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Heuristic reflection on Emergence
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Appearance of properties of a system that are novel with respect to   

other (more fundamental) descriptions of the same system.

Example: 1-loop annulus amplitude for D-branes  tree-level graviton exchange→

a.)   regime:  no open strings without closed stringsgs ≪ 1

consistent QG theory with light D-branes

and decoupled open/closed strings, where

gravity is solely a quantum effect

  no emergence→

b.) emergence of gravity:

[Butterfield,  (2011)]

(reminiscent: BFSS matrix model [review: W.Taylor.  (2001)] )



Swampland Distance Conjecture + Species Scale
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Moduli space of QG contains infinite distance limits:   ϕ → ∞

SDC: in such a limit a tower of states becomes exponentially light

m ∼ m0 e−cϕ

∙

∙

(in Planck units!) [Ooguri, Vafa  (2006)]

Species scale UV cutoff of quantum gravity: Λ̃ < M(d)
pl

Λ̃ ≃
Mpl

N
1

d − 2
sp

Examples: weak coupling limit , decompactification limit

Weak coupling limit: Λ̃ ∼ Ms

Decompact. limit: Λ̃ ∼ M(d+k)
pl



Perturbative QG Theories
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QG in infinite distance limits:

Working assumption:  They also reflect the structure of full perturbative QG theories 

                     arising in infinite distance, , limits in moduli space t → ∞

mpert(n) ∼ gα nβ Λ̃

Hierarchy of towers of states

mNP(n) ∼ nγ Λ̃
gδ

g ∼ 1/⟨t⟩ ≪ 1

∙

∙

Light towers 

Heavy towers 

(α, . . . , δ > 0)

The SDC and  are usually interpreted as limitations on validity of an EFTΛ̃

perturbation theory in small parameter

(fundamental dof) 

(classical soliton-like=coherent states) 



Perturbative QG Theories
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EP0: Integrate out only the full light towers in the infinite distance regime 

Sort of a prerequisite of the Emergence Proposal: [Heidenreich, Reece, Rudelius (2018)],[Grimm, Palti, Valenzuela (2018)]

see also [Marchesano, Melotti (2022)] [Castellano,Herráez,Ibáñez (2022)] [Bhg,Gligovic,Paraskevopoulou (2023)]

The dynamics (kinetic terms) for all fields are emergent in the infrared by integrating 

out towers of states down from an ultraviolet scale, which is below the Planck scale.

( yesterdays talk by Antonia Paraskevopoulou )



Infinite distance limits
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All other towers  are non-perturbative:
mDp ≃

Λ̃
gs

, mNS5 ≃
Λ̃
g2

s
(classical = coherent quantum states)  

∙
∙
∙

   Lightest towers are strings, mass scale , string coupling  Ms gs ≪ 1
   Accompanied by particle like states of mass  ,  KK + winding  M ∼ Ms

   Species scale  Λ̃ ∼ Ms

∙

   Perturbative fundamental string

   M-theory limit (special decompactification limit)

R11 → λR11 , M* →
M*

λ 1
d − 1

, RI → λ
1

d − 1 RI,

gs → λ
3(d − 2)
2(d − 1)gs , Ms → λ

d − 4
2(d − 1) Ms , RI → λ

1
d − 1 RI .)(compactified type IIA: 
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Light BPS Towers

Lightest towers of states:   D0-branes with

MD0 ∼ Ms/gs ∼ M(d)
pl /λ

For such a KK-like tower, the species scale is  

Λ̃ ∼ M(d)
pl /λ1/(d−1) ∼ M(d+1)

pl ∼ M*

Room for additional light towers  

MD2,NS5 ∼ Ms/g1/3
s ∼ M(d)

pl /λ1/(d−1) ∼ Λ̃

[Bhg, Cribiori, Gligovic, Paraskevopoulou, 2309.11554]∙

∙

∙

M-theory:  transverse M2 and M5 branes with KK momentum
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EP: In the infinite distance M-theory limit  with the Planck 
scale kept fixed, a perturbative QG theory arises whose low energy 
effective  description emerges via quantum effects by integrating out 
the full infinite towers of states with a mass scale parametrically not 
larger than the 11D Planck scale. 

