Quantised $\mathfrak{sl}(2)$ -differential algebras

Andrey Krutov

Charles University

Joint works P. Pandžić (Zagreb) arXiv:2209.09591 and arXiv:2403.08521

Cost Action CaLISTA General Meeting 2025 Corfu 14 – 29 September

I. G-differential algebras

Let G be a Lie group and $\mathfrak g$ be its Lie algebra.

Let G be a Lie group and \mathfrak{g} be its Lie algebra.

Suppose that G acts on a manifold M and for $x \in \mathfrak{g}$ let

$$x_M = \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} \exp(-tx)$$

be the generating vector fields of the \mathfrak{g} -action.

For a vector field $X \in \mathfrak{X}(M)$ let

- ullet ι_X denotes the contraction (of a differential form) with X
- L_X denotes the Lie derivative

Let G be a Lie group and \mathfrak{g} be its Lie algebra.

Suppose that G acts on a manifold M and for $x \in \mathfrak{g}$ let

$$x_M = \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} \exp(-tx)$$

be the generating vector fields of the \mathfrak{g} -action.

For a vector field $X \in \mathfrak{X}(M)$ let

- ullet ι_X denotes the contraction (of a differential form) with X
- L_X denotes the Lie derivative

Then for any $x, y \in \mathfrak{g}$ we have that (as operators on $\Omega^{\bullet}(M)$)

$$[L_{x_M},L_{y_M}]=L_{[x,y]_M}, \qquad [L_{x_M},\iota_{x_M}]=\iota_{x_M}, \qquad [\iota_{x_M},\mathrm{d}]=L_{x_M}$$

Let G be a Lie group and \mathfrak{g} be its Lie algebra.

Suppose that G acts on a manifold M and for $x \in \mathfrak{g}$ let

$$x_M = \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0} \exp(-tx)$$

be the generating vector fields of the \mathfrak{g} -action.

For a vector field $X \in \mathfrak{X}(M)$ let

- ullet ι_X denotes the contraction (of a differential form) with X
- L_X denotes the Lie derivative

Then for any $x,y\in\mathfrak{g}$ we have that (as operators on $\Omega^{\bullet}(M)$)

$$[L_{x_M},L_{y_M}]=L_{[x,y]_M}, \qquad [L_{x_M},\iota_{x_M}]=\iota_{x_M}, \qquad [\iota_{x_M},\mathbf{d}]=L_{x_M}$$

Hence we have a structure of a Lie superalgebra on the span of d, ι_{x_M} and L_{x_M} for all $x \in \mathfrak{g}$.

Let $\Lambda[\xi]$ be the Grassmann algebra with generator ξ .

Let $\Lambda[\xi]$ be the Grassmann algebra with generator ξ . Let $d:=\partial_{\xi}\in\operatorname{Der}\Lambda[\xi]$.

Let $\Lambda[\xi]$ be the Grassmann algebra with generator ξ . Let $d:=\partial_\xi\in\operatorname{Der}\Lambda[\xi].$ Set

$$\widehat{\mathfrak{g}}:=\widehat{\mathfrak{g}}_{-1}\oplus\widehat{\mathfrak{g}}_0\oplus\widehat{\mathfrak{g}}_{-1}=\mathfrak{g}\otimes\Lambda[\xi]\in\mathbb{C}\mathrm{d}.$$

Let $\Lambda[\xi]$ be the Grassmann algebra with generator ξ . Let $d:=\partial_\xi\in\operatorname{Der}\Lambda[\xi]$. Set

$$\widehat{\mathfrak{g}}:=\widehat{\mathfrak{g}}_{-1}\oplus\widehat{\mathfrak{g}}_0\oplus\widehat{\mathfrak{g}}_{-1}=\mathfrak{g}\otimes\Lambda[\xi]\in\mathbb{C}\mathrm{d}.$$

For
$$x \in \mathfrak{g}$$
, let $L_x = x \otimes 1 \in \widehat{\mathfrak{g}}_0$, $\iota_x = x \otimes \xi \in \widehat{\mathfrak{g}}_{-1}$.

Let $\Lambda[\xi]$ be the Grassmann algebra with generator ξ . Let $d := \partial_{\xi} \in \operatorname{Der} \Lambda[\xi]$.

Set

$$\widehat{\mathfrak{g}}:=\widehat{\mathfrak{g}}_{-1}\oplus\widehat{\mathfrak{g}}_0\oplus\widehat{\mathfrak{g}}_{-1}=\mathfrak{g}\otimes\Lambda[\xi]\in\mathbb{C}\mathrm{d}.$$

For $x \in \mathfrak{g}$, let $L_x = x \otimes 1 \in \widehat{\mathfrak{g}}_0$, $\iota_x = x \otimes \xi \in \widehat{\mathfrak{g}}_{-1}$. The non-zero brackets are

$$[L_x,L_y]=L_{[x,y]},\quad [L_x,\iota_y]=\iota_{[x,y]},\quad [\iota_x,\mathrm{d}]=L_x\qquad\text{for }x,y\in\mathfrak{g}.$$

