New consistent truncations and applications

Colin Sterckx

INFN Padova

Corfu September 2025

Based on : [to appear] Inverso & CS

Motivations and key results

Why consistent truncations?

Low-d SUGRA solution

- Black holes
- Solitons
- Domain-walls

Why consistent truncations?

Low-d SUGRA solution

- Black holes
- Solitons
- Domain-walls

Type II/M-theory solution

KK-like solution

String theory interpretation

AdS/CFT, probe branes,

Why consistent truncations?

Low-d SUGRA solution

- Black holes
- Solitons
- Domain-walls

Type II/M-theory solution

Key results

- Algorithm for classifying embeddings of (3 <) d-dimensional gSUGRA in 10/11D SUGRA.
- Constraints on the internal manifold.
- Example: Uplift of $N=4\ D=4$ gauged SUGRA in
 - Type IIB on $S^2 \times S^2 \times \Sigma$ Dual to D3-D5-NS5 brane setups [Gaiotto-Witten] Include Janus/S-folds/... [D'Hoker, Estes, Gutperle]

• Not shown: M-theory embedding on $S^3 \times S^3 \times I$

Consistent truncations

State of the art

Consistent truncations Definition

A truncation where the equations of motion of the reduced theory imply those of the full theory.

Non-examples:

- KK-compactification without the dilaton (not consistent)
- Effective descriptions: keep modes with $m \leq \Lambda_{cut-off}$

E.g.: Calabi-Yau compactifications \Rightarrow CY-moduli (\mathbb{C} -structure, Khäler, ...)

Consistent truncations Examples

Classical examples

Supergravities on group manifold (Scherk-Schwarz reduction)

Using Exceptional Field Theory (ExFT)

- Truncations on product of spheres/hyperboloids
 ⇒4D/5D maximal gSUGRA
- 5D N=2 [Cassani, Josse, Malek, Petrini, Waldram]

• ...

Uplifts are rarely unique

M-theory:

Uplifts are rarely unique

M-theory: On
$$S^3 \times S^3 \rightarrow M_{int} = S^7$$

Uplifts are rarely unique

M-theory: On $S^3 \times S^3 \rightarrow M_{int} = S^7$

Uplifts are rarely unique

Uplifts are rarely unique

M-theory:

On
$$S^3 \times S^3 \rightarrow M_{int} = S^7$$

Type IIB:

 $D = 4 \mathcal{N} = 4 \text{ SO(4)}$ -gauged supergravity

[Guarino, Trigiante, CS]

Uplifts are rarely unique

M-theory: On
$$S^3 \times S^3 \rightarrow M_{int} = S^7$$

Type IIB: On
$$S^2 \times S^2 \rightarrow M_{int} = S^5 \times S^1$$

 $D = 4 \mathcal{N} = 4 \text{ SO(4)}$ -gauged supergravity

[Guarino, Trigiante, CS]

Uplifts are rarely unique

M-theory:

On
$$S^3 \times S^3 \rightarrow M_{int} = S^7$$

Type IIB:

On
$$S^2 \times S^2 \rightarrow M_{int} = S^5 \times S^1$$

 AdS_4

 $D = 4 \mathcal{N} = 4 \text{ SO(4)}$ -gauged supergravity

[Guarino, Trigiante, CS]

Uplifts are rarely unique

M-theory: On $S^3 \times S^3 \rightarrow M_{int} = S^7$

Type IIB:

On $S^2 \times S^2 \to M_{int} = S^5 \times S^1$

[Guarino, Trigiante, CS]

 AdS_4

1) Existence?

- 1) Existence?
 - With SUSY: for \mathcal{N} -susy $Mink_d/AdS_d \Rightarrow [Gauntlett, Varela]$ [Cassani, Josse, Petrini, Waldram]
 - \exists a consistent tr. to <u>pure</u> \mathcal{N} -extended gauged SUGRA in d-dimensions

1) Existence?