M*R11 ≫ 1

M-theoretic Emergence Proposal

   Problems:  

collect evidence from 1/2 BPS saturated amplitudes 

in general requires quantization of M-theory (UV-finite)

Approach:

gravity, i.e. space-time itself has to emerge

∙
∙

technically, we evaluate 1/2 BPS saturated one-loop integrals

providing a working regularization of the UV divergences

∙
∙



Example: 1-loop diagrams in string theory
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SR4 ≃ Md−8
s Vk ∫ ddx −g ad t8t8 R4,

a(1)
d,string ≃

2π
Vk

___

∑
mi,ni∈ℤ

∫ℱ

d2τ

τ
d − 6

2
2

e−πτ2M2−2πiτ1mi ni
M2 = miGijmj + niGijnj

a(1)
d ≃

2π
Vk

___

∑
mi,ni∈ℤ

∫
∞

0

dt

t d − 6
2

δ(BPS) e−πtM2

Higher derivative term

with the one-loop contribution

undo integral : τ1

mi ni = 01/2  BPS:

UV divergence  regularization→
similar integrals in M-theory (minimal substraction + zeta function)
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gs ≪ 1 gs = O(1) gs ≫ 1

ad =
c0

g2
s

+ (c1 + 𝒪(e−Sws))
1−loop

+ 𝒪(e−Sst) ℰEk+1(k+1)

ΛEk+1,s= k
2 −1 ℰEk(k)

ΛEk⊕1,s= k
2 −1

pert. string theory desert pert. M-theory

= =

What happened so far
Collected evidence for M-theoretic emergence for various couplings

Higher derivative -terms in theories with maximal supersymmetry R4∙

Higher derivative -term for type IIA on K3 and its heterotic duals F4∙

[Bhg, Cribiori, Gligovic, Paraskevopoulou, 2404.01371]

== ℰSO(4,4)
V,s=1 ℰSO(3,3)

V⊕1,s=1
ad =

1
g2

s
(c0 + 𝒪(e−Sws))

EP0EP

[Artime, Bhg, Paraskevopoulou, 2504.05392]
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gs ≪ 1 gs = O(1) gs ≫ 1

ad =
c0

g2
s

+ (c1 + 𝒪(e−Sws))
1−loop

+ 𝒪(e−Sst) ℰEk+1(k+1)

ΛEk+1,s= k
2 −1 ℰEk(k)

ΛEk⊕1,s= k
2 −1

pert. string theory desert pert. M-theory

= =

What happened so far
Collected evidence for M-theoretic emergence for various couplings

Higher derivative -terms in theories with maximal supersymmetry R4∙

Higher derivative -term for type IIA on K3 and its heterotic duals F4∙

[Bhg, Cribiori, Gligovic, Paraskevopoulou, 2404.01371]

ℰSO(4,4)
V,s=1 ℰSO(3,3)

V⊕1,s=1
ad =

1
g2

s
(c0 + 𝒪(e−Sws)) ==

[Artime, Bhg, Paraskevopoulou, 2504.05392]

EP EP0
(yesterdays talk)



Type IIA on CY
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ℱ0(t) =
(2πi)3

g2
s [ 1

3!
κijktitjtk +

ζ(3)
2(2πi)3

χ(X) +
1

(2πi)3 ∑
β∈H2(X,ℤ)

αβ
0 Li3 (e2πiβ⋅t)],

Type IIA compactified on a CY to 4D with N=2 susy:

Prepotential is 1/2 BPS saturated and enjoys an expansion

determines kinetic terms for vector-multiplets

[Bhg, Cribiori, Gligovic, Paraskevopoulou (2023), 2309.11551]

∙
∙ Gopakumar-Vafa invariants  αβ

0 ∈ ℤ

Gopakumar/Vafa:  in the M-theory limit given by integrals over D2-D0 bound states