Let $\Lambda[\xi]$ be the Grassmann algebra with generator ξ . Let $d:=\partial_\xi\in\operatorname{Der}\Lambda[\xi]$. Set

$$\widehat{\mathfrak{g}}:=\widehat{\mathfrak{g}}_{-1}\oplus\widehat{\mathfrak{g}}_0\oplus\widehat{\mathfrak{g}}_{-1}=\mathfrak{g}\otimes\Lambda[\xi]\in\mathbb{C}\mathrm{d}.$$

For $x \in \mathfrak{g}$, let $L_x = x \otimes 1 \in \widehat{\mathfrak{g}}_0$, $\iota_x = x \otimes \xi \in \widehat{\mathfrak{g}}_{-1}$. The non-zero brackets are

$$[L_x, L_y] = L_{[x,y]}, \quad [L_x, \iota_y] = \iota_{[x,y]}, \quad [\iota_x, \mathbf{d}] = L_x \qquad \text{for } x, y \in \mathfrak{g}.$$

A \mathfrak{g} -differential spaces is a superspace B, together with a $\widehat{\mathfrak{g}}$ -modules structure $\rho \colon \widehat{\mathfrak{g}} \to \operatorname{End}(B)$.

Let $\Lambda[\xi]$ be the Grassmann algebra with generator ξ . Let $d:=\partial_\xi\in\operatorname{Der}\Lambda[\xi]$. Set

$$\widehat{\mathfrak{g}}:=\widehat{\mathfrak{g}}_{-1}\oplus\widehat{\mathfrak{g}}_0\oplus\widehat{\mathfrak{g}}_{-1}=\mathfrak{g}\otimes\Lambda[\xi]\in\mathbb{C}\mathrm{d}.$$

For $x \in \mathfrak{g}$, let $L_x = x \otimes 1 \in \widehat{\mathfrak{g}}_0$, $\iota_x = x \otimes \xi \in \widehat{\mathfrak{g}}_{-1}$. The non-zero brackets are

$$[L_x,L_y]=L_{[x,y]},\quad [L_x,\iota_y]=\iota_{[x,y]},\quad [\iota_x,\mathrm{d}]=L_x\qquad\text{ for }x,y\in\mathfrak{g}.$$

A \mathfrak{g} -differential spaces is a superspace B, together with a $\widehat{\mathfrak{g}}$ -modules structure $\rho \colon \widehat{\mathfrak{g}} \to \operatorname{End}(B)$.

A \mathfrak{g} -differential algebra is a superalgebra B, equipped with a structure of G-differential space such that $\rho(x) \in \operatorname{Der} B$ for all $x \in \widehat{\mathfrak{g}}$.

Take $B = \Lambda \mathfrak{g}^*$, equipped with the coadjoint action of \mathfrak{g} .

Take $B = \Lambda \mathfrak{g}^*$, equipped with the coadjoint action of \mathfrak{g} .

ullet e_i be a basis in $\mathfrak g$ and f_i be the dual basis in $\mathfrak g^*\simeq \Lambda^1\mathfrak g^*$

$$[e_i, e_j] = \sum_k c_{i,j}^k e_k$$

Take $B = \Lambda \mathfrak{g}^*$, equipped with the coadjoint action of \mathfrak{g} .

ullet e_i be a basis in $\mathfrak g$ and f_i be the dual basis in $\mathfrak g^*\simeq \Lambda^1\mathfrak g^*$

$$[e_i, e_j] = \sum_k c_{i,j}^k e_k$$

ullet The contractions ι_{e_i} are defined by

$$\iota_{e_i} f_j = \langle f_j, e_i \rangle, \qquad \iota_{e_i} (x \wedge y) = (\iota_{e_i} x) \wedge y + (-1)^{\deg x} x \wedge \iota_{e_i} y.$$

Take $B = \Lambda \mathfrak{g}^*$, equipped with the coadjoint action of \mathfrak{g} .

ullet e_i be a basis in \mathfrak{g} and f_i be the dual basis in $\mathfrak{g}^*\simeq \Lambda^1\mathfrak{g}^*$

$$[e_i, e_j] = \sum_k c_{i,j}^k e_k$$

ullet The contractions ι_{e_i} are defined by

$$\iota_{e_i} f_j = \langle f_j, e_i \rangle, \qquad \iota_{e_i} (x \wedge y) = (\iota_{e_i} x) \wedge y + (-1)^{\deg x} x \wedge \iota_{e_i} y.$$

• The Lie derivatives are given by

$$L_{e_i} = -\sum_{k,j} c_{i,j}^k f_j \wedge \iota_{e_k}.$$

Take $B = \Lambda \mathfrak{g}^*$, equipped with the coadjoint action of \mathfrak{g} .

ullet e_i be a basis in ${\mathfrak g}$ and f_i be the dual basis in ${\mathfrak g}^* \simeq \Lambda^1 {\mathfrak g}^*$

$$[e_i, e_j] = \sum_k c_{i,j}^k e_k$$

ullet The contractions ι_{e_i} are defined by

$$\iota_{e_i} f_j = \langle f_j, e_i \rangle, \qquad \iota_{e_i} (x \wedge y) = (\iota_{e_i} x) \wedge y + (-1)^{\deg x} x \wedge \iota_{e_i} y.$$

