Braidings in BV

Corfu - 15.09.2025

Eugenia Boffo

Table of contents

1. Introduction

2. Classical finite dim field theory

3. Braided QFT with $\mathfrak{sl}_q(2)$

Intro

Introduction

(Spacetime) noncommutativity and physical models have a long history of mutual interaction:

• open strings ending on branes give rise to a noncommutative geometry, $[x^i, x^j] = i\theta^{ij}$ Seiberg-Witten '99

Noncommutative quantum field theories have been developed too:

- UV/IR mixing are a typical feature
- homotopical methods on the rise: braided QFTs Dimitrijević-Ćirić et al.
 - suitable for perturbative quantization (integration theory of noncommutative spaces is not known)

End goal

Develop the homotopical framework (Batalin–Vilkovisky) with a coboundary structure

w/ Krutov and Weber

to overcome the case of a braided field theory with **triangular R-matrix**

[Nguyen-Schenkel-Szabo '21]

Classical finite dim field theory

Batalin-Vilkovisky

A Batalin-Vilkovisky theory consists of:

- a (co)chain complex E with differential Q;
- a bilinear symmetric form

$$\langle -, - \rangle : E \times E \mapsto \mathbb{K}[-1];$$

• Q is self-adjoint w.r.t. $\langle -, - \rangle$.

Costello, Gwilliam '11

$\mathfrak{su}(2)$ example:

$$E = \Lambda^0 \mathfrak{su}(2)^* \xrightarrow{d} \Lambda^1 \mathfrak{su}(2)^* \xrightarrow{d} \Lambda^2 \mathfrak{su}(2)^* \xrightarrow{d} \Lambda^3 \mathfrak{su}(2)^*$$

with the obvious differential $\mathrm{d} := \epsilon_{ij}{}^k \, \tilde{\mathrm{e}}^i \, \tilde{\mathrm{e}}^j \, e_k, \, \langle \tilde{\mathrm{e}}^j, e_k \rangle_{\mathfrak{su}(2)} = \delta_k^j.$

The cohomology is [Whitehead lemmas]:

$$\mathbf{H}^{i}(E) = egin{cases} \mathbb{C} \,, & i = 0, 3 \,, \ \emptyset \,, & i = 1, 2 \,. \end{cases}$$

The pairing is

$$\langle \alpha, \beta \rangle = \int \alpha \wedge \beta.$$

SDR to cohomology

A special deformation retract to cohomology is

$$\overset{h}{\circlearrowleft} (E,Q) \overset{\pi}{\overset{e}{\hookleftarrow}} (\mathbf{H}^{\bullet}(E),0).$$

with $h^2 = 0$, $h \circ e = 0 = \pi \circ h$.

- e, π are quasi-isomorphisms and $\pi \circ e = 1$;
- h is the homotopy inverse to Q: $h \circ Q + Q \circ h = \mathbb{1} e \circ \pi$.

6

SDR for $\mathfrak{su}(2)$

with $h := d^* \frac{1}{\Delta} (1 - e \circ \pi)$.

Nguyen-Schenkel-Szabo '21

Lift to the Symmetric algebra

Request from physics: **Physical observables** are rather in $S^{\bullet}(E^*) := T^{\bullet}(E^*)/< x \otimes y - y \otimes x >$.

Firstly, the differential Q of the complex E is extended as a derivation on $(S^{\bullet}(E^*), \otimes_S)$ (denoted with Q_S). Then,

$$\overset{H}{\circlearrowleft} (S^{\bullet}(E^*), Q_S) \overset{\Pi}{\underset{\varepsilon}{\longleftrightarrow}} (S^{\bullet} \mathbf{H}^{\bullet}(E^*), 0).$$

with

$$\Pi \equiv \bigotimes_{S} \pi, \ \mathcal{E} = \bigotimes_{S} e,$$

$$H^{k} = \sum_{I+p=k-1} \mathbb{1}^{\bigotimes_{S}^{I}} \otimes_{S} h \otimes_{S} (e \circ \pi)^{\bigotimes_{S}^{p}}.$$

Known also as tensor trick, bar construction.

Homological perturbation

The deformation retract can be deformed by a small perturbation $\delta_Q \ (\Longrightarrow \exists \ (Q \circ \delta_Q)^{-1}),$

$$(Q+\delta_Q)^2=0.$$

It allows us to obtain another SDR.