ℱ0 = ∑
β

αβ
0 ∑

n∈ℤ
∫

∞

0

ds
s3

esZn(β) , with central charge Zn(β) =
2πi
gs

(β ⋅ t − n)

[Hattab, Palti  2312.15440] [Hattab, Palti 2404.05176]

[Bhg, Gligovic (2025), 2506.20725] (discussions with N.Cribiori)

( ti = bi + iτi )
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Emergence of  Yukawa couplings 

for h11 = 1

For the Yukawa coupling one gets

∙

problem:  regularization of diverging sum over β ∈ H2(X, ℤ)

Y(0)
ttt :=

1
2

∞

∑
β=1

β3 αβ
0

reg.
= κ111 !?

∙

Yttt =
g2

s

(2πi)3
∂3

t ℱ0(t) = ∑
β>0

αβ
0 β3 ( 1

2
+

e2πiβt

1 − e2πiβt )

world-sheet instantonstree-level?
weak coupling: gs ≪ 1

resolved conifold

αβ
0 ∼ exp(γβ)with

zero point Yukawa coupling
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Simple Example 

∞

∑
k=1

k2n−1 = − 2 lim
Λ→∞

∞

∑
k=1

∞

∑
l=1

k2n−1 qlk
ζ(0) =

∞

∑
l=1

1 = − 1/2
with

Regularization via modular forms 

= − 2 lim
Λ→∞

∞

∑
m=1

σ2n−1(m) qm

q = exp(−2π/Λ)

= lim
Λ→∞ [−

2
c2n (E2n ( i

Λ ) − 1)]
E2n(τ) = 1 + c2n

∞

∑
m=1

σ2n−1(m) qm
Eisenstein series c2n =

2
ζ(1 − 2n)with
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E2n ( i
Λ ) = (−1)nΛ2n + 𝒪(e−2πΛ)

Modular form of weight 2n:

divergencedivergence vanishing

∞

∑
k=1

k2n−1 =
2

c2n
= ζ(1 − 2n)

Minimally subtracting the isolated divergence:

Aim:  generalize this procedure to zero point Yukawa couplings
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Consider  with CP1,1,1,6,9[18] (h21, h11) = (272,2)

Integrating out this tower of D2-D0 bound states:

Elliptically fibered CY 

Decompactification limit to 6D:   τb → λτb, gs → λgs, τf = const

Only D2-branes wrapping the elliptic fibre are among the light towers of states

α(n1,0)
0 = 540GV invariants:

Yt1t1t1 =
∞

∑
k=1

540 k3 ( 1
2

+
qk

(1 − qk) ) =
9
4

E4(t1)

= 270 ζ(−3) = 9/4 ⇒ the zero point Yuk. completes E4(t1)

( M(4)
pl = const )

( q = exp(2πit) )
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this expression was appearing in the regularization of  

Elliptically fibered CY 

Yt1t1t1 = 540
∞

∑
k=1

k3 ( qk

(1 − qk)
+

1
2 )

=
∞

∑
k,l=1

k3 qkl

the exponential terms in the Yukawa couplings can serve 

as a regularization of the zero point Yukawas .Y(0)

t1t1t1

1
2

∞

∑
k=1

k3 = − lim
Im(t1)→0

∞

∑
k,l=1

k3 qlk

Lesson:

(here it seems to be not more than a consistency check but will prove to be useful) 
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Now, we consider the actual case of interest: M-theory limit of IIA on CY  

M-theory limit for CYs 

GVs grow  ∼ eγn

τi → λτi, gs → λ
3
2gs, ( M(4)

pl = const )

Emergence: all TINs  should arise from regularized κijk Y(0)
titjtk

For CY with one Kähler modulus we would like to define  

Y(0)
ttt := − lim

t→0 [
∞

∑
n=1

αn
0 n3 qn

1 − qn
− Div]

   is not in the moduli space!Im(t) = 0
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M-theory limit for CYs 