• The Lie derivatives are given by

$$L_{e_i} = -\sum_{k,j} c_{i,j}^k f_j \wedge \iota_{e_k}.$$

• The differential d is given by Koszul's formula

$$\mathbf{d}_{\wedge} = \frac{1}{2} \sum_{a} f_a \circ L_{e_a}.$$

Take $B = \Lambda \mathfrak{g}^*$, equipped with the coadjoint action of \mathfrak{g} .

ullet e_i be a basis in $\mathfrak g$ and f_i be the dual basis in $\mathfrak g^*\simeq \Lambda^1\mathfrak g^*$

$$[e_i, e_j] = \sum_k c_{i,j}^k e_k$$

ullet The contractions ι_{e_i} are defined by

$$\iota_{e_i} f_j = \langle f_j, e_i \rangle, \qquad \iota_{e_i} (x \wedge y) = (\iota_{e_i} x) \wedge y + (-1)^{\deg x} x \wedge \iota_{e_i} y.$$

• The Lie derivatives are given by

$$L_{e_i} = -\sum_{k,j} c_{i,j}^k f_j \wedge \iota_{e_k}.$$

• The differential d is given by Koszul's formula

$$\mathbf{d}_{\wedge} = \frac{1}{2} \sum_{a} f_a \circ L_{e_a}.$$

Then Λg^* is a g-differential algebra.

Take $B = \Lambda \mathfrak{g}^*$, equipped with the coadjoint action of \mathfrak{g} .

ullet e_i be a basis in $\mathfrak g$ and f_i be the dual basis in $\mathfrak g^*\simeq \Lambda^1\mathfrak g^*$

$$[e_i, e_j] = \sum_k c_{i,j}^k e_k$$

ullet The contractions ι_{e_i} are defined by

$$\iota_{e_i} f_j = \langle f_j, e_i \rangle, \qquad \iota_{e_i} (x \wedge y) = (\iota_{e_i} x) \wedge y + (-1)^{\deg x} x \wedge \iota_{e_i} y.$$

• The Lie derivatives are given by

$$L_{e_i} = -\sum_{k,j} c_{i,j}^k f_j \wedge \iota_{e_k}.$$

• The differential d is given by Koszul's formula

$$\mathbf{d}_{\wedge} = \frac{1}{2} \sum_{a} f_a \circ L_{e_a}.$$

Then $\Lambda \mathfrak{g}^*$ is a \mathfrak{g} -differential algebra.

One can show that $H(\Lambda \mathfrak{g}^*, d) \cong (\Lambda \mathfrak{g}^*)^G \cong H(\mathfrak{g})$.

II. Symmetric and exterior algebra in the braided monoidal categories

Braided monoidal categories

Let C be a monoidal category with the collection of associativity constrains

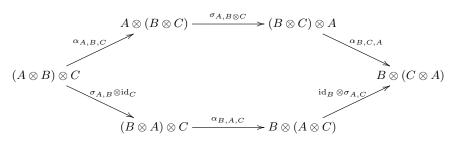
$$\alpha_{A,B,C} \colon (A \otimes B) \otimes C \to A \otimes (B \otimes C) \qquad A,B,C \in \mathsf{Obj}(\mathsf{C}).$$

Braided monoidal categories

Let C be a monoidal category with the collection of associativity constrains

$$\alpha_{A,B,C} \colon (A \otimes B) \otimes C \to A \otimes (B \otimes C) \qquad A,B,C \in \mathsf{Obj}(\mathsf{C}).$$

A *braiding* on a monoidal category C is a natural isomophism σ between functors $-\otimes -$ and $-\otimes^{\rm op} -$ such that the hexagonal diagrams commute,

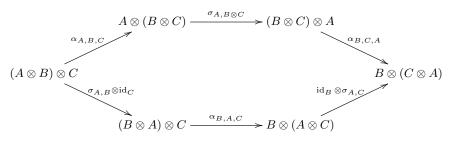


Braided monoidal categories

Let C be a monoidal category with the collection of associativity constrains

$$\alpha_{A,B,C} \colon (A \otimes B) \otimes C \to A \otimes (B \otimes C) \qquad A,B,C \in \mathsf{Obj}(\mathsf{C}).$$

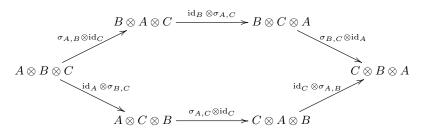
A braiding on a monoidal category C is a natural isomophism σ between functors $-\otimes -$ and $-\otimes^{\rm op} -$ such that the hexagonal diagrams commute,



A *braided* monoidal category is a pair consisting of a monoidal category and a braiding.

The Yang-Baxter equation

If C is a strict braided monoidal category with braiding σ then for all $A,B,C\in \mathrm{Obj}(\mathsf{C})$ the braiding satisfies the following Yang–Baxter equation



A *symmetric* monoidal category is a braided monoidal category such that $\sigma^2 = \mathrm{id}$.

A *symmetric* monoidal category is a braided monoidal category such that $\sigma^2=\mathrm{id}$.

Example

$$\mathsf{Vect}_{\mathbb{K}},\,\sigma(v\otimes w)=w\otimes v.$$

A *symmetric* monoidal category is a braided monoidal category such that $\sigma^2 = id$.