- With SUSY: for \mathcal{N} -susy $Mink_d/AdS_d \Rightarrow$ [Gauntlett, Varela] [Cassani, Josse, Petrini, Waldram]
- \exists a consistent tr. to <u>pure</u> \mathcal{N} -extended gauged SUGRA in d-dimensions
- Without SUSY or with extra matter multiplets: Open question

- 1) Existence?
 - With SUSY: for \mathcal{N} -susy $Mink_d/AdS_d \Rightarrow$ [Gauntlett, Varela] [Cassani, Josse, Petrini, Waldram]
 - \exists a consistent tr. to <u>pure</u> \mathcal{N} -extended gauged SUGRA in d-dimensions
 - Without SUSY or with extra matter multiplets: Open question
- 2) Inverse problem?

1) Existence?

- With SUSY: for \mathcal{N} -susy $Mink_d/AdS_d \Rightarrow$ [Gauntlett, Varela] [Cassani, Josse, Petrini, Waldram]
- \exists a consistent tr. to <u>pure</u> \mathcal{N} -extended gauged SUGRA in d-dimensions
- Without SUSY or with extra matter multiplets: Open question

2) Inverse problem?

Given a gauged SUGRA in d-dimension, what are its uplifts ?

With maximal supersymmetry: solved!

[Inverso][Inverso, Rovere]

Non-pure/Non-maximal sugra: Open

Today: How to uplift non-maximal gauged SUGRA?

Systematics of consistent truncations

Exceptional field theories

Frames, sections and torsion

[Hull] [Pacheco, Waldram] [Hohm, Samtleben][...]

Type IIA/B/ 11D Dictionary

 $E_{d(d)}$ -Exceptional field theory on M_{ext} of dimension 11-d

[Hull] [Pacheco, Waldram] [Hohm, Samtleben][...]

Exceptional field theories

[Hull] [Pacheco, Waldram] [Hohm, Samtleben][...]

Exceptional field theories

• Extend internal coordinates:

[Hull] [Pacheco, Waldram] [Hohm, Samtleben][...]

Exceptional field theories

• Extend internal coordinates:

$$y^m \to Y^M \in R_1$$
 a rep of $E_{d(d)}$

• Extend internal coordinates:

```
y^m \to Y^M \in R_1 a rep of E_{d(d)} V^M \to (\text{vector}) \oplus \text{even/odd p-forms under } GL(d') \subset E_{d(d)}
```

• Extend internal coordinates:

$$y^m \to Y^M \in R_1$$
 a rep of $E_{d(d)}$
 $V^M \to \text{(vector)} \oplus \text{even/odd p-forms under } GL(d') \subset E_{d(d)}$

Diffeomorphisms

Gauge transformations

Extend internal coordinates:

$$y^m \to Y^M \in R_1$$
 a rep of $E_{d(d)}$
 $V^M \to \text{(vector)} \oplus \text{even/odd p-forms under } GL(d') \subset E_{d(d)}$

Diffeomorphisms

Gauge transformations

• Redefine the Lie derivative:

$$(L_{\Lambda} V)^{M} := \Lambda^{N} \partial_{N} V^{M} - \mathbb{P}_{NQ}^{MP} \partial_{P} \Lambda^{Q} V^{N}$$
$$:= \mathcal{L}_{\Lambda}^{m} V^{M} + \text{correction in } \partial_{m} \Lambda^{M}$$

Extend internal coordinates:

$$y^m \to Y^M \in R_1$$
 a rep of $E_{d(d)}$
 $V^M \to \text{(vector)} \oplus \text{even/odd p-forms under } GL(d') \subset E_{d(d)}$

Diffeomorphisms

Gauge transformations

• Redefine the Lie derivative:

$$(L_{\Lambda} V)^{M} := \Lambda^{N} \partial_{N} V^{M} - \mathbb{P}_{NQ}^{MP} \partial_{P} \Lambda^{Q} V^{N}$$
$$:= \mathcal{L}_{\Lambda}^{m} V^{M} + \text{correction in } \partial_{m} \Lambda^{M}$$

Field content:

 ${\bf E} \in E_{d(d)}/K_d$ "gen. metric" , $A_\mu{}^M$ "gen. KK modes", p-forms

Consistent truncations

Methods

[Hohm Samtleben] [Cassani, Josse, Petrini, Waldram]

(11-d) supergravity \mathcal{N} , G_g , matter multiplets depend on G_S

Statement

In ExFT, consistent truncations are equivalent to generalised G_S -structure with constant and G_S -invariant intrinsic torsion.

