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Introduction

Kählermoduli inflation: a model of inflation in the Large Volume Scenario (LVS)
for moduli stabilisation of type IIB flux compactifications [Conlon, Quevedo ’05]

Inflationary models based onmoduli stabilisation

Canmoduli stabilisation allow slow-roll conditions to be met?

Kähler moduli: ideal candidates for inflaton

Volumemodulus: lightest modulus

All moduli orthogonal to the overall volume obey approximate shift symmetry

⇒ volumemodulus can be stabilized at a sufficiently large value
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Kähler moduli of type IIB flux compactifications

We consider a minimalistic model with 3 Kähler moduli.

Kähler moduli: Ti = τi + i ci , i ∈ {b, ϕ , s}

V = τ
3/2
b − λϕτ

3/2
ϕ − λsτ

3/2
s , τb ≫ τϕ ≫ τs

τϕ and τs are the blow-upmodes



Kähler moduli of type IIB flux compactifications

N=1 supergravity

Superpotential:W = W0 + As e
−asTs + Aϕ e

−aϕTϕ︸ ︷︷ ︸
non-pert corrections

Kähler potential: K = Kcs − 2 ln(V)− 2 ln(ξ̂/2)︸ ︷︷ ︸
α′3 correction

F-term scalar potential: VF = eK
(
K I J̄DIWDJW − 3|W |2

)
,

whereDIW = ∂IW + (∂IK )W and KI J̄ = ∂I∂J̄K .

Has the no-scale structure [Giddings, Kachru, Polchinski ’02].



Large Volume Scenario

In the regime V ≫ 1 and τb ≫ τi (for i = s, ϕ)

VLVS = V̂

 ∑
i=s,ϕ

Ai

√
τi e

−2aiτi

V
−

∑
i=s,ϕ

Bs
τi e

−aiτi

V2 +
3ξ̂
4V3


where

V̂ ≡
(
gse

Kcs

8π

)
W 2

0 , Ai ≡
8 (aiAi )

2

3W 2
0 λi

, Bi ≡ 4
ai |Ai |
W0

Large volume limit:Onminimising the above potential w.r.t. τs it can be seen
that as V → ∞, asτs ≈ lnV.
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Large Volume Scenario

Uplift AdS minimum toMinkowski: Vup(V) =
V̂D
V2

Vnp = VLVS + Vup

Feasibility of anti-D3-brane uplift has been challenged [Junghans ’22] [Gao,
Hebecker, Schreyer, Venken ’22 - ’24]. It won’t work but it’s not required either.

Alternative uplift mechanisms:

D-term effects [Braun, Rummel, Sumitomo, Valandro ’15]

dilaton-dependent non-perturbative contributions [Cicoli, Maharana,
Quevedo, Burgess ’12] [Retolaza, Uranga ’16]

T-branes [Cicoli, Quevedo, Valandro ’16]

non-zero F-terms of the complex structure moduli [Gallego, Marsh, Vercnocke,
Wrase ’17] [Hebecker, Leonhardt ’21] [Krippendorf, Schachner ’23]
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Until the introduction of loop blow-up inflation

Original blow-up inflation [Conlon, Quevedo ’06]

Up until this work, it was believed that string loop corrections

Problem:

destroy this non-perturbative slow-roll inflationary model

Ways to circumvent the problem:

do not exist if there are no branes wrapping the del Pezzo divisors

if present, can be made negligible by tuning gs andW to be appropriately
small
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Inevitability of loop corrections

What we found out about the speculations – string loop corrections:

Does the problem really exist?

destroy this non-perturbative slow-roll inflationary model?

– true only if the coefficient of the loop corrections≳ O(10−6) ⇒ seems no

– [Gao, Hebecker, Schreyer, Venken ’22] estimate cloop ∼ (2π)−4 ∼ 10−4,
4D EFT logic cloop ∼ 1/(16π2) ⇒ actually yes :-(

Do the circumventions work?

do not exist if there are no branes wrapping the del Pezzo divisors?

– true only for open string loops, closed string loops are inevitable⇒no

if present, can bemade negligible by tuning gs andW to be appropriately small?

– LVS constrains tuning, disallowing neglecting loop corrections ⇒no

➤ String loop corrections are inevitable in blow-up inflation.

➤ Estimated values of cloop destroy non-perturbative blow-up inflation.



String Loop Corrections

String loop correction for Kähler potential

δK(gs ) = δK KK

(gs )
+ δKW

(gs )

where [Berg, Haack, Pajer ’07],

δK KK

(gs )
≃

∑
i

C KK

i

gsT i (ta)

V
, δKW

(gs )
≃

∑
i

CW

i

1
I i (ta)V

.