If E is an L_{∞} -algebra, its multiproducts are possible deformations \iff codifferential for a coalgebra.

Homological perturbation

The deformation retract can be deformed by a small perturbation $\delta_Q \ (\Longrightarrow \exists \ (Q \circ \delta_Q)^{-1})$,

$$(Q+\delta_Q)^2=0.$$

It allows us to obtain another SDR.

If E is an L_{∞} -algebra, its multiproducts are possible deformations \iff codifferential for a coalgebra.

Seeking a deformation for $S^{\bullet}(\Lambda^{\bullet}\mathfrak{su}(2)^*)$

The obvious wedge product is inconsistent. Idea: work with $\Lambda^{\bullet}(\mathfrak{su}(2)^*)\otimes \mathfrak{g}$ with \mathfrak{g} a Lie algebra instead! Then a deformation to $Q=\mathrm{d}^*\otimes \mathbb{1}$ is

$$\delta_Q = \mathbb{1} \otimes [-,-]_{\mathfrak{g}}.$$

Deformation

A particularly important outcome of the *homological* perturbation lemma is the differential on the cohomology:

$$D' = \Pi \circ \delta_Q \circ \mathcal{E} + \Pi \circ \delta_Q \circ (H \circ \delta_Q) \circ \mathcal{E} + \mathcal{O}((H \circ \delta_Q)^2)$$
 (1)

It gives rise to tree level Feynman diagram on the physics' side!

Action functional

If Q is compatible with ((-,-)), then on contracted functions $\varphi \in S^{\bullet}(E^*) \otimes E[-1]$

$$(\!(\varphi,Q\varphi)\!)=(-1)^{|\varphi|}(\!(Q\varphi,\varphi)\!)$$

which is an element of $S^{\bullet}(E^*)_0$.

Action functional

If Q is compatible with ((-,-)), then on contracted functions $\varphi \in S^{\bullet}(E^*) \otimes E[-1]$

$$(\!(\varphi,Q\varphi)\!)=(-1)^{|\varphi|}(\!(Q\varphi,\varphi)\!)$$

which is an element of $S^{\bullet}(E^*)_0$.

Free BV field theory of $\Lambda \mathfrak{su}(2) \otimes \mathfrak{g}$ Assuming \mathfrak{g} has an invariant pairing,

$$((\omega, d\omega))$$

Flat connections, like Chern-Simons

Jurčo-Raspollini-Saemann-Wolf '18

S-matrix for $\mathfrak{su}(2)\otimes\mathfrak{g}$

w/ L. Ravas, Master's Thesis, and J. Pulmann

The BV theory $(S^{\bullet}(\Lambda \mathfrak{su}(2)^* \otimes \mathfrak{g})^*, Q_S, ((,)))$ admits only the cubic vertices.

Proof: The symmetrizer of the cohomology of $\mathfrak{su}(2)^* \otimes \mathfrak{g}$ gives:

$$S^{\bullet}(\mathfrak{g}[0] \oplus \mathfrak{g}[-3]).$$

Since degree -1 and -2 are not present, only some of the contributions to D' can be non-zero: if m_{n+2} is

$$D^{\prime(n)} = \Pi \circ \underbrace{\delta_{Q} \circ (H \circ \delta_{Q})^{\otimes^{n}}}_{m_{n+2}} \circ \mathcal{E}$$
 (2)

then only $m_2, m_5, m_8...$ are non-zero. Moreover, actually only $S^{d-1}(\mathfrak{g}[0]) \otimes \Lambda \mathfrak{g}[-3]$ and $S^d(\mathfrak{g}[0])$ embed in the complex.

H behaves like a weighted derivation. So we can follow what happens on the generators of $S^{\bullet}(E^*)$. In the diagrams they are intended as outputs of δ_Q

h on the green cochain is zero; δ_Q is degree preserving and then on the coalgebra 1-form π is zero. Hence all m_{2+i} with i>0 are null! The only surviving tree diagram is the 3-pt.

