Loop Blow-up Inflation

Sukṛti Bansal

Technical University of Vienna, Austria

Based on arXiv:2403.04831 with L. Brunelli, M. Cicoli, A. Hebecker & R. Kuespert

2025 Workshop on Quantum Gravity and Strings, Corfu Summer Institute, Greece 12th Sep' 2025

Kähler moduli inflation: a model of inflation in the Large Volume Scenario (LVS) for moduli stabilisation of type IIB flux compactifications [Conlon, Quevedo '05]

Kähler moduli inflation: a model of inflation in the Large Volume Scenario (LVS) for moduli stabilisation of type IIB flux compactifications [Conlon, Quevedo '05]

Inflationary models based on moduli stabilisation

Can moduli stabilisation allow slow-roll conditions to be met?

Kähler moduli inflation: a model of inflation in the Large Volume Scenario (LVS) for moduli stabilisation of type IIB flux compactifications [Conlon, Quevedo '05]

Inflationary models based on moduli stabilisation

Can moduli stabilisation allow slow-roll conditions to be met?

Kähler moduli: ideal candidates for inflaton

Volume modulus: lightest modulus

Kähler moduli inflation: a model of inflation in the Large Volume Scenario (LVS) for moduli stabilisation of type IIB flux compactifications [Conlon, Quevedo '05]

Inflationary models based on moduli stabilisation

Can moduli stabilisation allow slow-roll conditions to be met?

Kähler moduli: ideal candidates for inflaton

Volume modulus: lightest modulus

All moduli orthogonal to the overall volume obey approximate shift symmetry

⇒ volume modulus can be stabilized at a sufficiently large value

We consider a minimalistic model with 3 Kähler moduli.

Kähler moduli:
$$T_i = \tau_i + i c_i$$
, $i \in \{b, \phi, s\}$

We consider a minimalistic model with 3 Kähler moduli.

Kähler moduli:
$$T_i = \tau_i + i c_i$$
, $i \in \{b, \phi, s\}$

$$\mathcal{V} \ = \ \tau_b^{3/2} - \lambda_\phi \tau_\phi^{3/2} - \lambda_s \tau_s^{3/2} \,, \quad \tau_b \gg \tau_\phi \gg \tau_s$$

We consider a minimalistic model with 3 Kähler moduli.

Kähler moduli:
$$T_i = \tau_i + i c_i$$
, $i \in \{b, \phi, s\}$

$$\mathcal{V} = \tau_b^{3/2} - \lambda_\phi \tau_\phi^{3/2} - \lambda_s \tau_s^{3/2}, \quad \tau_b \gg \tau_\phi \gg \tau_s$$

 au_{ϕ} and au_{s} are the blow-up modes

N=1 supergravity

Superpotential:
$$W = W_0 + \underbrace{A_s e^{-a_s T_s} + A_\phi e^{-a_\phi T_\phi}}_{\text{non-pert corrections}}$$

Kähler potential:
$$K = K_{cs} - 2 \ln(\mathcal{V}) - \underbrace{2 \ln(\hat{\xi}/2)}_{\alpha'^3 \text{ correction}}$$

F-term scalar potential:
$$V_F = e^K \left(K^{I\bar{J}} D_I W \overline{D_J W} - 3|W|^2 \right)$$
, where $D_I W = \partial_I W + (\partial_I K) W$ and $K_{I\bar{I}} = \partial_I \partial_{\bar{I}} K$.

Has the no-scale structure [Giddings, Kachru, Polchinski '02].

Large Volume Scenario

In the regime $V \gg 1$ and $\tau_b \gg \tau_i$ (for $i = s, \phi$)

$$V_{\text{LVS}} = \hat{V} \left[\sum_{i=s,\phi} A_i \frac{\sqrt{\tau_i} e^{-2a_i \tau_i}}{\mathcal{V}} - \sum_{i=s,\phi} \mathcal{B}_s \frac{\tau_i e^{-a_i \tau_i}}{\mathcal{V}^2} + \frac{3\hat{\xi}}{4\mathcal{V}^3} \right]$$

where

$$\hat{V} \equiv \left(\frac{g_s e^{K_{cs}}}{8\pi}\right) W_0^2 , \qquad \mathcal{A}_i \equiv \frac{8 \left(a_i A_i\right)^2}{3 W_0^2 \lambda_i} , \qquad \mathcal{B}_i \equiv 4 \frac{a_i |A_i|}{W_0}$$

<u>Large volume limit</u>: On minimising the above potential w.r.t. τ_s it can be seen that as $\mathcal{V} \to \infty$, $a_s \tau_s \approx \ln \mathcal{V}$.