Generalised G-structure

In terms of sections

In terms of frame

Generalised G-structure

In terms of sections

• K_A^M s.t. $Stab(K_A(p)) = G_S$

In terms of frame

In terms of sections

In terms of frame

•
$$K_A^M$$
 s.t. $Stab(K_A(p)) = G_S$

$$\bullet \ L_{K_A}K_B = X_{AB}{}^C K_C$$

In terms of sections

In terms of frame

•
$$K_A^M$$
 s.t. $Stab(K_A(p)) = G_S$

•
$$L_{K_A}K_B = X_{AB}{}^C K_C$$

where $X_{AB}{}^C$ is a constant G_S singlet.

In terms of sections

In terms of frame

•
$$K_A^M$$
 s.t. $Stab(K_A(p)) = G_S$

•
$$L_{K_A}K_B = X_{AB}{}^CK_C$$

where $X_{AB}{}^C$ is a constant G_S singlet.

(
$$X_{AB}^{C} \Rightarrow$$
 gauging in d-dimensions)

In terms of sections

•
$$K_A^M$$
 s.t. $Stab(K_A(p)) = G_S$

• $L_{K_A}K_B = X_{AB}{}^CK_C$ where $X_{AB}{}^C$ is a constant G_S singlet.

($X_{AB}^{C} \Rightarrow$ gauging in d-dimensions)

In terms of frame

• $E \in E_{7(7)}/G_S$ which is *globally* well-defined

In terms of sections

•
$$K_A^M$$
 s.t. $Stab(K_A(p)) = G_S$

•
$$L_{K_A}K_B = X_{AB}{}^CK_C$$

where $X_{AB}{}^C$ is a constant G_S singlet.

(
$$X_{AB}^{C} \Rightarrow$$
 gauging in d-dimensions)

In terms of frame

• $E \in E_{7(7)}/G_S$ which is *globally* well-defined

• Let ∇ be a connection s.t.

$$\nabla_{E_M} E_N = 0$$

Then the *intrinsic torsion* of ∇ must be a constant G_S singlet.

In terms of sections

•
$$K_A^M$$
 s.t. $Stab(K_A(p)) = G_S$

• $L_{K_A}K_B = X_{AB}{}^C K_C$ where $X_{AB}{}^C$ is a constant G_S singlet.

($X_{AB}^{C} \Rightarrow$ gauging in d-dimensions)

In terms of frame

• $E \in E_{7(7)}/G_S$ which is *globally* well-defined

• Let ∇ be a connection s.t.

$$\nabla_{E_M} E_N = 0$$

Then the *intrinsic torsion* of ∇ must be a constant G_S singlet.

$$K_A{}^N = \mathbb{P}_A{}^M E_M{}^N$$

The projector on G_S singlets

Classification of uplift

Given a gauged SUGRA, what are the generalised G_S -structure with singlet constant torsion equal to a given embedding tensor?

 $X_{AB}^{\quad C}$ specifying the gauging

Truncation to non-maximal SUGRA

Start from D-dim SUGRA with gauge group G_g We show that:

1) The internal manifold is locally:

$$M_{int} \cong \frac{G_g}{H} \times B$$
.

H specifies the type of uplift (IIB/M-theory)

2) When
$$H^{1,3,5}\big(G_g/H\big)=0$$
 (IIB), then \exists a gauge s.t. $L_{K_A}W=\mathcal{L}_{k_A}W.$

⇒Simplifies the torsion condition!

We build the most generic sections:

We build the most generic frame:

$$K_A = \theta_A^{\alpha} k_{\alpha}^{\ m} + K_A^{\ (p)}$$

. . . .

Equivariant and closed polyforms on $M_{int} = G_g/H \times B$.