The CY has a conifold singularity at tc

Y(0)
ttt := − lim

t→tc [
∞

∑
n=1

αn
0 n3 qn

1 − qn
− Div] = − lim

t→tc [(∂3
t ℱ0

weak
− κttt) − Div]

Yttt ∼
1

(t − tc) log2(t − tc)
+ … ,

One needs a “CY demon” to determine the GV  by pure countingα(0)
n

But he is bound to find the known result from mirror symmetry, so that   

should only give divergent and vanishing terms   

(quantum corrected origin in the GLSM)   
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The Procedure

we observe   

Y(0)
ttt = − lim

t→tc [(∂3
t ℱ0

weak
− κttt) − Div]

To evaluate the expression   

∙ starting with the periods in LCS regime, the conifold point  

is at the boundary of convergence  

tc

∙ one cannot simply apply a modular transformation to get the 

behaviour close to    tc

follow the procedure

∙ determine the periods close to  by solving the Picard-Fuchs equationstc
∙ determine a symplectic basis and glue them continuously to the LCS chart

∙ take the limit t → tc [Alvarez-Garcia, Mutchler, Qi, Rühle,  to appear]
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Example: the Quintic
5

∑
i=1

z5
i − (5ψ) z1z2z3z5z5 = 0 ,Mirror quintic ψ = 1conifold at 

X0 = − ρ1(u)
u

2πi
log u + ρ2(u)

X1 = ρ3(u)
F1 = ρ4(u)
F0 = u ρ1(u) .

Carrying out the procedure,  one gets the symplectic basis for small u = 1 − ψ−5

Then, the Kähler modulus reads

t =
X1

X0
= tc + c u log u + … (tc = i1.20812...)
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Example: the Quintic
Using  the expression for the Yukawa coupling

one obtains

∂3
t ℱ0

weak
=

1
ω2

0
κψψψ

1
(dt/dψ)3 κψψψ = ( 2πi

5 )
3 5ψ2

(1 − ψ5)with 

∂3
t ℱ0

weak
=

1
u log3 u

∞

∑
n,k=0

(u log u)n

logk u
an,k(u)

divergent

∼ ( 1
u log3 u

+ …) + C + ( 1
log2 u

+ …)
vanishing

= 0

⟹ Y(0)
ttt = κttt = 5
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Beyond the Quintic

We have analyzed also CYs with 2 Kähler moduli:    CP1,1,1,6,9[18], CP1,1,2,2,6[12]

∙
∙

There are 14 CYs with  similar to the Quintic:  expect analogous results   h11 = 1

More involved singularity structure  
D1 D2

P+

P−

P3 resolution

but we have the methods to perform the analysis to evaluate 

Y(0)
titjtk

=
1
2

∞

∑
β∈H2(X,ℤ)

αβ
0 βiβjβk

reg
= − lim

ti→ti,0 [(∂ti∂tj∂tkℱ0
weak

− κtitjtk) − Div]
consult [Bhg, Gligovic (2025), 2506.20725]  for more details)(not yet fully conclusive, more evidence needed, 
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Conclusions

∙

∙

∙

∙

Provided evidence for the M-theoretic Emergence of kinetic terms 

in 4D N=2 vacua (origin in 10D Einstein-Hilbert term) 

 Pragmatic regularization method of the GV 1-loop integral

 (relation to singularities in the CY moduli space)

Emergence is consistent with the BFSS Matrix Model:

graviton scattering at 1-loop
 V = −

15
16

v4

r7
+ … , (velocity  breaks susy)v

Generalization to non BPS amplitudes,  like 10D kinetic terms, 

requires quantization of M-theory (relation to Fermi gas                        ) ∙

(Note: Matrix Model limit is different from isotropic M-theory limit.) 

   

CY moduli space “knows” about QG: it encodes the Emergent String Conjecture for

infinite distance points and seems to encode Emergence via its singular loci.

[Hattab, Palti 2404.05176]