Large Volume Scenario

In the regime $V \gg 1$ and $\tau_b \gg \tau_i$ (for $i = s, \phi$)

$$V_{\text{INS}} = \hat{V} \left[\sum_{i=s,\phi} A_i \frac{\sqrt{\tau_i} e^{-2a_i\tau_i}}{\mathcal{V}} - \sum_{i=s,\phi} \mathcal{B}_s \frac{\tau_i e^{-a_i\tau_i}}{\mathcal{V}^2} + \frac{3\hat{\xi}}{4\mathcal{V}^3} \right]$$

where

$$\hat{V} \equiv \left(\frac{g_s e^{K_{cs}}}{8\pi}\right) W_0^2 , \qquad \mathcal{A}_i \equiv \frac{8 \left(a_i A_i\right)^2}{3 W_0^2 \lambda_i} , \qquad \mathcal{B}_i \equiv 4 \frac{a_i |A_i|}{W_0}$$

Large volume limit: On minimising the above potential w.r.t. τ_s it can be seen that as $V \to \infty$, $a_s \tau_s \approx \ln V$.

Uplift AdS minimum to Minkowski:
$$V_{\mathrm{up}}(\mathcal{V}) = \frac{\hat{\mathcal{V}}\mathcal{D}}{\mathcal{V}^2}$$

$$V_{\rm np} = V_{LVS} + V_{\rm up}$$

Large Volume Scenario

Uplift AdS minimum to Minkowski:
$$V_{\mathrm{up}}(\mathcal{V}) = \frac{\hat{V}\mathcal{D}}{\mathcal{V}^2}$$

$$V_{\rm np} = V_{LVS} + V_{\rm up}$$

Feasibility of anti-D3-brane uplift has been challenged [Junghans '22] [Gao, Hebecker, Schreyer, Venken '22 - '24]. It won't work but it's not required either.

Alternative uplift mechanisms:

- D-term effects [Braun, Rummel, Sumitomo, Valandro '15]
- dilaton-dependent non-perturbative contributions [Cicoli, Maharana, Quevedo, Burgess '12] [Retolaza, Uranga '16]
- T-branes [Cicoli, Quevedo, Valandro '16]
- non-zero F-terms of the complex structure moduli [Gallego, Marsh, Vercnocke, Wrase '17] [Hebecker, Leonhardt '21] [Krippendorf, Schachner '23]

Until the introduction of loop blow-up inflation

Original blow-up inflation [Conlon, Quevedo '06]

Up until this work, it was believed that string loop corrections

Problem:

destroy this non-perturbative slow-roll inflationary model

Until the introduction of loop blow-up inflation

Original blow-up inflation [Conlon, Quevedo '06]

Up until this work, it was believed that string loop corrections

Problem:

destroy this non-perturbative slow-roll inflationary model

Ways to circumvent the problem:

- do not exist if there are no branes wrapping the del Pezzo divisors
- if present, can be made negligible by tuning g_s and W to be appropriately small

What we found out about the speculations – *string loop corrections*:

Does the problem really exist?

destroy this non-perturbative slow-roll inflationary model?

– true only if the coefficient of the loop corrections $\gtrsim \mathcal{O}(10^{-6}) \Rightarrow seems$ no

What we found out about the speculations – *string loop corrections*:

Does the problem really exist?

destroy this non-perturbative slow-roll inflationary model?

- true only if the coefficient of the loop corrections $\gtrsim \mathcal{O}(10^{-6}) \Rightarrow$ seems no
- [Gao, Hebecker, Schreyer, Venken '22] estimate $c_{loop} \sim (2\pi)^{-4} \sim 10^{-4}$, 4D EFT logic $c_{loop} \sim 1/(16\pi^2) \Rightarrow$ actually yes :-(

What we found out about the speculations – *string loop corrections*:

Does the problem really exist?

destroy this non-perturbative slow-roll inflationary model?