We build the most generic sections:

We build the most generic frame:

$$K_A = \theta_A^{\alpha} k_{\alpha}^{\ m} + K_A^{\ (p)}$$

Equivariant and closed polyforms on $M_{int} = G_g/H \times B$.

$$(L_{K_A}K_B = X_{AB}{}^CK_C)$$

We build the most generic sections:

$$K_A = \theta_A^{\alpha} k_{\alpha}^{\ m} + K_A^{\ (p)}$$

Equivariant and closed polyforms on $M_{int} = G_g/H \times B$.

Always solves the torsion constraints

$$(L_{K_A}K_B = X_{AB}{}^CK_C)$$

We build the most generic frame:

$$E = L \cdot Z \cdot Flux \cdot e$$
 where $E \in G_S \setminus E_{d(d)}$

We build the most generic sections:

$$K_A = \theta_A^{\alpha} k_{\alpha}^{\ m} + K_A^{\ (p)}$$

Equivariant and closed polyforms on $M_{int} = G_g/H \times B$.

We build the most generic frame:

 $E = L \cdot Z \cdot Flux \cdot e \text{ where } E \in G_S \setminus E_{d(d)}$

- L is a coset rep of G_g/H ,

$$(L_{K_A}K_B = X_{AB}{}^CK_C)$$

We build the most generic sections:

$$K_A = \theta_A^{\alpha} k_{\alpha}^{\ m} + K_A^{\ (p)}$$

Equivariant and closed polyforms on $M_{int} = G_g/H \times B$.

We build the most generic frame:

 $E = L \cdot Z \cdot Flux \cdot e$ where $E \in G_S \setminus E_{d(d)}$

- L is a coset rep of G_q/H ,
- e is a vielbein on G_g/H .

$$(L_{K_A}K_B = X_{AB}{}^CK_C)$$

We build the most generic sections:

$$K_A = \theta_A^{\alpha} k_{\alpha}^{\ m} + K_A^{\ (p)}$$

Equivariant and closed polyforms on $M_{int} = G_g/H \times B$.

We build the most generic frame:

 $E = L \cdot Z \cdot Flux \cdot e$ where $E \in G_S \setminus E_{d(d)}$

- L is a coset rep of G_g/H ,
- e is a vielbein on G_g/H .
- Z is constant along G_q/H and

$$(L_{K_A}K_B = X_{AB}{}^CK_C)$$

We build the most generic sections:

$$K_A = \theta_A^{\alpha} k_{\alpha}^{\ m} + K_A^{\ (p)}$$

Equivariant and closed polyforms on $M_{int} = G_g/H \times B$.

We build the most generic frame:

 $E = L \cdot Z \cdot Flux \cdot e$ where $E \in G_S \setminus E_{d(d)}$

- L is a coset rep of G_g/H ,
- e is a vielbein on G_g/H .
- Z is constant along G_q/H and

$$\mathbb{P}_A{}^M Z_M{}^N \mathcal{E}_N{}^m = \theta_A{}^m$$

$$(L_{K_A}K_B = X_{AB}{}^CK_C)$$

We build the most generic sections:

$$K_A = \theta_A^{\alpha} k_{\alpha}^{m} + K_A^{(p)}$$

Equivariant and closed polyforms on $M_{int} = G_g/H \times B$.

We build the most generic frame:

$$E = L \cdot Z \cdot Flux \cdot e$$
 where $E \in G_S \setminus E_{d(d)}$

- L is a coset rep of G_g/H ,
- e is a vielbein on G_g/H .
- Z is constant along G_q/H and

$$\mathbb{P}_A{}^M Z_M{}^N \mathcal{E}_N{}^m = \theta_A{}^m$$

Always solves the torsion constraints

$$(L_{K_A}K_B = X_{AB}{}^CK_C)$$

Always solves the compatibility constraints $(Stab(K_A) = G_S)$

Final torsion constraint

An application

Example:

Consistent truncation of the DEG solutions

Solutions:

Depend on two holomorphic functions on Σ

$$\mathcal{A}_1 = h_1 + i \ h_1^D$$
 and $\mathcal{A}_2 = h_2 + i \ h_2^D$

Holographic duals

• Type IIB solutions are dual to 3d $\mathcal{N}=4$ linear quivers

Example:

Consistent truncation of the DEG solutions

$$G_g = SO(3) \times SO(3)$$

$$H = U(1) \times U(1)$$

$$S^2 \times S^2 \to M_{int}$$

$$\downarrow$$

$$\Sigma$$

The sections:

Depend on two holomorphic functions

$$A_1 = h_1 + i h_1^D$$
 and $A_2 = h_2 + i h_2^D$

$$\begin{split} K_{i+} = & k_i & + d(2h_2^D Y^i)^+ \\ & - d\left((2h_1h_2 + 2h_1^D h_2^D - \lambda)\operatorname{vol}_2 Y^i\right) \\ & - \star d\left((2\bar{\partial}(\lambda h_2^D) + 4A_2(h_1\bar{\partial}h_2^D - h_2^D\bar{\partial}h_1))\epsilon_{ijk}Y^jdY^k \wedge \operatorname{vol}_2 \wedge dz\right)^- \\ & + 0 \end{split}$$

$$K_{\underline{i}+} = & 0 & + d(-2h_2Y^{\underline{i}})^+ \\ & + d\left(8(h_2\bar{\partial}h_1^D - h_1^D\bar{\partial}h_2)\epsilon_{\underline{ijk}}Y^{\underline{j}}dY^{\underline{k}} \wedge dz\right) \\ & + \star d\left((2\bar{\partial}(\lambda h_2) + 4iA_2(h_2\bar{\partial}h_1^D - h_1^D\bar{\partial}h_2))\epsilon_{\underline{ijk}}Y^{\underline{j}}dY^{\underline{k}} \wedge \operatorname{vol}_1 \wedge dz\right)^- \\ & + 4\sqrt{g_{S^2\times S^2}}\left(2h_1h_2 + 2h_1^Dh_2^D - \lambda\right)\left(\partial h_1\bar{\partial}h_2 + \bar{\partial}h_1\partial h_2\right)k_i^* \end{split}$$

$$K_{i-} = & 0 & + d(-2h_1Y^i)^- \\ & - d\left(8(h_1\bar{\partial}h_2^D - h_2^D\bar{\partial}h_1)\epsilon_{\underline{ijk}}Y^{\underline{j}}dY^k \wedge dz\right) \\ & + \star d\left((2\bar{\partial}(\lambda h_1) + 4A_1(h_2^D\bar{\partial}h_1 - h_1\bar{\partial}h_2^D))\epsilon_{\underline{ijk}}Y^{\underline{j}}dY^k \wedge \operatorname{vol}_2 \wedge dz\right)^+ \\ & - 4\sqrt{g_{S^2\times S^2}}\left(2h_1h_2 + 2h_1^Dh_2^D + \lambda\right)\left(\partial h_1\bar{\partial}h_2 + \bar{\partial}h_1\partial h_2\right)k_{\underline{i}}^* \end{split}$$

$$K_{\underline{i}-} = & k_{\underline{i}} & + d(-2h_1^DY^{\underline{i}})^- \\ & + d\left((2h_1h_2 + 2h_1^Dh_2^D + \lambda)\operatorname{vol}_1Y^{\underline{i}}\right) \\ & + \star d\left((2\bar{\partial}(\lambda h_1^D) + 4iA_1(h_2\bar{\partial}h_1^D - h_1^D\bar{\partial}h_2))\epsilon_{\underline{ijk}}Y^{\underline{j}}dY^{\underline{k}} \wedge \operatorname{vol}_1 \wedge dz\right)^+ \\ & + 0 \end{split}$$

