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Plan:

-present classical Gravity on NC space-times by developping a NC
Riemmanian geometry on quantum algebras.

-provide a constructive method –via a NC Koszul formula– for Levi-Civita con-
nections on a wide class of quantum algebras, including any algebra obtained
from twist deformation of a commutative one:

Quantum phase space xy − yx = iℏ,

NC Torus uv = qvu, u∗ = u−1, v∗ = v−1,

Connes-Landi spheres,..., (
∑n

i=0 x
2
i = 1 with NC coordinates xi)

Cotriangular quantum groups [Reshetikhin] (after [FRT]),

their quantum coset spaces.
[P.A. e-Print: 2006.02761v2]
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-Physics Motivations

Classical Mechanics −→ Quantum Mechanics functions (observables) on phase
space become noncommutative (phase space noncommutativity)

General Relativity −→ Quantum Gravity Spacetime structure itself becomes
noncommutative.

This expectation is supported by Gedanken experiments suggesting that space-
time structure is not necessarily that of a smooth manifold (a continuum of
points). Quantum spacetime effects at Planck scale LP ∼ 10−33cm.

Below Planck scales it is then natural to conceive a more general spacetime
structure where uncertainty relations and discretization naturally arise.
Space and time are then described by a Noncommutative Geometry.



• In string theory, study of string scatterings shows that generalized uncertainty
principles where a minimal length occurs is natural. Also, because of T-duality,
strings can be considered unable to test compactifications of spacetimes with
radii smaller than the string scale.

• Noncommutative spacetimes arise in T-duality of open string theory in the
presence of fluxes. Yang-Mills (and Born-Infeld) theories on NC spacetime
have proven very fruitful
-they provide an exact low energy D-brane effective action (in a given α′ → 0
sector of string theory where closed strings decouple).
-they allows to realize string theory T-duality symmetry within the low energy
physics of Noncommutative (Super) Yang-Mills theories [Connes, Douglas,
Schwartz 1997].

• T-dualities for closed strings in presence of fluxes suggests even more gen-
eral nongeometric backgrounds that are NC and non associative geometries
[Lüst, Blumenhagen, et al; Mylonas, Schupp, Szabo]

It is interesting to
1) understand the Riemannian geometry of these NC spacetimes,
2) see if one can consistently formulate a gravity theory. An effective theory
that may capture some aspects of a quantum gravity theory.



What is the status of NC differential and Riemannian geometry?

Well established NC differential geometry ingredients
for A a NC algebra like a quantum affine variety (given by generators and
relations)

• Differential calculus: (Ω•,∧,d) with Ω0 = A

• Connection:

∆

: Ω1 → Ω1 ⊗A Ω1 satisfying

∆

(ωa) =

∆

(ω)a+ ω ⊗A da

• Torsion: Tor ∆= ∧ ◦

∆

+d,

• Curvature: R ∆=

∆2

• . . .

• . . . ... Equivalence of different formulations of Tor and R (forms versus vector fields)

• . . . ... Bianchi identities?
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But, coming to Riemmanian Geometry:

• What is a metric g ∈ Ω1 ⊗A Ω1?

• How to make sense of metric-compatibility

∆

(g) = 0?



Two approaches to metrics on quantum algebras

• Metric structure compatible with the NC structure, e.g. central metrics
ag = ga for all a ∈ A (i.e., metrics as A-bimodule maps g : X⊗A X → A)

• Arbitrary metric, useful for g a dynamical field, like in gravity.
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Two approaches to metrics on quantum algebras

• Metric structure compatible with the NC structure, e.g. central metrics
ag = ga for all a ∈ A (i.e., metrics as A-bimodule maps g : X⊗A X → A)

• Arbitrary metric, useful for g a dynamical field, like in gravity.

Similarly for connections

• The metric compatibility condition

∆

(g) = 0 requires extending connec-
tions from Ω1 to Ω1 ⊗A Ω1.

This is typically done by considering Bimodule connections
[Dubois-Violette, Michor ’96], [Dubois-Violette, Masson ’96]

• A connection treated as a dynamical field is generally not a bimodule con-
nection.

4



Results with compatible (central or H-equivariant) metrics:

• NC Riemannian geometry for central metrics on fuzzy spaces [Madore
’93, ’96]

• Bimodule connections and weak Levi-Civita condition [Majid ’99], [Beggs,
Majid ’11,’14], [Beggs, Majid book ’20]

• Connections on central modules Z(A)MZ(A) and ’tame’ differential cal-
culi [Bhowmick, Goswami, Landi ’19,’20]

• LC connections for H-coinvariant metrics on algebras A with triangular
Hopf algebra symmetry (H,R) [Weber ’19]

• Compatible metrics on
- (cosemisimple) quantum groups H [Bhowmick, Mukhopadhyay ’19] (strongly)
- the NC 3-sphere S3

q [Arnlind, Ilwale, Landi ‘20,‘22] (weakly compatible)
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Selected class of noncommutative algebras allows for arbitrary metrics:

• Moyal-Weyl noncommutativity [Wess et al. ’05] (Rn
θ ), [Rosenberg ’13] (TN

θ ).
(Here explicit LC connection construction)

• Abelian Drinfeld twist [Aschieri, Castellani ’09] (here just existence result of LC)

• NC 3-sphere S3
θ [Arnlind, Wilson ’17]

These LC connection results are based on existence of adapted coordinate systems (e.g.

fdxµ = dxµf for [xµ, xν] = iθµν and derivations ∂
∂xµ generating the bimodule of vector

fields.