- true only if the coefficient of the loop corrections ≥ O(10⁻⁶) ⇒ seems no
- [Gao, Hebecker, Schreyer, Venken '22] estimate $c_{loop}\sim (2\pi)^{-4}\sim 10^{-4}$, 4D EFT logic $c_{loop}\sim 1/(16\pi^2)\Rightarrow$ actually yes :-(

Do the circumventions work?

- do not exist if there are no branes wrapping the del Pezzo divisors?
 - true only for open string loops, closed string loops are inevitable \Rightarrow no

What we found out about the speculations – *string loop corrections*:

Does the problem really exist?

destroy this non-perturbative slow-roll inflationary model?

- true only if the coefficient of the loop corrections $\gtrsim \mathcal{O}(10^{-6}) \Rightarrow$ seems no
- [Gao, Hebecker, Schreyer, Venken '22] estimate $q_{\rm loop}\sim (2\pi)^{-4}\sim 10^{-4}$,

 4D EFT logic $q_{\rm loop}\sim 1/(16\pi^2)\Rightarrow$ actually yes:-(

Do the circumventions work?

- do not exist if there are no branes wrapping the del Pezzo divisors?
- true only for open string loops, closed string loops are inevitable \Rightarrow no
- \bullet if present, can be made negligible by tuning g_s and W to be appropriately small?
 - LVS constrains tuning, disallowing neglecting loop corrections ⇒ no

What we found out about the speculations – *string loop corrections*:

Does the problem really exist?

destroy this non-perturbative slow-roll inflationary model?

- true only if the coefficient of the loop corrections $\gtrsim \mathcal{O}(10^{-6})$ ⇒ seems no
- [Gao, Hebecker, Schreyer, Venken '22] estimate $c_{loop} \sim (2\pi)^{-4} \sim 10^{-4}$, 4D EFT logic $c_{loop} \sim 1/(16\pi^2) \Rightarrow$ actually yes :-(

Do the circumventions work?

- do not exist if there are no branes wrapping the del Pezzo divisors?
 - true only for open string loops, closed string loops are inevitable \Rightarrow no
- \bullet if present, can be made negligible by tuning g_s and W to be appropriately small?
 - LVS constrains tuning, disallowing neglecting loop corrections \Rightarrow no
- > String loop corrections are inevitable in blow-up inflation.
- \triangleright Estimated values of c_{loop} destroy non-perturbative blow-up inflation.

String Loop Corrections

String loop correction for Kähler potential

$$\delta \textit{K}_{(\textit{g}_{\textit{s}})} = \delta \textit{K}^{\textit{\tiny KK}}_{(\textit{g}_{\textit{s}})} + \delta \textit{K}^{\textit{\tiny W}}_{(\textit{g}_{\textit{s}})}$$

where [Berg, Haack, Pajer '07],

$$\delta \mathcal{K}_{(g_s)}^{\kappa\kappa} \simeq \sum_i C_i^{\kappa\kappa} \, rac{g_s \mathcal{T}^i(t^a)}{\mathcal{V}} \; , \qquad \qquad \delta \mathcal{K}_{(g_s)}^w \simeq \sum_i C_i^w \, rac{1}{\mathcal{I}^i(t^a)\mathcal{V}} \, .$$

String Loop Corrections

String loop correction for Kähler potential

$$\delta K_{(g_s)} = \delta K_{(g_s)}^{KK} + \delta K_{(g_s)}^{W}$$

where [Berg, Haack, Pajer '07],

$$\delta \mathcal{K}^{\kappa\kappa}_{(g_s)} \simeq \sum_i C_i^{\kappa\kappa} \, rac{g_s \mathcal{T}^i(t^a)}{\mathcal{V}} \; , \qquad \qquad \delta \mathcal{K}^w_{(g_s)} \simeq \sum_i C_i^w \, rac{1}{\mathcal{I}^i(t^a)\mathcal{V}} \, .$$

Consequent loop correction for scalar potential

$$\delta V_{
m loop} \simeq -rac{\hat{V}}{\mathcal{V}^3} \, rac{c_{
m loop}}{\mathcal{V}^{1/3}} \, f\left(rac{\mathcal{V}^{2/3}}{ au_\phi}
ight), \quad c_{
m loop} \simeq egin{cases} C_i^{\scriptscriptstyle KK} \ (g_{\scriptscriptstyle S} C_i^{\scriptscriptstyle KK})^2 \end{cases} \, .$$

f encodes information from the unknown functions \mathcal{T}^i and \mathcal{I}^i .

