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Consistent 
truncations



Key results

• Algorithm for classifying embeddings of (3 <)𝑑-dimensional gSUGRA 

    in 10/11D SUGRA.

• Constraints on the internal manifold.

• Example: Uplift of 𝑁 = 4 𝐷 = 4 gauged SUGRA in
• Type IIB on 𝑆2 × 𝑆2 × Σ Dual  to D3-D5-NS5 brane setups [Gaiotto-Witten]

Include Janus/S-folds/…   [D'Hoker, Estes, Gutperle]

• Not shown: M-theory embedding on 𝑆3 × 𝑆3 × 𝐼
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Consistent truncations
State of the art
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Consistent truncations
Definition

A truncation where the equations of motion of the reduced theory 
imply those of the full theory.

Non-examples:

• KK-compactification without the dilaton (not consistent)

• Effective descriptions: keep modes with 𝑚 ≤ Λ𝑐𝑢𝑡−𝑜𝑓𝑓

E.g.: Calabi-Yau compactifications  ⇒ CY-moduli (ℂ-structure, Khäler, …)
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Consistent truncations
Examples

Classical examples

• Supergravities on group manifold (Scherk-Schwarz reduction)

 

Using Exceptional Field Theory (ExFT)

• Truncations on product of spheres/hyperboloids
4D/5D maximal gSUGRA

• 5D N=2 [Cassani, Josse, Malek, Petrini, Waldram]

• …
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A 4d 𝒩 = 4 example
Uplifts are rarely unique
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Open questions:

1) Existence?
• With SUSY: for 𝒩-susy 𝑀𝑖𝑛𝑘𝑑/𝐴𝑑𝑆𝑑 ⇒ [Gauntlett, Varela] [Cassani, Josse, Petrini, Waldram]

∃ a consistent tr. to pure 𝒩-extended gauged SUGRA in 𝑑-dimensions 

• Without SUSY or with extra matter multiplets: Open question

2) Inverse problem?
Given a gauged SUGRA in 𝑑-dimension, what are its uplifts ?    

• With maximal supersymmetry: solved! [Inverso][Inverso, Rovere]

• Non-pure/Non-maximal sugra: Open

Today: How to uplift non-maximal gauged SUGRA ?
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Systematics of consistent 
truncations
Exceptional field theories

Frames, sections and torsion
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Type IIA/B/ 11D
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𝑀 𝑃 𝜕𝑃Λ𝑄 𝑉𝑁

≔ ℒΛ𝑚𝑉𝑀 + correction in 𝜕𝑚 Λ𝑀

• Field content:

E ∈ 𝐸𝑑 𝑑 /𝐾𝑑 "gen. metric" ,  𝐴𝜇
𝑀 "gen. KK modes", p-forms
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Type IIA/B/ 11D
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(11 − 𝑑) supergravity
𝒩, 𝐺𝑔, matter multiplets depend on 𝐺𝑆

𝐸𝑑 𝑑 -Exceptional field theory

o𝑛 𝑀𝑒𝑥𝑡 of dimension 11 − 𝑑

Dictionary

“𝐺𝑆” – invariant 
subsector

Consistent truncations
Methods

Truncation

[Hohm Samtleben] 
[Cassani, Josse, Petrini, Waldram]



Statement

In ExFT, consistent truncations are equivalent to 
generalised 𝐺𝑆-structure with constant and 

𝐺𝑆-invariant intrinsic torsion.
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𝐾𝐴
𝑁 = ℙ𝐴

𝑀𝐸𝑀
𝑁

The projector on 𝐺𝑆 singlets



Classification of uplift

Given a gauged SUGRA, what are the generalised 𝐺𝑆-structure with 
singlet constant torsion equal to a given embedding tensor?

16

𝑋𝐴𝐵
 𝐶

specifying the gauging



Truncation to non-maximal SUGRA

Start from 𝐷-dim SUGRA with gauge group 𝐺𝑔

We show that:

1) The internal manifold is locally:

𝑀𝑖𝑛𝑡 ≅
𝐺𝑔

𝐻
× 𝐵.

H specifies the type of uplift (IIB/M-theory)

2) When 𝐻1,3,5 𝐺𝑔/𝐻 = 0 (IIB), then ∃ a gauge s.t.
𝐿𝐾𝐴

𝑊 = ℒ𝑘𝐴
𝑊.

⇒Simplifies the torsion condition!

