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Motivations and Plan

Quantum Groups(QG) are a special sort of Hopf algebras that posses a
classical limit. In fact, there are two kinds of QG: quantize enveloping
algebras (Drinfeld) and matrix (Woronowicz, FRT), which are ”mutually
dual” each other (FRT).
Differential calculus is a basic tool in NCG. They are natural object for
matrix QGs, since in the classical limit one can reconstruct Cartan calculus
on Lie group manifolds.Here we argue that for quantized enveloping
algebras more natural are codifferential calculi.

PLAN:

Coalgebra coderivations and First-Order Codifferential Caluli (FOCC)

Hopf algebra bicocovariant FOCC

Some examples

Conclusions and perspectives

2/20



3/20

Coderivations

Differential calculus on associative unital -algebra A = (A, µ = ·, 1 = 1A)
is a derivation

d : A → Ω ∈ AMA, such that d(f · g) = df .g + f .dg

We also assume that Ω = Span{f .dg} = Span{df .g} (FODC). Dually, let
C = (C,∆, ε = εC) be a coalgebra. Coderivation (Y. Doi)

CMC ∋ Υ
δ→ C, such that ∆ ◦ δ = (id⊗ δ) ◦∆L + (δ ⊗ id) ◦∆R ,

or δ(m)(1) ⊗ δ(m)(2) = m(−1) ⊗ δ(m<0>) + δ(m<0>)⊗m(1) .

Restriction of δ to any subbicomodule Υ1 ⊂ Υ becomes a coderivation on
Υ1.

The image of any coderivation Imδ is a coideal in C

ϵ ◦ δ = 0 , i.e. Imδ ⊂ Kerε .
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Universal coderivations

Similarly to the case of algebras, for each coalgebra there exists a universal
coderivation [Doi81]. Firstly, for a coalgebra (C,∆, ε) one defines a
universal bicomodule ΥU

C as a quotient

ΥU
C = C ⊗ C / Im∆ ≡ Coker∆

together with ([a(1) ⊗ a(2)] = 0)

∆U
L [a⊗ b] := a(1) ⊗ [a(2) ⊗ b],

∆U
R [a⊗ b] := [a⊗ b(1)]⊗ b(2) ,

where [a⊗ b] denotes the corresponding equivalence class of a simple
tensor a⊗ b ∈ C ⊗ C ([Im∆] = 0). Then one gets the exact sequence of
bicomodules

0 −→ C ∆−→ C ⊗ C π−→ ΥU
C −→ 0 ,

where π(a⊗ b) = [a⊗ b] is a canonical projection. The universal
coderivation is defined by

δU [a⊗ b] := aε(b)− bε(a)
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Universality theorem

Proposition.(Y. Doi) There is one-to-one correspondence between

Com(C,C)(Υ,ΥU
C )←→ Coder(Υ, C) ∋ δ

which is an isomorphism of K-spaces.

δ̂(m)
.
= [δ(m<0>)⊗m(1)] = − [m(−1) ⊗ δ(m<0>)] .

The last two expressions differ by [∆(δ(m))] = 0. Therefore, δ̂(Υ) ⊂ ΥU
C

is a subbicomodule. Moreover,

δ = δU ◦ δ̂

. Definition First order codifferential calculus (FOCC) over a coalgebra C
is a pair (Υ, δ), where Υ ∈ CMC and δ : Υ→ C is a coderivation, such that
the corresponding bicomodule homomorphism δ̂ is injective, i.e. Kerδ̂ = 0.

Corollary. This allows to classify FOCC classifying subbicomodules of ΥU
C

(in fact, up to a coalgebra automorphism ϕ : C → C).
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Morphisms of coderivations

Let ϕ : C1 → C2 be a coalgebras morphism and Ψ : Υ1 → Υ2 the
corresponding bicomoduls morphism. Then the following diagram
commutes (L∆R = (∆L ⊗ id) ◦∆R):

K C1 ΥU
C1 Υ1 C2 ⊗Υ1 ⊗ C2

C2 ΥU
C2 Υ2 C2 ⊗Υ2 ⊗ C2

ε1 δU1 δ̂1 (ϕ⊗ id⊗ ϕ) ◦ L∆
1
R

ϕ
ε2

[ϕ⊗ ϕ]
δU2

Ψ
δ̂2

id⊗Ψ⊗ id
L∆

2
R

If ϕ is injective, i.e. C1 ≡ Imϕ is a subcoalgebra of C2 then [ϕ⊗ ϕ] is
also injective, and ΥU

C1 ⊂ ΥU
C2 .