 $\delta V_{\text{loop}}^{\kappa\kappa}$ has an 'extended no-scale structure'.

String Loop Corrections

As estimated by [Cicoli, Conlon, Quevedo '08] for open string loops and as derived in [Gao, Hebecker, Schreyer, Venken '22] for closed string loops,

$$f \simeq rac{{\cal V}^{1/3}}{\sqrt{ au_\phi}} \hspace{1cm} ext{and hence} \hspace{1cm} \delta V_{
m loop} \simeq -rac{\hat V}{{\cal V}^3} \, rac{c_{
m loop}}{\sqrt{ au_\phi}} \, .$$

$$V = V_{LVS} + V_{up} + \delta V_{loop}$$

Inflationary potential

$$V = V_{LVS} + V_{up} + \delta V_{loop}$$

Large volume limit: $V \to \infty$, $a_s \tau_s \approx \ln V$.

Stabilising \mathcal{V} and τ_s , we get

$$V(au_\phi) = rac{\hat{\mathcal{V}}eta}{\mathcal{V}^3} \left[1 + \mathcal{A}_\phi rac{\mathcal{V}^2}{eta} \; \sqrt{ au_\phi} \; \mathrm{e}^{-2\mathsf{a}_\phi au_\phi} - \mathcal{B}_\phi rac{\mathcal{V}}{eta} \; au_\phi \; \mathrm{e}^{-\mathsf{a}_\phi au_\phi} - rac{\mathsf{c}_\mathrm{loop}}{eta\sqrt{ au_\phi}}
ight]$$

Canonically normalised inflaton $\phi = \sqrt{\frac{4\lambda_{\phi}}{3\mathcal{V}}} \ au_{\phi}^{3/4}$

c_{loop} dynamics

 $c_{\text{loop}}>0$ is necessary for slow-roll inflation.

Inflationary dynamics

For $c_{loop}\gtrsim 10^{-6}$ the potential in the inflationary region, where the exponential terms can be neglected, is

$$V(\phi) = V_0 \left(1 - rac{b \, c_{
m loop}}{\phi^{2/3}}
ight) \qquad ext{where} \qquad b \equiv rac{1}{eta} \, \left(rac{4 \lambda_\phi}{3 \mathcal{V}}
ight)^{1/3}$$

Another necessary condition: $\phi \lesssim 1$ since $\phi \sim 1 \Rightarrow \tau_{\phi} \sim \tau_{b}$.

Inflationary dynamics

For $c_{loop}\gtrsim 10^{-6}$ the potential in the inflationary region, where the exponential terms can be neglected, is

$$V(\phi) = V_0 \left(1 - rac{b \, c_{
m loop}}{\phi^{2/3}}
ight) \qquad {
m where} \qquad b \equiv rac{1}{eta} \, \left(rac{4 \lambda_\phi}{3 \mathcal{V}}
ight)^{1/3}$$

Another necessary condition: $\phi \lesssim 1$ since $\phi \sim 1 \Rightarrow au_{\phi} \sim au_{b}$.

Slow roll parameters

$$\epsilon = \frac{1}{2} \left(\frac{V_\phi}{V}\right)^2 \simeq \frac{2}{9} \frac{(b\, c_{\rm loop})^2}{\phi^{10/3}}\,, \qquad \eta = \frac{V_{\phi\phi}}{V} \simeq -\frac{10}{9} \, \frac{b\, c_{\rm loop}}{\phi^{8/3}}\,. \label{epsilon}$$

Small values of $(b c_{loop})$ allow slow-roll inflation.

