witten 1998].
- D4 charged under C₅ RR-potential.
- On D6 world-volume (ψ angular coordinate):

$$\int_{D6} C_5 \wedge f_{\psi u}$$

 \Rightarrow

Baryon number:

$$n_B = \int_{\psi u} f_{\psi u} \in \mathbb{Z}$$

Charge carried by D6 world-volume gauge field.

• Quark charge:

$$q_s = N n_B$$

Spin:

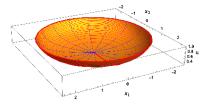
$$J=\int\sqrt{-g}g_{\psi\psi}T^{t\psi}$$

• Choose gauge $a_u = 0 \Rightarrow$

$$n_B=rac{1}{2\pi}\int_{\psi u}f_{\psi u}=a_{\psi}(u_E)-a_{\psi}(u_J)$$

• Get from equations of motion $a_{\psi}(u_E) = n_B \ \Rightarrow \ a_{\psi}(u_J) = 0$, and

$$J = \frac{N}{2}n_B^2$$


Curved-space analogs of "supertubes" [Mateos-Townsend 2001]: NF1s+D4 configuration blown-up into D6 and stabilized by angular momentum (Myers' effect).

"Holographic baryon as quantum Hall droplet"

[Bigazzi-ALC-Olzi-Raymond 2025]

Solution of D6 e.o.m. ending perpendicularly to D8 (\Rightarrow stability):

Can calculate exactly its properties, e.g.

- Radius $I \sim N^0$.
- Mass $M \sim N$.

D6-brane = gluonic core of the baryon (as string junction).

Note:

$$J = \frac{N}{2}n_B^2$$

hallmark of fractional quantum Hall effect, anyonic system:

- anyons ⇒ quarks;
- electrons ⇒ baryons;
- solitonic chiral edge mode $\Rightarrow \chi$ s.t. $a|_{boundary} = d\chi$.

Conclusions

- Single-flavor baryons are quantum Hall droplets in holographic QCD.
- Holographic dual allows for precise investigation beyond effective theory.
- These baryons have "gluonic core" described by D6-brane, equivalent of baryon vertex = string junction in standard baryons.
- Baryons have "mesonic shell" described by D8-brane fields (ongoing work).
- Other related configurations: strings, loops, finite DWs, vortons, sandwich vortons, punctured domain walls.
 The model can have rich cosmological history.
 - [Bigazzi-ALC-Olzi 2022, 2024, Bigazzi-ALC-Olzi-Raymond 2025]

Thank you for your time!