Braided QFT with $\mathfrak{sl}_q(2)$

BV data for $\mathfrak{sl}_q(2)$

Cochain complex is $\Lambda^{\bullet}\mathfrak{sl}_q(2)$ with differential

$$\mathrm{d}_{\wedge_q} = \frac{q^2}{1+q^4} \left(\frac{1}{c} v_{-2} L_{X_2} + \frac{q^3}{(1+q^2)c} v_0 L_{X_0} + \frac{q^2}{c} v_2 L_{X_{-2}} \right)$$

Krutov-Pandžić '24

and pairing
$$\langle -, - \rangle : E \times E \to \mathbb{K}[-1]$$
 so $E^* \cong E[1]$:

$$\langle x, y \rangle = \int x \wedge y.$$

Our definition for the symmetric tensors is

$$S(E^*) \equiv T(E^*)/\langle x \otimes y - \tilde{\sigma}_{\mathcal{R}}(x \otimes y) \rangle \tag{3}$$

where $\tilde{\sigma}_{\mathcal{R}}: E_1^* \otimes E_2^* \to E_2^* \otimes E_1^*$ is the normalised braiding.

 $S^{\bullet}(E^*)$ is a complex with differential d_{S} , obtained extending $d^*_{\wedge_{\alpha}}$ by Leibniz property:

$$\begin{cases} \mathrm{d}_S(e) = \mathrm{d}_{\wedge_q}^* e \\ \mathrm{d}_S(e \otimes f) = \mathrm{d}_{\wedge_q}^*(e) f + (\mathrm{id} \otimes \mathrm{d}_{\wedge_q}^*)(e \otimes f) \\ \mathrm{d}_S(e \otimes f \otimes g) = \mathrm{d}_{\wedge_q}^* e \otimes f \otimes g + (\mathrm{id} \otimes \mathrm{d}_{\wedge_q}^* \otimes \mathrm{id})(e \otimes f \otimes g) \\ + (\mathrm{id} \otimes \mathrm{id} \otimes \mathrm{d}_{\wedge_q}^*)(e \otimes f \otimes g) \end{cases}$$
 and noticing that

$$\ker S^k := \bigcap_{m+n=k-2} \, T^m \otimes \Lambda^2 \otimes \, T^n,$$

is respected by d_{ς} .

Some preliminary results

• There is a strong deformation retract

$$\overset{H}{\circlearrowright} (S^{\bullet}(E^*), \mathrm{d}_S) \xleftarrow{\Pi}_{\mathcal{E}} (S^{\bullet}(\mathbf{H}^{\bullet}(E^*)), 0). \tag{4}$$

This follows from the fact that $\tilde{\sigma}_{\mathcal{R}}$ is a natural transformation (and that Π and \mathcal{E} are algebra maps).

• On contracted functions $\varphi \in S^{\bullet}(E^*) \otimes E[-1]$, one can define a pairing that leaves the first input untouched

$$((-,-)): E[-1] \otimes E[-1] \to \mathbb{K}[-3], \quad ((-,-)) := \langle -, - \rangle [-2].$$

Some preliminary results

We showed the compatibility with the differential

$$(\!(\varphi, \mathrm{d}_\otimes \varphi')\!) = (\!(\mathrm{d}_\otimes \varphi, \varphi')\!) \,, \qquad \mathrm{d}_\otimes := \mathsf{id} \otimes \mathrm{d}_{\wedge_q}^*$$

because
$$e, e' \in E[-1]$$
, $((e, d^*_{\wedge_q} e')) = ((d^*_{\wedge_q} e, e'))$.

 We suggested the action functional for the free field theory,

$$S_q(\varphi) = ((\varphi, d_S \varphi)) \in S(E^*)^{(0)}.$$
 (5)

Odd Poisson bracket

On the symmetric algebra we have not yet identified a Poisson/BV bracket.

We think we have

$$\{x,y\} := (x,y) \mathbb{1}_{S},$$
 (6)

that satisfies Jacobi up to hexagonators.

Summary

With Krutov and Weber we are attempting to arrange the BV/homotopical framework for (finite dim.) field theory with a coboundary structure.

- \checkmark Focus is on a concrete example, $\Lambda \mathfrak{sl}_q(2)$;
- \checkmark Deformation retract and a functional S_q are at hand;
- imes Odd Poisson bracket is still missing (\leadsto is \mathcal{S}_q a Hamiltonian for it?)
- × Interacting theory?

$\epsilon \upsilon \chi \alpha \rho \iota \sigma \tau \omega$ for your attention!