
Quantum Poincaré groups as locally compact
quantum groups
Corfu - Cost Action CaLISTA General Meeting

Arthur Massar
September 20, 2025

Université Catholique de Louvain
Phd student of P. Bieliavsky



Quantum Poincaré groups

Quantum Poincaré group → NC Minkowski as quantum
homogeneous space.

Many different models:

• κ-Poincaré (Lukierski–Nowicki–Ruegg–Tolstoy ’91, …);
• ρ-Poincaré (Lukierski–Woronowicz ’05, …);
• Etc.

Question: Can we construct these models at the C∗-level? → Locally
compact quantum group (Kustermans–Vaes ’00).

• C∗/von Neumann algebra, coproduct, quantum Haar measures;
• Interpretation as deformation of P .

1



Quantum Poincaré groups

Quantum Poincaré group → NC Minkowski as quantum
homogeneous space.

Many different models:

• κ-Poincaré (Lukierski–Nowicki–Ruegg–Tolstoy ’91, …);
• ρ-Poincaré (Lukierski–Woronowicz ’05, …);
• Etc.

Question: Can we construct these models at the C∗-level? → Locally
compact quantum group (Kustermans–Vaes ’00).

• C∗/von Neumann algebra, coproduct, quantum Haar measures;
• Interpretation as deformation of P .

1



T-Poincaré groups

Notation: Minkowski: M = R1,3; Poincaré: P = M⋊ SO(1, 3);
Lie alg: Lie(P) = p = M⋊ so(1, 3).

Today: triangular r-matrix of the form

r = −1
2 ωµνρPµ ∧Mνρ ∈ p ∧ p.

Triangular→ CYBE: [r12, r13] + [r12, r23] + [r13, r23] = 0.

• Classified by Zakrzewski ’97 (cases 7-18), see also Tolstoy ’07;
• Include ρ-Poincaré and lightlike κ-Poincaré;
• Mercati ’24: T-Poincaré (with θ = 0);
• Maris–Požar–Wallet ’25: ⋆-products on Minkowski, but few admit
Poincaré symmetries.
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Expected properties

Dual algebra: p∗ = so(1, 3)∗ +M∗, M∗ = 〈xµ〉,

[ξ, η]r = ad♭
r♯(ξ)η − ad♭

r♯(η)ξ.

• so(1, 3)∗ is abelian sub-algebra ⇒ SO(1, 3) remains classical;
• [xµ, xν ] = cµνρxρ, cµνρ = ωµν

ρ − ωνµ
ρ ⇒ M∗ Lie sub-algebra;

• p∗ = so(1, 3)∗ ⋊M∗;
• Q. Minkowski is a sub-q. group of q. Poincaré.
• Cocycle twisting since r triangular.

Strategy: Look inside the double d = p+ p∗.
Lemma: Let so(1, 3) +M∗ =: d0 ⊂ d = p+ p∗, and

J : M∗ → p

xµ 7→ ηµνPν + r♯(xµ) = ηµνPν − 1
2ω

µρσMρσ.

Then d0 is a sub-algebra of d, and φ = idso(1,3) + J : d0 → p is an
isomorphism of Lie algebras.
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Integrability condition

Recall: J : M∗ → p : xµ 7→ ηµνPν + r♯(xµ).
Write h = J(M∗). We have a decomposition p = so(1, 3) + h.

→ bicrossed product.

(IC) Suppose ∃H ≤ P integrating h ≤ p such that ∀̃g ∈ P ,

g = Λh

for unique Λ ∈ SO(1, 3),h ∈ H.
→ (SO(1, 3),H) ⊆ P is a matched pair.

Warning: There can be a set X ⊂ P of measure 0 for which there is
no factorization.

Examples:

• ρ-Poincaré: H ∼= (R⋉ei− C)× R → Exact decomposition;
• Lightlike κ-Poincaré: H ∼= R× ⋉R3 → Discrepancy of measure 0.
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Cocycle twisting

Notation: G Lie group, λ : G× L2(G) → L2(G) : (λgξ)(g0) = ξ(g−1g0).
Group von Neumann algebra: W∗(G) = 〈λg : g ∈ G〉WOT ⊂ B(L2(G)),
Coproduct: ∆̂(λg) = λg ⊗ λg.
→ (W∗(G), ∆̂) analogue of U(g).