Example

$$\mathsf{Vect}_{\mathbb{K}},\,\sigma(v\otimes w)=w\otimes v.$$

Note that

$$S^{2}V = \{v \in \mathcal{T}(V) \mid \sigma(v) = v\}, \qquad \Lambda^{2}V = \{v \in \mathcal{T}(V) \mid \sigma(v) = -v\}.$$

$$\Lambda V = \mathcal{T}(V)/\langle S^2 V \rangle, \qquad SV = \mathcal{T}(V)/\langle \Lambda^2 V \rangle.$$

A *symmetric* monoidal category is a braided monoidal category such that $\sigma^2 = id$.

Example

 $\mathsf{Vect}_{\mathbb{K}},\,\sigma(v\otimes w)=w\otimes v.$

Note that

$$S^{2}V = \{v \in \mathcal{T}(V) \mid \sigma(v) = v\}, \qquad \Lambda^{2}V = \{v \in \mathcal{T}(V) \mid \sigma(v) = -v\}.$$

$$\Lambda V = \mathcal{T}(V)/\langle S^2 V \rangle, \qquad SV = \mathcal{T}(V)/\langle \Lambda^2 V \rangle.$$

Example

$$\mathsf{SVect}_{\mathbb{K}},\, \sigma(v\otimes w)=(-1)^{p(w)p(v)}w\otimes v.$$

Let \mathbf{B}_n be the braid group of n strands generated by $\beta_1, \dots, \beta_{n-1}$ subject to the relations

$$\beta_i \beta_{i+1} \beta_i = \beta_{i+1} \beta_i \beta_{i+1}, \qquad 1 \le i, j \le n-2;$$

$$\beta_i \beta_j = \beta_j \beta_i, \qquad 1 \le i, j \le n-2, |i-j| \ge 2.$$

Let \mathbf{B}_n be the braid group of n strands generated by $\beta_1, \dots, \beta_{n-1}$ subject to the relations

$$\beta_i \beta_{i+1} \beta_i = \beta_{i+1} \beta_i \beta_{i+1}, \qquad 1 \le i, j \le n-2;$$

$$\beta_i \beta_j = \beta_j \beta_i, \qquad 1 \le i, j \le n-2, |i-j| \ge 2.$$

 (V, σ) defines a representation of \mathbf{B}_n on $V^{\otimes n}$

$$\rho_{n,\sigma}: \mathbf{B}_n \to \operatorname{Aut}(V^{\otimes n}), \quad \rho_{n,\sigma}(\beta_i) = \underbrace{\operatorname{id} \otimes \cdots \otimes \operatorname{id}}_{i-1 \text{ times}} \otimes \sigma \otimes \operatorname{id} \otimes \cdots \otimes \operatorname{id},$$

Let \mathbf{B}_n be the braid group of n strands generated by $\beta_1, \dots, \beta_{n-1}$ subject to the relations

$$\begin{split} \beta_i \beta_{i+1} \beta_i &= \beta_{i+1} \beta_i \beta_{i+1}, & 1 \leq i, j \leq n-2; \\ \beta_i \beta_j &= \beta_j \beta_i, & 1 \leq i, j \leq n-2, |i-j| \geq 2. \end{split}$$

 (V, σ) defines a representation of \mathbf{B}_n on $V^{\otimes n}$

$$\rho_{n,\sigma}: \mathbf{B}_n \to \operatorname{Aut}(V^{\otimes n}), \quad \rho_{n,\sigma}(\beta_i) = \underbrace{\operatorname{id} \otimes \cdots \otimes \operatorname{id}}_{i-1 \text{ times}} \otimes \sigma \otimes \operatorname{id} \otimes \cdots \otimes \operatorname{id},$$

$$s \colon \mathbf{S}_n \to \mathbf{B}_n$$
 such that $s(t_i) = \beta_i, \ s(t_i t_{i+1}) = s(t_i) s(t_{i+1})$

Let \mathbf{B}_n be the braid group of n strands generated by $\beta_1, \dots, \beta_{n-1}$ subject to the relations

$$\begin{split} \beta_i \beta_{i+1} \beta_i &= \beta_{i+1} \beta_i \beta_{i+1}, & 1 \leq i, j \leq n-2; \\ \beta_i \beta_j &= \beta_j \beta_i, & 1 \leq i, j \leq n-2, |i-j| \geq 2. \end{split}$$

 (V, σ) defines a representation of \mathbf{B}_n on $V^{\otimes n}$

$$\rho_{n,\sigma}: \mathbf{B}_n \to \operatorname{Aut}(V^{\otimes n}), \quad \rho_{n,\sigma}(\beta_i) = \underbrace{\operatorname{id} \otimes \cdots \otimes \operatorname{id}}_{i-1 \text{ times}} \otimes \sigma \otimes \operatorname{id} \otimes \cdots \otimes \operatorname{id},$$

$$s \colon \mathbf{S}_n \to \mathbf{B}_n \quad \text{such that} \quad s(t_i) = \beta_i, \ s(t_i t_{i+1}) = s(t_i) s(t_{i+1})$$

$$\mathfrak{S}_n^{\sigma} := \sum_{g \in \mathbf{S}_n} \rho_{n,\sigma}(s(g)) \colon V^{\otimes n} \to V^{\otimes n}.$$

