Quantum Poincaré groups as locally compact quantum groups

Corfu - Cost Action CaLISTA General Meeting

Arthur Massar September 20, 2025

Université Catholique de Louvain Phd student of P. Bieliavsky

Quantum Poincaré groups

Quantum Poincaré group \rightarrow NC Minkowski as quantum homogeneous space.

Many different models:

- κ-Poincaré (Lukierski–Nowicki–Ruegg–Tolstoy '91, ...);
- · ρ -Poincaré (Lukierski–Woronowicz '05, ...);
- Etc.

Quantum Poincaré groups

Quantum Poincaré group \rightarrow NC Minkowski as quantum homogeneous space.

Many different models:

- κ-Poincaré (Lukierski–Nowicki–Ruegg–Tolstoy '91, ...);
- ρ-Poincaré (Lukierski–Woronowicz '05, ...);
- Etc.

Question: Can we construct these models at the C^* -level? \to Locally compact quantum group (Kustermans–Vaes '00).

- · C*/von Neumann algebra, coproduct, quantum Haar measures;
- Interpretation as deformation of \mathcal{P} .

T-Poincaré groups

```
Notation: Minkowski: M = \mathbb{R}^{1,3}; Poincaré: \mathcal{P} = M \rtimes SO(1,3); Lie alg: Lie(\mathcal{P}) = \mathfrak{p} = M \rtimes \mathfrak{so}(1,3).
```

T-Poincaré groups

Notation: Minkowski: $M = \mathbb{R}^{1,3}$; Poincaré: $\mathcal{P} = M \rtimes SO(1,3)$; Lie alg: $Lie(\mathcal{P}) = \mathfrak{p} = M \rtimes \mathfrak{so}(1,3)$.

Today: triangular *r*-matrix of the form

$$r = \frac{-1}{2}\omega^{\mu\nu\rho}P_{\mu} \wedge M_{\nu\rho} \in \mathfrak{p} \wedge \mathfrak{p}.$$

Triangular \rightarrow CYBE: $[r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}] = 0$.

T-Poincaré groups

Notation: Minkowski: $M = \mathbb{R}^{1,3}$; Poincaré: $\mathcal{P} = M \rtimes SO(1,3)$; Lie alg: $Lie(\mathcal{P}) = \mathfrak{p} = M \rtimes \mathfrak{so}(1,3)$.

Today: triangular *r*-matrix of the form

$$r = \frac{-1}{2}\omega^{\mu\nu\rho}P_{\mu} \wedge M_{\nu\rho} \in \mathfrak{p} \wedge \mathfrak{p}.$$

Triangular \rightarrow CYBE: $[r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}] = 0$.

- · Classified by Zakrzewski '97 (cases 7-18), see also Tolstoy '07;
- Include ρ -Poincaré and lightlike κ -Poincaré;
- Mercati '24: *T*-Poincaré (with $\theta = 0$);
- Maris-Požar-Wallet '25: *-products on Minkowski, but few admit Poincaré symmetries.

Expected properties

Dual algebra:
$$\mathfrak{p}^* = \mathfrak{so}(1,3)^* + M^*$$
, $M^* = \langle X^{\mu} \rangle$,
$$[\xi, \eta]_r = \mathrm{ad}_{r^{\sharp}(\xi)}^{\flat} \eta - \mathrm{ad}_{r^{\sharp}(\eta)}^{\flat} \xi.$$

- $\mathfrak{so}(1,3)^*$ is abelian sub-algebra \Rightarrow SO(1,3) remains classical;
- $[\mathbf{X}^{\mu},\mathbf{X}^{\nu}] = c^{\mu\nu}{}_{\rho}\mathbf{X}^{\rho}, \quad c^{\mu\nu}{}_{\rho} = \omega^{\mu\nu}{}_{\rho} \omega^{\nu\mu}{}_{\rho} \quad \Rightarrow \mathsf{M}^*$ Lie sub-algebra;
- $\mathfrak{p}^* = \mathfrak{so}(1,3)^* \times M^*$;
- · Q. Minkowski is a sub-q. group of q. Poincaré.
- Cocycle twisting since *r* triangular.