Algebra of functions: L∞(G), ∆(f)(g1,g2) = f(g1g2).
→ (L∞(G),∆) analogue of O(G).

Goal: Construct Ω ∈ W∗(G) ⊗̂W∗(G) unitary satisfying the cocycle
equation

(Ω⊗ 1)(∆̂⊗ 1)(Ω) = (1⊗ Ω)(1⊗ ∆̂)(Ω).

⇒ Ω is a dual unitary 2-cocycle.
⇒ (W∗(G),Ω∆̂(·)Ω∗) is a locally compact quantum group (de
Commer ’11).

5



Cocycle twisting

Notation: G Lie group, λ : G× L2(G) → L2(G) : (λgξ)(g0) = ξ(g−1g0).
Group von Neumann algebra: W∗(G) = 〈λg : g ∈ G〉WOT ⊂ B(L2(G)),
Coproduct: ∆̂(λg) = λg ⊗ λg.
→ (W∗(G), ∆̂) analogue of U(g).

Algebra of functions: L∞(G), ∆(f)(g1,g2) = f(g1g2).
→ (L∞(G),∆) analogue of O(G).

Goal: Construct Ω ∈ W∗(G) ⊗̂W∗(G) unitary satisfying the cocycle
equation

(Ω⊗ 1)(∆̂⊗ 1)(Ω) = (1⊗ Ω)(1⊗ ∆̂)(Ω).

⇒ Ω is a dual unitary 2-cocycle.
⇒ (W∗(G),Ω∆̂(·)Ω∗) is a locally compact quantum group (de
Commer ’11).

5



Main theorem

Recall: (IC) P = SO(1, 3) · H.
Define

A : M→ SO(1, 3) : x = A(x)h, x ∈ M,h ∈ H;

Ω =

∫
M×M

D · eiy
µzµλA(y)−1 ⊗ λz dydz,

for D suitable normalization factor.

Theorem

1. Ω ∈ W∗(P) ⊗̂W∗(P) is a unitary 2-cocycle;
2. (W∗(P),Ω∆̂(·)Ω∗) ∼= L∞(H)⋊W∗(SO(1, 3)) (bicrossed product).
3. ⋆-product on M:

(f ⋆ g)(x) =
∫
M×M

D · eiy
µzµ f(A(y)−1x)g(x+ z) dydz.
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Proof Sketch

Two decompositions P = SO(1, 3) · H = SO(3, 1) ·M.
→ Two bicrossed products L∞(H)⋊W∗(SO(1, 3)) and
L∞(M)⋊W∗(SO(1, 3)).

Fact: Fourier transform on M: FM : L∞(M)⋊W∗(SO(1, 3)) ∼= W∗(P).

Stachura’s cocycle (’13): (SO(1, 3),H) and (SO(1, 3),M) share SO(1, 3)
⇒ Consider Ω̃ ∈ B(L2(M× SO(1, 3)×M× SO(1, 3))),

Ω̃ξ(x1,Λ1, x2,Λ2) = ξ(A(x2)x1,A(x2)Λ1, x2,Λ2) · D1/2

for D a suitable Radon-Nikodym derivative. Then

• Ω̃ is a unitary 2-cocycle on L∞(M)⋊W∗(SO(1, 3));
• (L∞(M)⋊W∗(SO(1, 3)))Ω̃ ∼= L∞(H)⋊W∗(SO(1, 3));
• FM(Ω̃) = Ω.
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Concluding remarks

Nothing specific about P : Can take any g = V⋊ q,

r =
∑
i

aivi ∧ Xi triangular, Xi ∈ q, vi ∈ V.

Further research directions:

• Central extensions: r = −1
2 θµνPµ ∧ Pν + −1

2 ωµνρPµ ∧Mνρ.
• Non-triangular case, such as κ-Poincaré.

Thank you for your attention!
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