Let \mathbf{B}_n be the braid group of n strands generated by $\beta_1, \dots, \beta_{n-1}$ subject to the relations

$$\begin{split} \beta_i \beta_{i+1} \beta_i &= \beta_{i+1} \beta_i \beta_{i+1}, & 1 \leq i, j \leq n-2; \\ \beta_i \beta_j &= \beta_j \beta_i, & 1 \leq i, j \leq n-2, |i-j| \geq 2. \end{split}$$

 (V, σ) defines a representation of \mathbf{B}_n on $V^{\otimes n}$

$$\rho_{n,\sigma}: \mathbf{B}_n \to \operatorname{Aut}(V^{\otimes n}), \quad \rho_{n,\sigma}(\beta_i) = \underbrace{\operatorname{id} \otimes \cdots \otimes \operatorname{id}}_{i-1 \text{ times}} \otimes \sigma \otimes \operatorname{id} \otimes \cdots \otimes \operatorname{id},$$

$$s \colon \mathbf{S}_n \to \mathbf{B}_n$$
 such that $s(t_i) = \beta_i, \ s(t_i t_{i+1}) = s(t_i) s(t_{i+1})$

$$\mathfrak{S}_n^{\sigma} := \sum_{g \in \mathbf{S}_n} \rho_{n,\sigma}(s(g)) \colon V^{\otimes n} \to V^{\otimes n}.$$

The Nichols algebra of a braided vector space (V, σ) is

$$\mathfrak{B}(V):=\bigoplus_{n\in\mathbb{Z}_{\geq 0}}\mathfrak{B}_n(V),\quad \text{where}\quad \mathfrak{B}_n(V)=\mathcal{T}^n(V)/\ker(\mathfrak{S}_n^\sigma).$$

Let \mathbf{B}_n be the braid group of n strands generated by $\beta_1, \dots, \beta_{n-1}$ subject to the relations

$$\beta_i \beta_{i+1} \beta_i = \beta_{i+1} \beta_i \beta_{i+1}, \qquad 1 \le i, j \le n-2;$$

$$\beta_i \beta_j = \beta_j \beta_i, \qquad 1 \le i, j \le n-2, |i-j| \ge 2.$$

 (V,σ) defines a representation of \mathbf{B}_n on $V^{\otimes n}$

$$\rho_{n,\sigma}: \mathbf{B}_n \to \operatorname{Aut}(V^{\otimes n}), \quad \rho_{n,\sigma}(\beta_i) = \underbrace{\operatorname{id} \otimes \cdots \otimes \operatorname{id}}_{i-1 \text{ times}} \otimes \sigma \otimes \operatorname{id} \otimes \cdots \otimes \operatorname{id},$$

$$s \colon \mathbf{S}_n \to \mathbf{B}_n$$
 such that $s(t_i) = \beta_i, \ s(t_i t_{i+1}) = s(t_i) s(t_{i+1})$

$$\mathfrak{S}_n^{\sigma} := \sum_{g \in \mathbf{S}_n} \rho_{n,\sigma}(s(g)) \colon V^{\otimes n} \to V^{\otimes n}.$$

The Nichols algebra of a braided vector space (V, σ) is

$$\mathfrak{B}(V):=igoplus_{n\in\mathbb{Z}_{\geq 0}}\mathfrak{B}_n(V),\quad ext{where}\quad \mathfrak{B}_n(V)=\mathcal{T}^n(V)/\ker(\mathfrak{S}_n^\sigma).$$

Woronowicz'89,

Let \mathbf{B}_n be the braid group of n strands generated by $\beta_1, \dots, \beta_{n-1}$ subject to the relations

$$\beta_i \beta_{i+1} \beta_i = \beta_{i+1} \beta_i \beta_{i+1}, \qquad 1 \le i, j \le n-2;$$

$$\beta_i \beta_j = \beta_j \beta_i, \qquad 1 \le i, j \le n-2, |i-j| \ge 2.$$

 (V,σ) defines a representation of \mathbf{B}_n on $V^{\otimes n}$

$$\rho_{n,\sigma}: \mathbf{B}_n \to \operatorname{Aut}(V^{\otimes n}), \quad \rho_{n,\sigma}(\beta_i) = \underbrace{\operatorname{id} \otimes \cdots \otimes \operatorname{id}}_{i-1 \text{ times}} \otimes \sigma \otimes \operatorname{id} \otimes \cdots \otimes \operatorname{id},$$

 $s \colon \mathbf{S}_n \to \mathbf{B}_n$ such that $s(t_i) = \beta_i, \ s(t_i t_{i+1}) = s(t_i) s(t_{i+1})$

$$\mathfrak{S}_n^{\sigma} := \sum_{g \in \mathbf{S}_n} \rho_{n,\sigma}(s(g)) \colon V^{\otimes n} \to V^{\otimes n}.$$

The Nichols algebra of a braided vector space (V, σ) is

$$\mathfrak{B}(V):=igoplus_{n\in\mathbb{Z}_{\geq 0}}\mathfrak{B}_n(V), \quad ext{where} \quad \mathfrak{B}_n(V)=\mathcal{T}^n(V)/\ker(\mathfrak{S}_n^\sigma).$$