String Loop Corrections

String loop correction for Kähler potential

δK(gs ) = δK KK

(gs )
+ δKW

(gs )

where [Berg, Haack, Pajer ’07],

δK KK

(gs )
≃

∑
i

C KK

i

gsT i (ta)

V
, δKW

(gs )
≃

∑
i

CW

i

1
I i (ta)V

.

Consequent loop correction for scalar potential

δVloop ≃ − V̂

V3

cloop
V1/3 f

(
V2/3

τϕ

)
, cloop ≃

{
CW

i

(gsC
KK

i )2
.

f encodes information from the unknown functions T i and I i .

δV KK

loop has an ‘extended no-scale structure’.



String Loop Corrections

As estimated by [Cicoli, Conlon, Quevedo ’08] for open string loops and as derived
in [Gao, Hebecker, Schreyer, Venken ’22] for closed string loops,

f ≃ V1/3

√
τϕ

and hence δVloop ≃ − V̂

V3

cloop√
τϕ

.

V = VLVS + Vup + δVloop



Inflationary potential

V = VLVS + Vup + δVloop

Large volume limit: V → ∞, asτs ≈ lnV.

Stabilising V and τs , we get

V (τϕ) =
V̂β

V3

[
1 +Aϕ

V2

β

√
τϕ e−2aϕτϕ − Bϕ

V
β
τϕ e−aϕτϕ −

cloop
β
√
τϕ

]

Canonically normalised inflaton ϕ =

√
4λϕ

3V
τ

3/4
ϕ



cloop dynamics

cloop > 0 is necessary for slow-roll inflation.



Inflationary dynamics

For cloop ≳ 10−6 the potential in the inflationary region, where the exponential
terms can be neglected, is

V (ϕ) = V0

(
1 −

b cloop
ϕ2/3

)
where b ≡ 1

β

(
4λϕ

3V

)1/3

Another necessary condition: ϕ ≲ 1 since ϕ ∼ 1 ⇒ τϕ ∼ τb .



Inflationary dynamics

For cloop ≳ 10−6 the potential in the inflationary region, where the exponential
terms can be neglected, is

V (ϕ) = V0

(
1 −

b cloop
ϕ2/3

)
where b ≡ 1

β

(
4λϕ

3V

)1/3

Another necessary condition: ϕ ≲ 1 since ϕ ∼ 1 ⇒ τϕ ∼ τb .

Slow roll parameters

ϵ =
1
2

(
Vϕ

V

)2

≃ 2
9
(b cloop)

2

ϕ10/3 , η =
Vϕϕ

V
≃ −10

9
b cloop
ϕ8/3 .

Small values of (b cloop) allow slow-roll inflation.



Inflationary dynamics

Ne =

∫ ϕ∗

ϕend

V

Vϕ
dϕ ≃ 9

16
ϕ

8/3
∗

b cloop

Âs =
9V0

4
ϕ

10/3
∗

(b cloop)2
≃ 2.5 × 10−7


ϕ∗ = 0.06N7/22

e ∼ O(0.2)

V = 1743N5/11
e ∼ O(104)

ϕ∗ and V satisfy LVS requirements.

ns = 1 + 2 η − 6 ϵ ≃ 1 − 20
9

b cloop

ϕ
8/3
∗

⇒ ns ≃ 1 − 1.25
Ne

,

r = 16 ϵ ≃ 32
9

(b cloop)
2

ϕ
10/3
∗

⇒ r ≃ 0.004

N
15/11
e

.

r ≃ 0.003(1 − ns)
15/11



Moduli Decay and Dark Radiation

Moduli relevant for decay: inflaton and volumemodulus

Their decay, besides producing SM particles, yields very light axions which are
relativistic and can contribute to extra dark radiation [Cicoli, Conlon, Quevedo ’13]
[Higaki, Takahashi ’12] [Cicoli, Hebecker, Jaeckel andM. Wittner ’22].

It is parameterized by∆Neff .



Inflationary Parameters

Based on post-inflationary study,

Ne ≃ 57 +
1
4
ln r − 1

4
(Nϕ + Nχ)

Different scenarios of post-inflationary evolution:

SM on D7-branes

I) Inflaton-cycle wrapped by D7s: ∆Neff ≃ 0

II) Inflaton-cycle not wrapped by D7s: ∆Neff ≃ 0.14

SM on D3-branes

III a) Inflaton-cycle wrapped by D7s

III b) Inflaton-cycle not wrapped by D7s

}
∆Neff ≃ 0.36



Cosmological Predictions

CMB data : ns = 0.967 ± 0.004 at 1σ for ∆Neff = 0 .