If ϕ is surjective then its kernel is a coideal in C1 and C2 ≡ C1/Kerϕ.
Then [ϕ⊗ ϕ] is also surjective and ΥU

C2 ≡ ΥU
C1/Ker[ϕ⊗ ϕ].

If ϕ is an automorpismm then [ϕ⊗ ϕ] is an automorphism.
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Some remarks on dimC = N <∞ case

Then dimΥU
C = N(N − 1) and dim ker δU = (N − 1)2. Taking the dual C∗

one gets algebra with the multiplication given by the transposition map
∆∗(α⊗ β)(a) ≡ α ⋆ β(a)

.
= α(a(1))β(a(2)) (convolution product), ε serves

as the algebra unit. There is a dual pairing < α, a >
.
= α(a) given by the

evaluation map. It extends to the pairing between ker∆∗ and ΥU
C :

<
∑

αi ⊗ βi , [a⊗ b] >
.
=

∑
αi (a)βi (b) for

∑
αi ⋆ βi = 0

Remembering that ker∆∗ is a bimodule of universal differential one-forms,
one finds

< dUα, [a⊗ b] >=< α, δU([a⊗ b]) >= ε(b)α(a)− ε(a)α(b) .

where dUα = α⊗ ϵ− ϵ⊗ α.
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dimC =∞

0 C C ⊗ C ΥU
C 0

∆ π

Dualizing the above exact sequence of bicomodeles, one gets, in general, a
commutative diagram with exact rows of being bimodule morphisms

0 C∗ (C ⊗ C)∗ (ΥU
C )

∗ 0

C∗ ⊗ C∗ ker µ

∆∗ π∗

∪ ∪
⊃

µ

where Φ ∈ (C ⊗ C)∗ are bilinear forms on the vector space C, and (ΥU
C )

∗

consist of the forms vanishing on all coproducts, i.e. Φ(∆(a)) = 0 for
arbitrary a ∈ C. The vertical arrows are injective maps that become
identities in the finite-dimensional case. Hoever, by choosing appropriate
subalgebra A ⊂ C∗ being in dual pair with C, one can recover previous
result.
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Bicovariant bimodules

Let H = (H,∆, µ = ·, ε, 1, S) be a Hopf algebra.
Definition. Bicovariant bimodule (a.k.a. Hopf bimodule) over Hopf
algebra H is an object (M, ▷, ◁,∆L,∆R) ∈ H

HM
H
H , such that:

(M, ▷, ◁) ∈ HMH is a bimodule, (M,∆L,∆R) ∈ HMH is a
bicomodule, and the following compatibility conditions are satisfied

∆L(a ▷m ◁ b) = (a(1) ·m(−1) · b(1))⊗ (a(2) ▷m<o> ◁ b(2)) ,

and (1 ▷m = m ◁ 1 = m)

∆R(a ▷m ◁ b) = (a(1) ▷m<o> ◁ b(1))⊗ (a(2) ·m(1) · b(2)) .

The structure theorem for such objects indicates (e.g. Schauenburg ’93)
that M ∼= VL ⊗ H ∼= H ⊗ VR , where (VL,∆L, ▷) ∈ H

HYD,
(VR ,∆R , ◁) ∈ YDH

H

∆L(a ▷ u) = a(1)v(−1)S(a(3))⊗ a(2) ▷ v<o>

∆R(v ◁ a) = v<0> ◁ a(2) ⊗ S(a(1))v(1)a(3)
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The case of universal bicomodule

Theorem. For any Hopf algebra the universal bicomodule
ΥU

H
∼= H̄L ⊗ H ∼= H ⊗ H̄R is bicovariant, where

H̄
.
= H/{1K} ∋ ā = a+ λ 1 , a ∈ H.

Here, H̄L = (H̄,∆L, ▷) ∈ H
HYD

∆L(a) = a(1) ⊗ a(2), x ▷ a = x(1)aS(x(2)) ,

and H̄R = (H̄,∆R , ◁) ∈ H
HYD

∆R(a) = a(1) ⊗ a(2), a ◁ x = S(x(1))ax(2)

are two canonical Yetter-Drinfeld structures inherited from H.