Let C be a braided monoidal category linear over $\mathbb{C}[[\hbar]]$ and assume that the braiding satisfies

$$\sigma_{W,V} \circ \sigma_{V,W} = \mathrm{id}_{V \otimes W} + O(\hbar).$$

Let C be a braided monoidal category linear over $\mathbb{C}[[\hbar]]$ and assume that the braiding satisfies

$$\sigma_{W,V} \circ \sigma_{V,W} = \mathrm{id}_{V \otimes W} + O(\hbar).$$

Then the map

$$\tilde{\sigma}_{V,W} = \sigma_{V,W} \circ (\sigma_{W,V} \circ \sigma_{V,W})^{-1/2},$$

is called a coboundary structure on C.

Let C be a braided monoidal category linear over $\mathbb{C}[[\hbar]]$ and assume that the braiding satisfies

$$\sigma_{W,V} \circ \sigma_{V,W} = \mathrm{id}_{V \otimes W} + O(\hbar).$$

Then the map

$$\tilde{\sigma}_{V,W} = \sigma_{V,W} \circ (\sigma_{W,V} \circ \sigma_{V,W})^{-1/2},$$

is called a coboundary structure on C. In particular, we have that $\tilde{\sigma}^2=\mathrm{id}$

Let C be a braided monoidal category linear over $\mathbb{C}[[\hbar]]$ and assume that the braiding satisfies

$$\sigma_{W,V} \circ \sigma_{V,W} = \mathrm{id}_{V \otimes W} + O(\hbar).$$

Then the map

$$\tilde{\sigma}_{V,W} = \sigma_{V,W} \circ (\sigma_{W,V} \circ \sigma_{V,W})^{-1/2},$$

is called a coboundary structure on C. In particular, we have that $\tilde{\sigma}^2 = \mathrm{id}$ and

$$A \otimes B \otimes C \xrightarrow{\tilde{\sigma}_{A \otimes B, C}} C \otimes A \otimes B$$

$$\downarrow_{\tilde{\sigma}_{A, B \otimes C}} \downarrow_{\mathrm{id}_{C} \otimes \tilde{\sigma}_{A, B}}$$

$$B \otimes C \otimes A \xrightarrow{\tilde{\sigma}_{B, C} \otimes \mathrm{id}_{A}} C \otimes B \otimes A$$

Let C be a braided monoidal category linear over $\mathbb{C}[[\hbar]]$ and assume that the braiding satisfies

$$\sigma_{W,V} \circ \sigma_{V,W} = \mathrm{id}_{V \otimes W} + O(\hbar).$$

Then the map

$$\tilde{\sigma}_{V,W} = \sigma_{V,W} \circ (\sigma_{W,V} \circ \sigma_{V,W})^{-1/2},$$

is called a coboundary structure on C. In particular, we have that $\tilde{\sigma}^2 = \mathrm{id}$ and

$$A \otimes B \otimes C \xrightarrow{\tilde{\sigma}_{A \otimes B,C}} C \otimes A \otimes B$$

$$\downarrow_{\tilde{\sigma}_{A,B \otimes C}} \qquad \downarrow_{\mathrm{id}_{C} \otimes \tilde{\sigma}_{A,B}}$$

$$B \otimes C \otimes A \xrightarrow{\tilde{\sigma}_{B,C} \otimes \mathrm{id}_{A}} C \otimes B \otimes A$$

Leads to representations of Cactus groups.

III. Quantised $\mathfrak{sl}(2)$ -differential algebras

Drinfel'd-Jimbo Quantum Groups: \$\int_2\$ case

Fix $q \in \mathbb{C}$ such that q is not a root of unity.

Fix $q \in \mathbb{C}$ such that q is not a root of unity. The *quantised* universal enveloping algebra of \mathfrak{sl}_2 is the algebra with four generators E, F, K, K^{-1}

Fix $q \in \mathbb{C}$ such that q is not a root of unity. The *quantised* universal enveloping algebra of \mathfrak{sl}_2 is the algebra with four generators E, F, K, K^{-1} satisfying the defining relations

$$KK^{-1} = K^{-1}K = 1, \qquad KEK^{-1} = q^2E, \qquad KFK^{-1} = q^{-2}F,$$

$$[E,F] = EF - FE = \frac{K - K^{-1}}{q - q^{-1}}.$$

Fix $q \in \mathbb{C}$ such that q is not a root of unity. The *quantised* universal enveloping algebra of \mathfrak{sl}_2 is the algebra with four generators E, F, K, K^{-1} satisfying the defining relations

$$KK^{-1} = K^{-1}K = 1,$$
 $KEK^{-1} = q^{2}E,$ $KFK^{-1} = q^{-2}F,$
$$[E, F] = EF - FE = \frac{K - K^{-1}}{q - q^{-1}}.$$

The Hopf algebra structure is given by

$$\Delta(E) = E \otimes K + 1 \otimes E, \ \Delta(F) = F \otimes 1 + K^{-1} \otimes F, \ \Delta(K) = K \otimes K,$$
$$S(K^{\pm 1}) = K^{\mp 1}, \quad S(E) = -EK^{-1}, \quad S(F) = -KF,$$
$$\varepsilon(K^{\pm 1}) = 1, \quad \varepsilon(E) = \varepsilon(F) = 0.$$