We extend this list and present a canonical construction of Noncommutative
Riemannian Geometry, including existence and uniqueness of the Levi-Civita
connection, on a wide class of noncommutative algebras

Datum: An algebra A with a multiplication that is braided commutative:

ab = (R̄α ▷ b)(R̄α ▷ b) .

Here

a⊗ b → (R̄α ▷ b)⊗ (R̄α ▷ b)

is a representation of the premutation group.
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Examples:

- All NC algebras arising as Drinfeld twist (2-cocycle) deformations of com-
mutative algebras are of this kind: e.g. NC-torus; Connes-Landi spheres,
Connes–Dubois-Violette NC manifolds....

- Any cotriangular Hopf algebra, for example Sweedler Hopf algebra H4.

In the present study there is no assumption on the existence of derivations of
the algebra, and no use of special coordinates. Indeed we use a global, coor-
dinate independent, approach.

We retrive the results in [Wess et al. 2005] [Rosenberg ’13] by considering
coordinates xµ and partial derivatives ∂µ. Similarly for [Rosenberg ’13].

We complement the results in [Wess et al. 2006] where we used an arbitrary
twist but we did not have an explicit formula for the Levi-Civita connection.
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Differential and Cartan Calculus [Gurevich ’95] [T. Weber 2019]
(twist deformation case in

[P.A, Dimitrievich, Meyer, Wess ’06])

Braided derivations

u(ab) = u(a)b+ (R̄α ▷ a)(R̄α ▷ u)(b) .

The commutator

[ , ]R : DerR(A)⊗DerR(A) → DerR(A) , u⊗v 7→ uv−(R̄α▷v)(R̄α▷u)

structures DerR(A) as a quantum Lie algebra,

[u, v]R = −[R̄α ▷ v, R̄α ▷ u]R

[u, [v, z]R]R = [[u, v]R, z]R + [R̄α ▷ v, [R̄α ▷ u, z]R]R .
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1-forms Ω(A) are dual to vector fields.

Pairing:

⟨ , ⟩ : X(A)⊗Ω(A) → A , u⊗A ω 7→ ⟨u, ω⟩

Exterior derivative

⟨u,da⟩ = u(a) ,

Contraction operator

iu(ω) = ⟨u, ω⟩ . (1)

Generalize the pairing to the tensor algebra

⟨ν⊗Au, ω1⊗Aω2 . . . ωp⊗Av1⊗A . . . vq⟩ = ⟨ν , ⟨u1, ω1⟩ ω2 . . .⊗Av1⊗Avq⟩ .
Exterior product

ω ∧ ω′ := ω ⊗A ω′ − R̄α ▷ ω′ ⊗A R̄α ▷ ω , (2)

is braided antisymmetric.

Lie derivative

Lu(a) := u(a) , Lu(v) := [u, v] .
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Extended to the tensor algebra via:

Lu(v ⊗A v′) = Lu(v)⊗A v′ + R̄α ▷ v ⊗A LR̄α▷u
(v′)

and on contravariant tensor fields is canonically defined by duality,

Lu⟨v, θ⟩ = ⟨Luv, θ⟩ + ⟨R̄α ▷ v,LR̄α▷u
θ⟩ (3)

Theorem (Braided Cartan calculus) [T. Weber]

[Lu,Lv] =L[u,v]R
,

[Lu, iv] = i[u,v]R
,

[Lu,d] =0 ,

[iu, iv] =0 ,

[iu,d] =Lu,

[d,d] =0 ,

where [L,L′] = L ◦ L′ − (−1)|L||L
′|R̄α(L′) ◦ R̄α(L) is the graded braided

commutator of k-linear maps L,L′ on Ω•(A) of degree |L| and |L′|.



Connections and Cartan equation

Def. A right connection on an A bimodule Γ is a k-linear map

∆

: Γ → Γ⊗A Ω (4)

which satisfies the Leibniz rule, for all s ∈ Γ, a ∈ A,
∆

(sa) =
∆

(s)a+ s⊗A da . (5)

A left connection on Γ is a k-linear map
∆

: Γ → Ω⊗A Γ (6)

which satisfies the Leibniz rule,
∆
(as) = da⊗A s+ a

∆
(s) . (7)
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Extend

∆

to

d ∆: Γ⊗A Ω•(A) −→ Γ⊗A Ω•+1(A) ,

by

d ∆(s⊗A θ) =

∆

(s)⊗A θ + s⊗A dθ ,

d∆ satisfies the Leibniz rule,

d ∆(ς ∧ ϑ) = d ∆ς ∧ ϑ+ (−1)kς ∧ dϑ

Curvature

The curvature of
∆

∈ ACon(Γ) is

d∆2 = d∆ ◦ d∆ .