Expected properties

Dual algebra:
$$\mathfrak{p}^* = \mathfrak{so}(1,3)^* + M^*$$
, $M^* = \langle X^{\mu} \rangle$,
$$[\xi, \eta]_r = \mathrm{ad}_{r^{\sharp}(\xi)}^{\flat} \eta - \mathrm{ad}_{r^{\sharp}(\eta)}^{\flat} \xi.$$

- $\mathfrak{so}(1,3)^*$ is abelian sub-algebra \Rightarrow SO(1,3) remains classical;
- $[\mathbf{X}^{\mu}, \mathbf{X}^{\nu}] = c^{\mu\nu}{}_{\rho} \mathbf{X}^{\rho}, \quad c^{\mu\nu}{}_{\rho} = \omega^{\mu\nu}{}_{\rho} \omega^{\nu\mu}{}_{\rho} \quad \Rightarrow \mathsf{M}^*$ Lie sub-algebra;
- $\mathfrak{p}^* = \mathfrak{so}(1,3)^* \times M^*$;
- · Q. Minkowski is a sub-q. group of q. Poincaré.
- · Cocycle twisting since *r* triangular.

Strategy: Look inside the double $\mathfrak{d} = \mathfrak{p} + \mathfrak{p}^*$.

Expected properties

Dual algebra:
$$\mathfrak{p}^* = \mathfrak{so}(1,3)^* + M^*$$
, $M^* = \langle X^{\mu} \rangle$,
$$[\xi, \eta]_r = \mathrm{ad}_{r^{\sharp}(\xi)}^{\flat} \eta - \mathrm{ad}_{r^{\sharp}(\eta)}^{\flat} \xi.$$

- $\mathfrak{so}(1,3)^*$ is abelian sub-algebra \Rightarrow SO(1,3) remains classical;
- $[\mathbf{X}^{\mu}, \mathbf{X}^{\nu}] = c^{\mu\nu}{}_{\rho} \mathbf{X}^{\rho}, \quad c^{\mu\nu}{}_{\rho} = \omega^{\mu\nu}{}_{\rho} \omega^{\nu\mu}{}_{\rho} \quad \Rightarrow \mathsf{M}^*$ Lie sub-algebra;
- $\mathfrak{p}^* = \mathfrak{so}(1,3)^* \times M^*$;
- · Q. Minkowski is a sub-q. group of q. Poincaré.
- · Cocycle twisting since *r* triangular.

Strategy: Look inside the double $\mathfrak{d} = \mathfrak{p} + \mathfrak{p}^*$.

Lemma: Let $\mathfrak{so}(1,3) + M^* =: \mathfrak{d}_0 \subset \mathfrak{d} = \mathfrak{p} + \mathfrak{p}^*$, and

$$J: M^* \to \mathfrak{p}$$

$$X^{\mu} \mapsto \eta^{\mu\nu} P_{\nu} + r^{\sharp} (X^{\mu}) = \eta^{\mu\nu} P_{\nu} - \frac{1}{2} \omega^{\mu\rho\sigma} M_{\rho\sigma}.$$

Then \mathfrak{d}_0 is a sub-algebra of \mathfrak{d} , and $\varphi = \mathrm{id}_{\mathfrak{so}(1,3)} + J : \mathfrak{d}_0 \to \mathfrak{p}$ is an isomorphism of Lie algebras.

Integrability condition

```
Recall: J: M^* \to \mathfrak{p}: X^{\mu} \mapsto \eta^{\mu\nu}P_{\nu} + r^{\sharp}(X^{\mu}).
Write \mathfrak{h} = J(M^*). We have a decomposition \mathfrak{p} = \mathfrak{so}(1,3) + \mathfrak{h}. \to bicrossed product.
```

Integrability condition

Recall: $J: M^* \to \mathfrak{p}: X^{\mu} \mapsto \eta^{\mu\nu} P_{\nu} + r^{\sharp}(X^{\mu})$. Write $\mathfrak{h} = J(M^*)$. We have a decomposition $\mathfrak{p} = \mathfrak{so}(1,3) + \mathfrak{h}$. \to bicrossed product.

(IC) Suppose $\exists H \leq \mathcal{P}$ integrating $\mathfrak{h} \leq \mathfrak{p}$ such that $\tilde{\forall} g \in \mathcal{P}$,

$$g = \Lambda h$$

for unique $\Lambda \in SO(1,3), h \in H$. $\rightarrow (SO(1,3), H) \subseteq \mathcal{P}$ is a matched pair.

