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Low-d SUGRA solution Type 1I/M-theory solution
e Black holes KK-like solution
 Solitons -

e Domain-walls

Consistent
truncations

String theory interpretation
AdS/CFT, probe branes, ....



Key results

* Algorithm for classifying embeddings of (3 <)d-dimensional gSUGRA
in 10/11D SUGRA.
e Constraints on the internal manifold.

 Example: Uplift of N = 4 D = 4 gauged SUGRA in
* TypellBon S%? X S? X X Dual to D3-D5-NS5 brane setups
Include Janus/S-folds/...



Consistent truncations



Consistent truncations
Definition

A truncation where the equations of motion of the reduced theory
imply those of the full theory.

Non-examples:
» KK-compactification without the dilaton (not consistent)

* Effective descriptions: keep modes withm < Ayt o5y

E.g.: Calabi-Yau compactifications = CY-moduli (C-structure, Khaler, ...)



Consistent truncations
Examples

Classical examples
* Supergravities on group manifold (Scherk-Schwarz reduction)

Using Exceptional Field Theory (ExFT)

* Truncations on product of spheres/hyperboloids
—4D/5D maximal gSUGRA

* 5D N=2
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Open questions:

1) Existence?
* With SUSY: for N'-susy Mink;/AdS,; =
3 a consistent tr. to pure N -extended gauged SUGRA in d-dimensions
* Without SUSY or with extra matter multiplets: Open question

2) Inverse problem?

Given a gauged SUGRA in d-dimension, what are its uplifts ?
* With maximal supersymmetry: solved!
* Non-pure/Non-maximal sugra: Open

Today: How to uplift non-maximal gauged SUGRA ?



Systematics of consistent
truncations

Exceptional field theories

Frames, sections and torsion



Exceptional field theories

Type IIA/B/ 11D Dictionary i Ed(d)-Except'ionaI field theory
on M,,; of dimension 11 — d
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Exceptional field theories

* Extend internal coordinates:
y™ - Y™ € Ry arepof Eq(y
VM - (vector) @ even/odd p-forms under GL(d") © Eqa
P JON

Diffeomorphisms Gauge transformations

 Redefine the Lie derivative:
(LA V)M = Aoy VM — P 0pA° VN

= LamVM + correction in 8,, AM

* Field content:

E € Eqa)/Kq "gen. metric", A, "gen. KK modes", p-forms



Consistent truncations

Methods
Type IIA/B/ 11D Dictionary i Ed(d)-Except'ionaI field theory
on M,,; of dimension 11 — d
Truncation

“Gg” — invariant
subsector

v

(11 — d) supergravity
N, G4, matter multiplets depend on Gg



Statement

In EXFT, consistent truncations are equivalent to
generalised G¢-structure with constant and
Gs-invariant intrinsic torsion.
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Generalised G-structure

In terms of sections In terms of frame
* K,M s.t. Stab(K,(p)) = Gg » E € E;(7)/Gs which is globally
well-defined

* LKAKB = XABCKC

i - * LetV nnection s.t.
where X, is a constant G singlet. et V be a connection s

VEM EN —_ O
y C i dedi , Then the intrinsic torsion of V. must be a
(' X4p~ = gauging in d-dimensions) constant G singlet.

KAN — IP)AMEM N
/'

The projector on Gg singlets



Classification of uplift

Given a gauged SUGRA, what are the generalised G¢-structure with
singlet constant torsion equal to a given embedding tensor?

;

X45°
specifying the gauging



Truncation to non-maximal SUGRA

Start from D-dim SUGRA with gauge group G,
We show that:
1) The internal manifold is locally:

M O B
mt = — X B.
Int H

2) When H1'3'5(Gg/H) = 0 (lIB), then 3 a gauge s.t.
Ly W =Ly, W.

=Simplifies the torsion condition!
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Truncation to non-maximal SUGRA

The double ansatz

We build the most generic sections:

Ky =0,k + K,

7

Equivariant and closed polyforms
on M = G,/H X B.

Always solves the torsion constraints

We build the most generic frame:
E=L-Z-Flux-ewhere E € Gs\Ey(q)
- Liisa cosetrep of G, /H,

- e is avielbeinon G, /H.