Inflationary dynamics

$$\begin{aligned}
N_e &= \int_{\phi_{end}}^{\phi_*} \frac{V}{V_{\phi}} d\phi \simeq \frac{9}{16} \frac{\phi_*^{8/3}}{b c_{loop}} \\
\hat{A}_s &= \frac{9V_0}{4} \frac{\phi_*^{10/3}}{(b c_{loop})^2} \simeq 2.5 \times 10^{-7}
\end{aligned}$$

$$\phi_* = 0.06 N_e^{7/22} \sim \mathcal{O}(0.2)$$

$$\mathcal{V} = 1743 N_e^{5/11} \sim \mathcal{O}(10^4)$$

 ϕ_* and $\mathcal V$ satisfy LVS requirements.

$$n_s = 1 + 2 \eta - 6 \epsilon \simeq 1 - \frac{20}{9} \frac{b c_{\text{loop}}}{\phi_*^{8/3}} \quad \Rightarrow n_s \simeq 1 - \frac{1.25}{N_e},$$

$$r = 16 \epsilon \simeq \frac{32}{9} \frac{(b c_{\text{loop}})^2}{\phi_*^{10/3}} \qquad \Rightarrow r \simeq \frac{0.004}{N_e^{15/11}}.$$

$$r \simeq 0.003(1 - n_s)^{15/11}$$

Moduli Decay and Dark Radiation

Moduli relevant for decay: inflaton and volume modulus

Their decay, besides producing SM particles, yields very light axions which are relativistic and can contribute to extra dark radiation [Cicoli, Conlon, Quevedo '13] [Higaki, Takahashi '12] [Cicoli, Hebecker, Jaeckel and M. Wittner '22].

It is parameterized by $\Delta N_{\rm eff}$.

Inflationary Parameters

Based on post-inflationary study,

$$N_e \simeq 57 + rac{1}{4} \ln r - rac{1}{4} \left(N_\phi + N_\chi
ight)$$

Different scenarios of post-inflationary evolution:

- SM on D7-branes
 - Inflaton-cycle wrapped by D7s: $\Delta N_{\rm eff} \simeq 0$
 - II) Inflaton-cycle *not* wrapped by D7s: $\Delta N_{\rm eff} \simeq 0.14$
- SM on D3-branes

 - III a) Inflaton-cycle wrapped by D7s III b) Inflaton-cycle *not* wrapped by D7s $\Delta N_{\rm eff} \simeq 0.36$

$$\left. \left. \left. \right. \right. \right. \right. \Delta N_{
m eff} \simeq 0.36$$

Cosmological Predictions

CMB data : $n_s = 0.967 \pm 0.004$ at 1σ for $\Delta N_{eff} = 0$.

Scenario I : $n_s = 0.975$ \Rightarrow compatible with observations at 2.5σ .

Better agreement could be achieved by including subleading perturbative corrections or higher α^\prime effects.

CMB data : $n_s = 0.983 \pm 0.006$ at 1σ for $\Delta N_{eff} = 0.39$.

Scenario III : $n_s = 0.976$ \Rightarrow compatible with observations at 1.2σ .

Cosmological Predictions

CMB data : $n_s = 0.967 \pm 0.004$ at 1σ for $\Delta N_{eff} = 0$.

Scenario I : $n_s = 0.975$ \Rightarrow compatible with observations at 2.5σ .

Better agreement could be achieved by including subleading perturbative corrections or higher α^\prime effects.

CMB data : $n_s = 0.983 \pm 0.006$ at 1σ for $\Delta N_{eff} = 0.39$.

Scenario III : $n_s = 0.976$ \Rightarrow compatible with observations at 1.2σ .

Scenario II is a middle ground b/w scenarios I and III.

Extending existing results of base- Λ CDM model, it can be seen that the predictions for n_s and $\Delta N_{\rm eff}$ in scenario II agree with it within around 2σ .

We conclude that the n_s predicted by Loop Blow-Up Inflation is in *good* agreement with CMB data.

Cosmological Predictions

for
$$51.5 \lesssim N_{\rm e} \lesssim 53$$

 $n_{\rm S}$ in agreement with CMB data

 $r \simeq 2 \times 10^{-5}$

determined by post-inflationary evolution

Subleading Loop Corrections

$$f \simeq rac{\mathcal{V}^{1/3}}{\sqrt{ au_{\phi}}} \left(1 + rac{\sqrt{ au_{\phi}}}{\mathcal{V}^{1/3}} + rac{ au_{\phi}}{\mathcal{V}^{2/3}} + \dots
ight).$$

The additional terms in *f* modify the potential as follows:

$$V = V_0 \left(1 - c_{
m loop} \, b \left[rac{1}{\phi^{2/3}} + \mathfrak{a} + \mathfrak{b} \; \phi^{2/3} + \dots
ight]
ight) \, .$$

 $\mathfrak{a},\mathfrak{b}\sim\mathcal{O}(1)$

$$N_e \simeq rac{9}{16} rac{\phi_*^{8/3}}{b \,
m c_{loop}} (1 + 2 \, b \, \phi_*^{4/3}) \, .$$

$$\mathcal{V} = rac{A}{\phi_*^8} \left(1 + 2 \, \mathfrak{b} \, \phi_*^{4/3}
ight)^{-3} \, .$$

 ϕ_* and \mathcal{V} are lowered for $\mathfrak{b} > 0$, though the effect on the volume is weaker.