17



Truncation to non-maximal SUGRA
The double ansatz

We build the most generic sections:

𝐾𝐴 = 𝜃𝐴
𝛼𝑘𝛼

𝑚 + 𝐾𝐴
(𝑝)

We build the most generic frame:

18

Equivariant and closed polyforms
on 𝑀𝑖𝑛𝑡 = 𝐺𝑔/𝐻 × 𝐵.
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- 𝑒 is a vielbein on 𝐺𝑔/𝐻.

- 𝑍 is constant along 𝐺𝑔/𝐻 and  

ℙ𝐴
𝑀𝑍𝑀

𝑁ℰ𝑁
𝑚 = 𝜃𝐴

𝑚
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Equivariant and closed polyforms
on 𝑀𝑖𝑛𝑡 = 𝐺𝑔/𝐻 × 𝐵.



Truncation to non-maximal SUGRA
The double ansatz

We build the most generic sections:

𝐾𝐴 = 𝜃𝐴
𝛼𝑘𝛼

𝑚 + 𝐾𝐴
(𝑝)

Always solves the torsion constraints

(𝐿𝐾𝐴
𝐾𝐵 = 𝑋𝐴𝐵

𝐶𝐾𝐶)

We build the most generic frame:

𝐸 = 𝐿 ⋅ 𝑍 ⋅ 𝐹𝑙𝑢𝑥 ⋅ 𝑒 where 𝐸 ∈ 𝐺𝑆\𝐸𝑑 𝑑

- 𝐿 is a coset rep of 𝐺𝑔/𝐻, 

- 𝑒 is a vielbein on 𝐺𝑔/𝐻.

- 𝑍 is constant along 𝐺𝑔/𝐻 and  

ℙ𝐴
𝑀𝑍𝑀

𝑁ℰ𝑁
𝑚 = 𝜃𝐴

𝑚

Always solves the compatibility 
constraints  (𝑆𝑡𝑎𝑏 𝐾𝐴 = 𝐺𝑆 )

18

Equivariant and closed polyforms
on 𝑀𝑖𝑛𝑡 = 𝐺𝑔/𝐻 × 𝐵.



Final torsion constraint

ℙ𝑍ℰ = Θ

𝑑 𝐿 ⋅ 𝑍 ⋅ 𝑒 (𝑝) = 0

PDE on B only

19

Projector on 
𝐺𝑆-singlets 

(matter content)
Section constraints 

tensor (IIA/B/M)

Embedding tensor
(gauging)



An application
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Example: 
Consistent truncation of the DEG solutions

Solutions:

Depend on two holomorphic 
functions on Σ

𝒜1 = ℎ1 + 𝑖 ℎ1
𝐷 and 𝒜2 = ℎ2 + 𝑖 ℎ2

𝐷

21

𝑆2

𝑆2
x

x

𝐴𝑑𝑆4

Σ

[D'Hoker, Estes, Gutperle]



Holographic duals

• Type IIB solutions are dual to 3d 𝒩 = 4 linear quivers

22

Σ

D5-branes

NS5-branes

[D'Hoker, Estes, Gutperle]



Example: 
Consistent truncation of the DEG solutions

23

𝐺𝑔 = 𝑆𝑂 3 × 𝑆𝑂 3

𝐻 = 𝑈 1 × 𝑈 1

The sections:
Depend on two holomorphic functions

𝒜1 = ℎ1 + 𝑖 ℎ1
𝐷 and 𝒜2 = ℎ2 + 𝑖 ℎ2

𝐷

[D'Hoker, Estes, Gutperle]
WIP [Inverso, CS]

𝑆2 × 𝑆2 →  𝑀𝑖𝑛𝑡

                 Σ



The invariant sections
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The SUGRA fields

25

From the sections/frame, we use the ExFT dictionary to obtain:

+ vector contributions,…

[Inverso, CS] to appear



Thank you!
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Summary

• Algorithm for classifying embeddings of (3 <)𝑑-dimensional gSUGRA 

    in 10/11D SUGRA.

• 𝑀𝑖𝑛𝑡 =
𝐺𝑔

𝐻
× 𝐵

• Classification reduces to a PDE on B

• Example: Uplift of 𝑁 = 4 𝐷 = 4 gauged SUGRA in
• Type IIB on 𝑆2 × 𝑆2 × Σ Dual  to D3-D5-NS5 brane setups [Hanany-Witten]

Include Janus/S-folds/…   [D'Hoker, Estes, Gutperle]

27
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