Notice that H̄R ⊂ ΥU
H by the identification [1⊗ a] 7→ ā, which turns out to be an

isomorphism of right-right Yetter-Drineld moduls, hence δU(ā) = ε(a)1− a.

Similarly, the identification [a⊗ 1] 7→ ā provides a left-left YD embedding

H̄L ⊂ ΥU
H .
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Definition Let Υ ∈ H
HM

H
H then a coderivation (Υ, δ) over H is called

bicovariant if
δ(a ▷m ◁ b) = a δ(m) b

Proposition 1. The universial FOCC δU : ΥU
H → H is bicovariant.

2. Let Υ ∈ H
HM

H
H then a coderivation (Υ, δ) over H is bicovarian iff δ̂(Υ)

is bicovariant subbicomodule in ΥU
H

3. Classification of bicovariabt FOCC can be reduced to the classification
of left-left YD subcomodules in H̄L up to Hopf algebra automorphisms.1

More exactly, we have to find non-isomorphic YD sumbmodules U ⊂ H̄,
i.e.e subspaces satatisfying the following conditions

AdL
H̄
U ⊂ U , ∆L(U) ⊂ H ⊗ U

and
AdR

H̄
U ⊂ U , ∆R(U) ⊂ U ⊗ H

1Assuming bijective antipod.
11/20



12/20

Some remarks on dimH = N <∞ case

Then dimΥU
H = N(N − 1) and dim ker δU = (N − 1)2. Taking the dual

H∗ = (H∗, µ∗,∆∗, ϵ∗, 1∗ = εH) one gets a dual Hopf algebra with dual
pairing < α, a >

.
= α(a) given by the evaluation map. All dual maps are

obtained by the transposition.
∆∗(α⊗ β)(a) ≡ α ⋆ β(a)

.
= α(a(1))β(a(2)) (convolution product),

ϵ∗(α) = α(1H),
The coproduct α(ab) = µ∗(α)(a⊗ b) = α(1)(a)α(2)(b) . There is the

pairing between ker∆∗ and ΥU
C :

<
∑

αi ⊗ βi , [a⊗ b] >
.
=

∑
αi (a)βi (b) for

∑
αi ⋆ βi = 0

As before, one finds

< dUα, [a⊗ b] >=< α, δU([a⊗ b]) >= ε(b)α(a)− ε(a)α(b) .

where dUα = α⊗ ϵ− ϵ⊗ α.
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There is also induced pairing between ker ϵ∗ and H̄:
α(ā) = α(a+ λ1h), since α(1H) = 0.
Now ker∆∗ ∼= (ker ϵ∗)L ⊗ H∗ ∼= (ker ϵ∗)R is a bicovariant bimodule dual to
ΥU

H , where (ker ϵ∗)L ∈ H∗
H∗YD with the YD structure dual to that of

H̄L ∈ H
HYD.

More exactly, ((ker ϵ∗)L,ΞL,≫) is defined as (α ∈ ker ϵ∗ )

β ≫ α = β ⋆ α , ΞL(α) = α(1) ≫ S∗(α(3))⊗ α(2)

If α(1H) = 0 then

α(a(1)bS(a(2)) = α(a(1)bS(a(2)) = α(1)(a(1))α(2)(b)α(3)(S(a(2))) =

α(1)(a(1))S
∗(α(3))(a(2))α(2)(b) =< α(1) ⋆ S

∗(α(3))⊗ α(2), a⊗ b̄ > .
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Set coalgebra K(X ) = ⊕x∈XKx

∆(p) = p ⊗ p , δU [p ⊗ q] = p − q

{[p ⊗ q]} →
(

p q
)
, (1)

{[h ⊗ p], [p ⊗ q]} →
(

h p q
)
, (2)

{[p ⊗ q], [q ⊗ p]} →
(

p q
)
, (3)

{[h ⊗ p], [p ⊗ q], [q ⊗ h]} →

 p

q

h

 , (4)

{[p1 ⊗ q1], [p1 ⊗ q2]} →


p1 q1

p2 q2

 . (5)
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Coalgebra generated by a vector space: CV = K⊕ V

∆(v) = v ⊗ 1 + 1⊗ v , δU [v ⊗ 1] = −δU [1⊗ v ] = v , for v ∈ V

There is a class of subbicomodules generated by bilinear forms
Υω = gen{ωij [vi ⊗ vj ] | vi basis inV }.
Automorphisms of CV are generated by automorphisms of V . Thus, the
equivalent forms: ω′ = AωAt provide isomorphic bicomodules.