Integrability condition

- Recall: $J: M^* \to \mathfrak{p}: X^{\mu} \mapsto \eta^{\mu\nu}P_{\nu} + r^{\sharp}(X^{\mu})$. Write $\mathfrak{h} = J(M^*)$. We have a decomposition $\mathfrak{p} = \mathfrak{so}(1,3) + \mathfrak{h}$. \to bicrossed product.
- (IC) Suppose $\exists H \leq \mathcal{P}$ integrating $\mathfrak{h} \leq \mathfrak{p}$ such that $\tilde{\forall} g \in \mathcal{P}$,

$$g = \Lambda h$$

for unique $\Lambda \in SO(1,3), h \in H$. $\rightarrow (SO(1,3), H) \subseteq \mathcal{P}$ is a matched pair.

Warning: There can be a set $X \subset \mathcal{P}$ of measure 0 for which there is no factorization.

Examples:

- ρ -Poincaré: $H \cong (\mathbb{R} \ltimes_{e^{i-}} \mathbb{C}) \times \mathbb{R} \to \text{Exact decomposition};$
- Lightlike κ -Poincaré: $H\cong \mathbb{R}^{\times}\ltimes \mathbb{R}^3 \to \text{Discrepancy of measure 0}.$

Cocycle twisting

```
Notation: G Lie group, \lambda: G \times L^2(G) \to \underline{L^2(G): (\lambda_g \xi)(g_0)} = \xi(g^{-1}g_0).
 Group von Neumann algebra: W^*(G) = \overline{\langle \lambda_g: g \in G \rangle^{\text{WOT}}} \subset \mathcal{B}(L^2(G)),
 Coproduct: \hat{\Delta}(\lambda_g) = \lambda_g \otimes \lambda_g.
 \to (W^*(G), \hat{\Delta}) analogue of U(\mathfrak{g}).
 Algebra of functions: L^{\infty}(G), \Delta(f)(g_1, g_2) = f(g_1g_2).
 \to (L^{\infty}(G), \Delta) analogue of \mathcal{O}(G).
```

5

Cocycle twisting

Notation: *G* Lie group, $\lambda: G \times L^2(G) \to \underline{L^2(G): (\lambda_g \xi)(g_0)} = \xi(g^{-1}g_0)$. Group von Neumann algebra: $W^*(G) = \overline{\langle \lambda_g: g \in G \rangle^{\text{WOT}}} \subset \mathcal{B}(L^2(G))$, Coproduct: $\hat{\Delta}(\lambda_g) = \lambda_g \otimes \lambda_g$. $\to (W^*(G), \hat{\Delta})$ analogue of $U(\mathfrak{g})$.

Algebra of functions: $L^{\infty}(G)$, $\Delta(f)(g_1, g_2) = f(g_1g_2)$.

ightarrow ($L^{\infty}(G), \Delta$) analogue of $\mathcal{O}(G)$.

Goal: Construct $\Omega \in W^*(G) \, \hat{\otimes} \, W^*(G)$ unitary satisfying the cocycle equation

$$(\Omega \otimes 1)(\hat{\Delta} \otimes 1)(\Omega) = (1 \otimes \Omega)(1 \otimes \hat{\Delta})(\Omega).$$

- $\Rightarrow \Omega$ is a dual unitary 2-cocycle.
- \Rightarrow $(W^*(G), \Omega \hat{\Delta}(\cdot)\Omega^*)$ is a locally compact quantum group (de Commer '11).

Main theorem

Recall: **(IC)**
$$\mathcal{P} = SO(1,3) \cdot H$$
. Define

$$A:M \to SO(1,3): \quad x = A(x)h, \qquad \qquad x \in M, h \in H;$$

$$\Omega = \int_{M\times M} D\cdot e^{iy^\mu z_\mu} \lambda_{A(y)^{-1}} \otimes \lambda_Z \,\mathrm{d}y \,\mathrm{d}z,$$

for D suitable normalization factor.

6

Main theorem

Recall: (IC) $\mathcal{P} = SO(1,3) \cdot H$.