It is a left Ω•(A)-linear map, Ω•(A)⊗A Γ → Ω•+2⊗A Γ

Torsion For Γ = Ω(A),

θ 7→ (d− ∧ ◦
∆
)θ .
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Def. Connection along vector field is
∆
u := iu ◦

∆

It is the composition of
∆

acting from the right and iu acting from the left.

More in general:

d∆
u := iu ◦ d∆ +d∆ ◦ iu , (8)

Theorem Braided Cartan relation for d∆
u

d∆
u iv − iR̄α▷v d

∆
R̄α▷u

= i[u,v] .
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All other expression of curvature and torsion are equivalent due to the above
Cartan relation.

Dual connections & Cartan structure equation for curvature and torsion

Let

∆

now denote the connection dual to
∆

, i.e.

d⟨u, θ⟩ = ⟨
∆
u, θ⟩+ ⟨u,

∆

θ⟩ .

Def. R∆(u, v, z) := (
∆
u ◦

∆
v −

∆
R̄α▷v ◦

∆
R̄α▷u

−
∆
[u,v])(z) .

T ∆(u, v) :=
∆
uv −

∆
R̄α▷vR̄α ▷ u − [u, v] .

Proposition

⟨R∆(u, v, z), θ⟩ = ⟨u⊗A v ⊗A z,d ∆2θ⟩

⟨T ∆(u, v), θ⟩ = −⟨u⊗A v, (d + ∧ ◦

∆

) θ⟩
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Braided Riemaniann geometry

Let g ∈ Ω(A)⊗A Ω(A).

Def. g is braided symmetric if invariant under the action of R̄α ⊗ R̄α.

Example: ω ⊗ ω′ + (R̄α ▷ ω′)⊗ (R̄α ▷ ω) is braided symmetric.

Def. A pseudo-Riemannian metric on X(A) is a braided symmetric nondegen-
erate element

Let g ∈ Ω(A) ⊗A Ω(A) be a pseudo-Riemannian metric. A connection

∆

∈
ConA(Ω(A)) is metric compatible if it satisfies

∆

(g) = 0. It follows

d⟨v ⊗A z, g⟩ = ⟨
∆
(v ⊗A z), g⟩

A Levi-Civita connection is a metric compatible and torsion free connection.
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Existence and uniqueness of Levi-Civita connection is proven, similarly to the
classical case, via a braided Koszul formula.

For all u, v, z ∈ Der(A), (braiding omitted)

Lu⟨v ⊗A z, g⟩ = ⟨
∆
u(v ⊗A z), g⟩

= ⟨z ⊗A
∆
v u , g⟩ + ⟨[u, v]⊗A z , g⟩ + ⟨v ⊗A

∆
u z , g⟩

Summing Lu⟨v⊗A z, g⟩ −Lz⟨u⊗A v, g⟩+Lv⟨z⊗A u, g⟩ (braiding omitted) we
obtain

2⟨αv ⊗A
∆
αu z , g⟩ = Lu⟨v ⊗A z, g⟩ − Lαv⟨αu⊗A z, g⟩+ Lαβz

⟨αu⊗A βv, g⟩

− ⟨[u, v]⊗A z , g⟩+ ⟨u⊗A [v, z] , g⟩+ ⟨[u, βz]⊗A βv , g⟩ .

were αv := R̄α ▷ v and αu := R̄α ▷ u. Now, since u, v, z are arbitrary, the
pairing is nondegenerate and the metric is also nondegenerate, knowledge of
the l.h.s. uniquely defines the Levi-Civita connection.
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Conclusions

- Given a wide class of algebras A:
all those admitting an action of a triangular Hopf agebra, including all those
obtained form Drinfeld twist (2-cocycle deform.) of commutative manifolds

- Given an arbitray braided symmetric metric g on A

We have shown existence and uniqueness of the Levi-Civita connection
∆

.

This gives Einstein equations on A.

Ricci tensor (trace of Riemann tensor):

Ric(u, v) = ⟨ωi, R∆(ei, u, v)⟩′ .

Einstein equations in vaccuum

Ric(u, v) = λ⟨u⊗A u , g⟩ , (λ ∈ k) .

NC (speudo)Remannian manifolds (Mq, g) that satisfy this equation are NC
Einstein spaces.

16



Example Riemannian geometry on K⊗K, where K is Sweedler Hopf algebra.

K is the algebra generated by g and θ and defining relations

g2 = 1 , θ2 = 0 , θg = −gθ .

A vector space basis is given by (1, g, θ, gθ). It it cotriangular, hence it is a
braided commutative algebra (w.r.t. K◦ op ⊗K◦).

The space of left invariant braided vector fields is 1-dimensional and spanned
by u, with

u(1) = 0 , u(g) = 0 , u(θ) = 1 , u(θg) = g .

The dual left invariant 1-form is ω = dθ. (This is Woronowicz bic. diff. calc.).

Consider K ⊗K generated by 1, g, θ, g′, θ′. We have the Einstein metric

g = dθ ⊗S dθ′ (1 + θ + θ′)

It is neither central nor equivariant. Its Levi-Civita connection is not a bimodule
connection, the scalar curvature is S = 12.
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