Fix $q \in \mathbb{C}$ such that q is not a root of unity. The *quantised* universal enveloping algebra of \mathfrak{sl}_2 is the algebra with four generators E, F, K, K^{-1} satisfying the defining relations

$$KK^{-1}=K^{-1}K=1, \qquad KEK^{-1}=q^2E, \qquad KFK^{-1}=q^{-2}F,$$

$$[E,F]=EF-FE=\frac{K-K^{-1}}{q-q^{-1}}.$$

The Hopf algebra structure is given by

$$\Delta(E) = E \otimes K + 1 \otimes E, \ \Delta(F) = F \otimes 1 + K^{-1} \otimes F, \ \Delta(K) = K \otimes K,$$
$$S(K^{\pm 1}) = K^{\mp 1}, \quad S(E) = -EK^{-1}, \quad S(F) = -KF,$$
$$\varepsilon(K^{\pm 1}) = 1, \quad \varepsilon(E) = \varepsilon(F) = 0.$$

Note that for $U(\mathfrak{g})$:

$$\Delta(x) = x \otimes 1 + 1 \otimes x, \qquad x \in \mathfrak{g}.$$

Let α be a simple root of \mathfrak{sl}_2 and λ be an integral weight of \mathfrak{sl}_2 .

Let α be a simple root of \mathfrak{sl}_2 and λ be an integral weight of \mathfrak{sl}_2 .

 \bullet the Verma module M_{λ} over $U_q(\mathfrak{sl}_2)$ generated by v_{λ} with relations

$$E \triangleright v_{\lambda} = 0$$
 $K \triangleright v_{\lambda} = q^{(\lambda, \alpha^{\vee})} v_{\lambda}$

where α^{\vee} is the corresponding simple coroot.

Let α be a simple root of \mathfrak{sl}_2 and λ be an integral weight of \mathfrak{sl}_2 .

 \bullet the Verma module M_{λ} over $U_q(\mathfrak{sl}_2)$ generated by v_{λ} with relations

$$E \triangleright v_{\lambda} = 0$$
 $K \triangleright v_{\lambda} = q^{(\lambda, \alpha^{\vee})} v_{\lambda}$

where α^{\vee} is the corresponding simple coroot.

• If \mathfrak{sl}_2 is a dominant weight of \mathfrak{g} then M_λ has a maximal proper submodule I_λ generated by $F^{(\lambda,\alpha^\vee)+1}v_\lambda$ and

$$V_{\lambda} := M_{\lambda}/I_{\lambda}$$

is a finite-dimensional irreducible representation of $U_q(\mathfrak{sl}_2)$.

Let α be a simple root of \mathfrak{sl}_2 and λ be an integral weight of \mathfrak{sl}_2 .

ullet the Verma module M_λ over $U_q(\mathfrak{sl}_2)$ generated by v_λ with relations

$$E \triangleright v_{\lambda} = 0$$
 $K \triangleright v_{\lambda} = q^{(\lambda, \alpha^{\vee})} v_{\lambda}$

where α^{\vee} is the corresponding simple coroot.

• If \mathfrak{sl}_2 is a dominant weight of \mathfrak{g} then M_λ has a maximal proper submodule I_λ generated by $F^{(\lambda,\alpha^\vee)+1}v_\lambda$ and

$$V_{\lambda} := M_{\lambda}/I_{\lambda}$$

is a finite-dimensional irreducible representation of $U_q(\mathfrak{sl}_2)$.

• Such representations are called *type-1 representations*.

$$\operatorname{ad}_a b = \sum a_{(1)} b S(a_{(2)}) \qquad \text{for } a,b \in U_q(\mathfrak{sl}_2).$$

$$\operatorname{ad}_a b = \sum a_{(1)} b S(a_{(2)}) \qquad \text{for } a, b \in U_q(\mathfrak{sl}_2).$$

In particular, for $b \in U_q(\mathfrak{sl}_2)$,

$$ad_E b = EbK^{-1} - bEK^{-1},$$
 $ad_F b = Fb - K^{-1}bKF,$
 $ad_K b = KbK^{-1},$ $ad_{K^{-1}} b = K^{-1}bK.$

$$\operatorname{ad}_a b = \sum a_{(1)} b S(a_{(2)}) \quad \text{for } a, b \in U_q(\mathfrak{sl}_2).$$

In particular, for $b \in U_q(\mathfrak{sl}_2)$,

$$ad_E b = EbK^{-1} - bEK^{-1},$$
 $ad_F b = Fb - K^{-1}bKF,$
 $ad_K b = KbK^{-1},$ $ad_{K^{-1}} b = K^{-1}bK.$

Denote by $\mathfrak{sl}_q(2)$ the span of

$$v_2 = E,$$

 $v_0 = q^{-2}EF - FE = (q - q^{-1})^{-1}(K - K^{-1}) - q^{-1}(q - q^{-1})EF,$
 $v_{-2} = KF.$

$$\operatorname{ad}_a b = \sum a_{(1)} b S(a_{(2)}) \qquad \text{for } a, b \in U_q(\mathfrak{sl}_2).$$