15/20



Quantize enveloping Hopf algebra Uq(sl(2))

KK−1 = K−1K = 1, KE = q2EK ,

[E ,F ] =
K − K−1

q − q−1
, KF = q−2FK .

∆(K ) = K ⊗ K ε(K ) = 1 S(K ) = K−1

∆(E ) = E ⊗ K + 1⊗ E ε(E ) = 0 S(E ) = −EK−1

∆(F ) = F ⊗ 1 + K−1 ⊗ F ε(F ) = 0 S(F ) = −KF

T n = {FKn} for n ∈ Z/{0}.

For n < 0 and F , the dimension is infinite.
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Lowest dimensional bicovariant Uq(sl(2)) FOCC

The lowest-dimensional bicovariant FOCC have four elements:

υ00 = K , υ10 = E ,

υ01 = FK , υ11 = EF − q2FE .

the second lowest-dimensional bicovariant FOCC is nine dimensional.

υ00 = K 2, υ10 = EK , υ20 = E 2,

υ01 = FK 2, υ11 = (EF − q4FE )K , υ12 = E 2F − q4FE 2,

υ02 = F 2K 2, υ21 = (EF 2 − q4F 2E )K , υ22 = .

υ22 = E 2F 2 − (q2 + q4)EF 2E + q6F 2E 2
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κ-Poincaré Hopf algebra

Let’s introduce κ-Poincaré Hopf algebra by a system of generators
H = gen{Π0, Π−1

0 , Pj , Nj , Mj |j = 1, 2, 3} (AB, A. Pachol)

[Pi ,Π0] = 0, [Pj ,Pk ] = 0, [Mj ,Mk ] = iϵjklMl ,
[Mj ,Π0] = 0, [Mj ,Pk ] = iϵjklPl , [Nj ,Mk ] = iϵjklNl ,

[Nj ,Π0] =
i
κPj , [Nj ,Pk ] = −iδjkP0, [Nj ,Nk ] = −iϵjklMl .

∆Π0 = Π0 ⊗ Π0,

∆Pj = Pj ⊗ Π0 + 1⊗ Pj ,
∆Mj = Mj ⊗ 1 + 1⊗Mj ,

∆Nj = Nj ⊗ 1 + Π−1
0 ⊗ Nj −

1

κ
ϵjklPkΠ−1

0 ⊗Ml .

P0
.
=

κ

2

(
Π0 − Π−1

0 (1− 1

κ2
−→
P 2)

)
.
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Lowest dimensional bicovariant FOCC

It is 5-dimensional with its right-free module basis 2:
Υ = ⟨υC , υ0, υj⟩ ⊂ H̄L.

δ(υ0) = Π0 − 1, δ(υj) = Pj , δ(υC ) = κ2(Π0 +Π−1
0 − 2)−

−→
P 2Π−1

0 .

∆L(υC ) = Π−1
0 ⊗ υC + 2(κP0 −

−→
P 2Π−1

0 )⊗ υ0 − 2PkΠ−1
0 ⊗ υk ,

∆L(υ0) = Π0 ⊗ υ0, ∆L(υj) = Pj ⊗ υ0 + 1⊗ υj .

[Nj , υ0] = − i
κυj , [Mj , υk ] = iϵjklυl ,

[Nj , υk ] = iδjk(
1
2κυC − κυ0).

! Corresponds to known results by A. Sitarz’95.

2υ0 = Π̄0, υi = P̄i , υC = C̄κ, Cκ = κ2(Π0 +Π−1
0 − 2)− PiP

iΠ−1
0 .

19/20



Conclusions and open problems

Bicovariant codifferential culculi on quantized enveloping algebras are
dual counterpart of Woronowicz bicovariant differential calculi on
matrix quantum groups

Higher-order bicovariant codifferential calculus

coConnection

CoVectorfields .

THANK YOU !
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