The invariant sections

 $K = k + d(-2h^D Y^i)^{-1}$

$$\begin{split} K_{i+} = & k_i & + d(2h_2^D Y^i)^+ \\ & - d\left((2h_1h_2 + 2h_1^D h_2^D - \lambda)\operatorname{vol}_2 Y^i\right) \\ & - \star d\left((2\bar{\partial}(\lambda h_2^D) + 4A_2(h_1\bar{\partial}h_2^D - h_2^D\bar{\partial}h_1))\epsilon_{ijk}Y^jdY^k \wedge \operatorname{vol}_2 \wedge dz\right)^- \\ & + 0 \end{split}$$

$$K_{\underline{i}+} = & 0 & + d(-2h_2Y^{\underline{i}})^+ \\ & + d\left(8(h_2\bar{\partial}h_1^D - h_1^D\bar{\partial}h_2)\epsilon_{\underline{ijk}}Y^{\underline{j}}dY^{\underline{k}} \wedge dz\right) \\ & + \star d\left((2\bar{\partial}(\lambda h_2) + 4iA_2(h_2\bar{\partial}h_1^D - h_1^D\bar{\partial}h_2))\epsilon_{\underline{ijk}}Y^{\underline{j}}dY^{\underline{k}} \wedge \operatorname{vol}_1 \wedge dz\right)^- \\ & + 4\sqrt{g_{S^2\times S^2}}\left(2h_1h_2 + 2h_1^Dh_2^D - \lambda\right)(\partial h_1\bar{\partial}h_2 + \bar{\partial}h_1\partial h_2)k_i^* \end{split}$$

$$K_{i-} = & 0 & + d(-2h_1Y^i)^- \\ & - d\left(8(h_1\bar{\partial}h_2^D - h_2^D\bar{\partial}h_1)\epsilon_{\underline{ijk}}Y^{\underline{j}}dY^k \wedge dz\right) \\ & + \star d\left((2\bar{\partial}(\lambda h_1) + 4A_1(h_2^D\bar{\partial}h_1 - h_1\bar{\partial}h_2^D))\epsilon_{\underline{ijk}}Y^{\underline{j}}dY^k \wedge \operatorname{vol}_2 \wedge dz\right)^+ \\ & - 4\sqrt{g_{S^2\times S^2}}\left(2h_1h_2 + 2h_1^Dh_2^D + \lambda\right)(\partial h_1\bar{\partial}h_2 + \bar{\partial}h_1\partial h_2)k_{\underline{i}}^* \end{split}$$

24

The SUGRA fields

From the sections/frame, we use the ExFT dictionary to obtain:

$$ds^{2} = \Delta^{-1} \left(ds_{\text{ext}}^{2} - n_{1}^{-1} ds_{S_{1}^{2}}^{2} - n_{2}^{-1} ds_{S_{2}^{2}}^{2} - 2w \, ds_{\Sigma}^{2} \right)$$

$$B_{2}^{(0)} = -2\chi \, e^{\xi} \frac{h_{1}}{n_{1}} \text{vol}_{S_{1}^{2}} + 2h_{1}^{D} \text{vol}_{S_{2}^{2}} + 2h_{1} \frac{(\log h_{1} \wedge \log h_{2})}{n_{2} \, w} \, \text{vol}_{S_{2}^{2}}$$

$$C_{2}^{(0)} = 2h_{2}^{D} \text{vol}_{S_{1}^{2}} - 2h_{2} \frac{(\log h_{1} \wedge \log h_{2})}{n_{1} \, w} \, \text{vol}_{S_{1}^{2}} + 2\chi e^{\xi} \frac{h_{2}}{n_{2}} \text{vol}_{S_{2}^{2}}$$

$$\exp(\Phi) = e^{\xi} |\tau|^{2} \frac{h_{1}}{h_{2}} \frac{n_{0}}{(n_{1} n_{2})^{1/2}}$$

$$C_{0} = \frac{\chi}{|\tau|^{2}} \frac{h_{1} \wedge h_{2}}{h_{1}^{2} n_{0} \, w}$$

+ vector contributions,...

Thank you!

Summary

• Algorithm for classifying embeddings of (3 <) d-dimensional gSUGRA in 10/11D SUGRA.

•
$$M_{int} = \frac{G_g}{H} \times B$$

Classification reduces to a PDE on B

- Example: Uplift of $N=4\ D=4$ gauged SUGRA in
 - Type IIB on $S^2 \times S^2 \times \Sigma$ Dual to D3-D5-NS5 brane setups [Hanany-Witten] Include Janus/S-folds/... [D'Hoker, Estes, Gutperle]