- Z is constant along G, /H and

PAMZMN‘SNm — HAm

Always solves the compatibility
constraints



Final torsion constraint

PZE =0

Projector on / I

Gs-singlets
(matter content)

Embedding tensor

augin
Section constraints (gauging)

tensor (I11A/B/M)

d(L A 8)(p) =0

|

PDE on B only



An application



Example:
Consistent truncation of the DEG solutions

Solutions:

Depend on two holomorphic
functions on X @
X

u‘l1=h1+lh?andcfl2=h2+lh€ @

X

@ /“ds‘* /

M1 Mk




Holographic duals

* Type IIB solutions are dual to 3d V' = 4 linear quivers

M Mo M,

D5-branes

NS5-branes



Example:
Consistent truncation of the DEG solutions

G, = SO(3) x S0(3)
H=U(1) x U(1)

SZ XSZ — Mint
v
2

Th tions: K= ki +d(2hPY?)
e sections: ( DD )
. . —d( (2hha + 2R Ry - A) vol, ¥
Depend on two holomorphic functions —+d((20(ARE) +4A45(h OhE — WP Oh))eiji Y 7dY* A voly Adz)
+0
A, =h;+ihPand A, = h, +i kY Kio= 0 +d(-2hyYi)*

+d (8(?;28,‘1{’ — hPOhy)esjx YIdYE A ufz)
+xd ((2 A(Aha) +4i Ay(hoOhP — hPORs))e;, YIAYE A vol, A dz)_
+4, /Gs2x52 (2h1ho + 2hPRE - X) (Oh1Ohy + Ohy Ohs) k]

Ki= 0 +d(-2hY?)"
~d (8(h10hE — hE Ohy)ei i YIdY™ A dz)
+xd((20(Ahy) + 4 Ay (hDOhy — h1OhE))eijrY IdY* A voly A r_iz:)+
-4, /Ggrrs2 (2h1ho + 2hPhE + X) (8h10hy + Oy Ohy) K}

Ki = ki +d(-2rPY%)-
+d ( (2hihy + 2P RE + X) vol, Y1)

- +

+x d((ga(m{f’] +4i Ay (hydhP ~ hPOhs))eiji Y 1dYE A voly A sz)
+(
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The invariant sections

+d(2hDYH)*

~d( (2h1hy + 207 RS - X) vol, Y?)

—+d((20(AhE) + 4A5(h1 Ok - hY Oh1))eiju Y dY " Avoly Adz)
+0

+d(-2hyY1)*

+d (8(haOhP — hPOhs)es Y IdYE A dz)

+ % d((20(Aha) + 41 As(haOhP — hPOhy))e Y IAYE A voly A dz)
+4, /Ggzx 52 (2h1ho + 2hPhE — ) (Oh1Ohy + Oh1Oho )k}

+d(=2h YY)

~d (8(h10h% - h3Oh )e;j Y dY* A dz)

+xd((20(Ah1) + 4 Ay (hDOhy — h1ORE))eijn YIAYF Avoly A dz)”
-4, /Ggz,52 (2h1ho + 2hPBE + ) (Oh1Ohs + Oh10ho )k}

vl —opDviy-

24



The SUGRA fields

From the sections/frame, we use the ExFT dictionary to obtain:

2 -1 2 -1 .2 -1 4.2 2
ds” = A (dsext - n; dss% — Ny dSS% - 2w dsz)

0 : log h1Alog h
Bé ) —2X65g—iv018% +2h?v018§ + 2h, Uoglinloghs) vol g2

now 2

C’Q(O) = thvolslg _ 9p, oghinlogha) volgz + 2)(65?1’—2\70153

nyw

exp(®) = €f|7]? b ng

h2 (-nl-ng ) 1/2

_ X __hinhsg
OO G h% now

+ vector contributions,...



Thank you!



summary

* Algorithm for classifying embeddings of (3 <)d-dimensional gSUGRA
in 10/11D SUGRA.

G
o MiTlt — Fg X B
e Classification reduces to a PDEon B
 Example: Uplift of N =4 D = 4 gauged SUGRA in

* TypellBon S%? X S? X ¥ Dual to D3-D5-NS5 brane setups
Include Janus/S-folds/...
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