Define

$$A: M \to SO(1,3): \quad x = A(x)h,$$

 $x \in M, h \in H$;

$$\Omega = \int_{M\times M} D\cdot e^{iy^{\mu}Z_{\mu}} \lambda_{A(y)^{-1}} \otimes \lambda_{z} \,\mathrm{d}y \,\mathrm{d}z,$$

for D suitable normalization factor.

Theorem

- 1. $\Omega \in W^*(\mathcal{P}) \, \hat{\otimes} \, W^*(\mathcal{P})$ is a unitary 2-cocycle;
- 2. $(W^*(\mathcal{P}), \Omega \hat{\Delta}(\cdot) \Omega^*) \cong L^{\infty}(H) \rtimes W^*(SO(1,3))$ (bicrossed product).
- 3. ⋆-product on M:

$$(f \star g)(x) = \int_{M \times M} D \cdot e^{iy^{\mu}Z_{\mu}} f(A(y)^{-1}x) g(x+z) dy dz.$$

Proof Sketch

Two decompositions $\mathcal{P} = SO(1,3) \cdot H = SO(3,1) \cdot M$. \rightarrow Two bicrossed products $L^{\infty}(H) \rtimes W^*(SO(1,3))$ and $L^{\infty}(M) \rtimes W^*(SO(1,3))$.

Fact: Fourier transform on $M: \mathcal{F}_M : L^{\infty}(M) \rtimes W^*(SO(1,3)) \cong W^*(\mathcal{P}).$

Proof Sketch

Two decompositions $\mathcal{P} = SO(1,3) \cdot H = SO(3,1) \cdot M$. \rightarrow Two bicrossed products $L^{\infty}(H) \rtimes W^*(SO(1,3))$ and $L^{\infty}(M) \rtimes W^*(SO(1,3))$.

Fact: Fourier transform on $M: \mathcal{F}_M : L^{\infty}(M) \rtimes W^*(SO(1,3)) \cong W^*(\mathcal{P}).$ Stachura's cocycle ('13): (SO(1,3), H) and (SO(1,3), M) share SO(1,3) \Rightarrow Consider $\tilde{\Omega} \in \mathcal{B}(L^2(M \times SO(1,3) \times M \times SO(1,3))),$

$$\tilde{\Omega}\xi(x_1, \Lambda_1, x_2, \Lambda_2) = \xi(A(x_2)x_1, A(x_2)\Lambda_1, x_2, \Lambda_2) \cdot D^{1/2}$$

for D a suitable Radon-Nikodym derivative. Then

- $\tilde{\Omega}$ is a unitary 2-cocycle on $L^{\infty}(M) \rtimes W^*(SO(1,3))$;
- $\cdot \ (L^{\infty}(M) \rtimes W^*(\mathrm{SO}(1,3)))_{\tilde{\Omega}} \cong L^{\infty}(H) \rtimes W^*(\mathrm{SO}(1,3));$
- · $\mathcal{F}_{M}(\tilde{\Omega}) = \Omega$.

Concluding remarks

Nothing specific about \mathcal{P} : Can take any $\mathfrak{g} = V \rtimes \mathfrak{q}$,

$$r = \sum_{i} a_i v_i \wedge X_i$$
 triangular, $X_i \in \mathfrak{q}, v_i \in V$.

Further research directions:

- · Central extensions: $r = \frac{-1}{2}\theta^{\mu\nu}P_{\mu} \wedge P_{\nu} + \frac{-1}{2}\omega^{\mu\nu\rho}P_{\mu} \wedge M_{\nu\rho}$.
- Non-triangular case, such as κ -Poincaré.

Concluding remarks

Nothing specific about \mathcal{P} : Can take any $\mathfrak{g} = V \rtimes \mathfrak{q}$,

$$r = \sum_{i} a_i v_i \wedge X_i$$
 triangular, $X_i \in \mathfrak{q}, v_i \in V$.

Further research directions:

- Central extensions: $r = \frac{-1}{2}\theta^{\mu\nu}P_{\mu}\wedge P_{\nu} + \frac{-1}{2}\omega^{\mu\nu\rho}P_{\mu}\wedge M_{\nu\rho}$.
- · Non-triangular case, such as κ -Poincaré.

Thank you for your attention!