Different Possible Models of Kähler Moduli Inflation

Inflationary potential of Kähler moduli inflation takes a typical plateau-like form:

$$V = V_0 \left[1 - g(\phi) \right],$$

with:

$$V_0 \equiv V_{\mathrm{sub}}(\langle \mathcal{V} \rangle, \langle \tau_{\phi} \rangle)$$
 and $g(\phi) \equiv \frac{V_{\mathrm{sub}}(\langle \mathcal{V} \rangle, \tau_{\phi}(\phi))}{V_{\mathrm{sub}}(\langle \mathcal{V} \rangle, \langle \tau_{\phi} \rangle)}$.

Expression of $g(\phi)$ depends on

- ★ The origin (perturbative or non-perturbative) of the effects which generate $V_{\text{sub}}(\langle \mathcal{V} \rangle, \tau_{\phi})$
- \bigstar The topology of τ_ϕ (a bulk or local cycle) which gives the relation between τ_ϕ and ϕ

Different Possible Models of Kähler Moduli Inflation

$$V = V_0 \left[1 - g(\phi) \right]$$

Expression of $g(\phi)$ depends on

- \star Origin of the effects which generate $V_{\text{sub}}(\langle \mathcal{V} \rangle, \tau_{\phi})$
 - Non-perturbative effects (exponentially suppressed):

$$V_{\mathrm{sub}}(\langle \mathcal{V}
angle, au_{\phi}) \propto e^{-k au_{\phi}} \mathop{\longrightarrow}_{ au_{\phi} o \infty} 0 \qquad ext{for} \quad k > 0 \, .$$

Perturbative effects (typically power-law):

$$V_{
m sub}(\langle \mathcal{V}
angle, au_\phi) \propto rac{1}{ au_\phi^p} \mathop{\longrightarrow}\limits_{ au_\phi o \infty} 0 \qquad {
m for} \quad p > 0 \, ,$$

- ★ Topology of τ_{ϕ} :
 - For a bulk modulus the canonical normalization introduces exponentials:

$$au_\phi = e^{\lambda \phi} \qquad ext{with} \qquad \lambda \sim \mathcal{O}(1) \,.$$

• For a local modulus the relation between τ_{ϕ} and ϕ is power-law:

$$au_{\phi} = \mu \, \mathcal{V}^{2/3} \, \phi^{4/3} \qquad \text{with} \qquad \mu \sim \mathcal{O}(1) \, .$$

New Addition to Existing Models

- Non-perturbative models
 - Bulk fibre modulus: Non-perturbative Fibre Inflation

$$g(\phi) \propto e^{-k e^{\lambda \phi}} \ll 1$$
 for $\phi > 0$.

• Local blow-up modulus: Non-perturbative Blow-up Inflation physically nonviable

$$g(\phi) \propto e^{-k\mu \, \mathcal{V}^{2/3} \, \phi^{4/3}} \ll 1 \qquad {
m for} \qquad \phi > 0 \, .$$

- → Perturbative models
 - Bulk fibre modulus: Loop Fibre Inflation

$$g(\phi) \propto e^{-p\lambda\phi} \ll 1$$
 for $\phi > 0$.

• Local blow-up modulus: <u>Loop Blow-up Inflation</u> our new model!

[SB, Brunelli, Cicoli, Hebecker, Kuespert '24]

$$g(\phi) \propto rac{1}{\mathcal{V}^{2p/3} \, \phi^{4p/3}} \ll 1 \qquad ext{for} \qquad \phi \lesssim 1 \, .$$

First example in this class of constructions of a power-law inflationary potential.

Possible Future Directions

- Explicit computation of subleading loop corrections in a specific CY geometry
- Including additional perturbative corrections like higher *F*-term α'^3 effects

Thank you!