Scenario I : ns = 0.975 ⇒ compatible with observations at 2.5σ .

Better agreement could be achieved by including subleading perturbative
corrections or higher α′ effects.

CMB data : ns = 0.983 ± 0.006 at 1σ for ∆Neff = 0.39 .

Scenario III : ns = 0.976 ⇒ compatible with observations at 1.2σ .
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CMB data : ns = 0.967 ± 0.004 at 1σ for ∆Neff = 0 .

Scenario I : ns = 0.975 ⇒ compatible with observations at 2.5σ .

Better agreement could be achieved by including subleading perturbative
corrections or higher α′ effects.

CMB data : ns = 0.983 ± 0.006 at 1σ for ∆Neff = 0.39 .

Scenario III : ns = 0.976 ⇒ compatible with observations at 1.2σ .

Scenario II is a middle ground b/w scenarios I and III.

Extending existing results of base-ΛCDMmodel, it can be seen that the
predictions for ns and∆Neff in scenario II agree with it within around 2σ.

We conclude that the ns predicted by Loop Blow-Up Inflation is in good
agreement with CMB data.



Cosmological Predictions

r ≃ 0.003(1 − ns)
15/11



Subleading Loop Corrections

f ≃ V1/3

√
τϕ

(
1 +

√
τϕ

V1/3 +
τϕ
V2/3 + . . .

)
.

The additional terms in f modify the potential as follows:

V = V0

(
1 − cloop b

[
1

ϕ2/3 + a+ b ϕ2/3 + . . .

])
.

a, b ∼ O(1)

Ne ≃
9
16

ϕ
8/3
∗

b cloop
(1 + 2 bϕ4/3

∗ ) .

V =
A

ϕ8
∗

(
1 + 2 bϕ4/3

∗

)−3
.

ϕ∗ and V are lowered for b > 0, though the effect on the volume is weaker.



Different Possible Models of Kähler Moduli Inflation

Inflationary potential of Kähler moduli inflation takes a typical plateau-like form:

V = V0 [1 − g(ϕ)] ,

with:
V0 ≡ Vsub(⟨V⟩, ⟨τϕ⟩) and g(ϕ) ≡ Vsub(⟨V⟩, τϕ(ϕ))

Vsub(⟨V⟩, ⟨τϕ⟩)
.

Expression of g(ϕ) depends on

★ The origin (perturbative or non-perturbative) of the effects which generate
Vsub(⟨V⟩, τϕ)

★ The topology of τϕ (a bulk or local cycle) which gives the relation between
τϕ and ϕ



Different Possible Models of Kähler Moduli Inflation

V = V0 [1 − g(ϕ)]

Expression of g(ϕ) depends on

★ Origin of the effects which generate Vsub(⟨V⟩, τϕ)
Non-perturbative effects (exponentially suppressed):

Vsub(⟨V⟩, τϕ) ∝ e−kτϕ −→
τϕ→∞

0 for k > 0 .

Perturbative effects (typically power-law):

Vsub(⟨V⟩, τϕ) ∝
1
τpϕ

−→
τϕ→∞

0 for p > 0 ,

★ Topology of τϕ:
For a bulk modulus the canonical normalization introduces
exponentials:

τϕ = eλϕ with λ ∼ O(1) .

For a local modulus the relation between τϕ and ϕ is power-law:

τϕ = µV2/3 ϕ4/3 with µ ∼ O(1) .



New Addition to Existing Models
✒ Non-perturbative models

Bulk fibre modulus: Non-perturbative Fibre Inflation

g(ϕ) ∝ e−k eλϕ

≪ 1 for ϕ > 0 .

Local blow-upmodulus: Non-perturbative Blow-up Inflation physically
nonviable

g(ϕ) ∝ e−kµV2/3 ϕ4/3
≪ 1 for ϕ > 0 .

✒ Perturbative models

Bulk fibre modulus: Loop Fibre Inflation

g(ϕ) ∝ e−pλϕ ≪ 1 for ϕ > 0 .

Local blow-upmodulus: Loop Blow-up Inflation
�� ��our newmodel!

[SB, Brunelli, Cicoli, Hebecker, Kuespert ’24]

g(ϕ) ∝ 1
V2p/3 ϕ4p/3 ≪ 1 for ϕ ≲ 1 .

First example in this class of constructions of a power-law inflationary potential.



Possible Future Directions

Explicit computation of subleading loop corrections in a specific CY
geometry

Including additional perturbative corrections like higher F -term α′3 effects

Thank you!