In particular, for $b \in U_q(\mathfrak{sl}_2)$,

$$\operatorname{ad}_{E} b = EbK^{-1} - bEK^{-1}, \qquad \operatorname{ad}_{F} b = Fb - K^{-1}bKF,$$

 $\operatorname{ad}_{K} b = KbK^{-1}, \qquad \operatorname{ad}_{K^{-1}} b = K^{-1}bK.$

Denote by $\mathfrak{sl}_q(2)$ the span of

$$v_2 = E,$$

 $v_0 = q^{-2}EF - FE = (q - q^{-1})^{-1}(K - K^{-1}) - q^{-1}(q - q^{-1})EF,$
 $v_{-2} = KF.$

Let $\pi \in \mathcal{P}$ be the fundamental weight of \mathfrak{sl}_2 .

$$\operatorname{ad}_a b = \sum a_{(1)} b S(a_{(2)}) \quad \text{for } a, b \in U_q(\mathfrak{sl}_2).$$

In particular, for $b \in U_q(\mathfrak{sl}_2)$,

$$ad_E b = EbK^{-1} - bEK^{-1},$$
 $ad_F b = Fb - K^{-1}bKF,$
 $ad_K b = KbK^{-1},$ $ad_{K^{-1}} b = K^{-1}bK.$

Denote by $\mathfrak{sl}_q(2)$ the span of

$$v_2 = E,$$

 $v_0 = q^{-2}EF - FE = (q - q^{-1})^{-1}(K - K^{-1}) - q^{-1}(q - q^{-1})EF,$
 $v_{-2} = KF.$

Let $\pi \in \mathcal{P}$ be the fundamental weight of \mathfrak{sl}_2 . The elements v_2 , v_0 , v_{-2} spans $U_q(\mathfrak{sl}_2)$ -module $V_{2\pi}$ with respect to the left adjoint action.

$$\text{ad}_{E} v_{2} = 0, & \text{ad}_{K} v_{2} = q^{2} v_{2}, & \text{ad}_{F} v_{2} = -v_{0}, \\
 \text{ad}_{E} v_{0} = -(q + q^{-1}) v_{2}, & \text{ad}_{K} v_{0} = v_{0}, & \text{ad}_{F} v_{0} = (q + q^{-1}) v_{-2} \\
 \text{ad}_{E} v_{-2} = v_{0}, & \text{ad}_{K} v_{-2} = q^{-2} v_{-2}, & \text{ad}_{F} v_{-2} = 0.$$

 $\bullet \; \mathsf{Rep}_1 U_q(\mathfrak{g})$ is a braided monoidal category

- ullet Rep $_1U_q(\mathfrak{g})$ is a braided monoidal category
- the universal R-matrix $\mathcal{R} \in U_q(\mathfrak{g}) \widehat{\otimes} U_q(\mathfrak{g})$

$$\rho_V \colon U_q(\mathfrak{g}) \to \operatorname{End}(V), \qquad \rho_W \colon U_q(\mathfrak{g}) \to \operatorname{End}(W)$$

$$\sigma_{\mathcal{R}, V \otimes W} := \tau \circ (\rho_V \otimes \rho_W)(\mathcal{R}), \tag{1}$$

- ullet $\operatorname{Rep}_1U_q(\mathfrak{g})$ is a braided monoidal category
- ullet the universal R-matrix $\mathcal{R} \in U_q(\mathfrak{g}) \widehat{\otimes} U_q(\mathfrak{g})$

$$\rho_V \colon U_q(\mathfrak{g}) \to \operatorname{End}(V), \qquad \rho_W \colon U_q(\mathfrak{g}) \to \operatorname{End}(W)$$

$$\sigma_{\mathcal{R}, V \otimes W} := \tau \circ (\rho_V \otimes \rho_W)(\mathcal{R}), \tag{1}$$

• For $U_q(\mathfrak{sl}_2)$,

$$\mathcal{R} = q^{H \otimes H/2} \sum_{m=0}^{+\infty} \frac{q^{m(m-1)/2} (q - q^{-1})^m}{[m]_q!} E^m \otimes F^m,$$

where $K = q^{\hbar H}$,

$$[m]_q = \frac{q^m - q^{-m}}{q - q^{-1}}, \quad [m]_q! = [m]_q[m - 1]_q \dots [1]_q.$$

- ullet Rep $_1U_q(\mathfrak{g})$ is a braided monoidal category
- ullet the universal R-matrix $\mathcal{R} \in U_q(\mathfrak{g}) \widehat{\otimes} U_q(\mathfrak{g})$

$$\rho_V \colon U_q(\mathfrak{g}) \to \operatorname{End}(V), \qquad \rho_W \colon U_q(\mathfrak{g}) \to \operatorname{End}(W)$$

$$\sigma_{\mathcal{R}, V \otimes W} := \tau \circ (\rho_V \otimes \rho_W)(\mathcal{R}), \tag{1}$$

• For $U_q(\mathfrak{sl}_2)$,

$$\mathcal{R} = q^{H \otimes H/2} \sum_{m=0}^{+\infty} \frac{q^{m(m-1)/2} (q - q^{-1})^m}{[m]_q!} E^m \otimes F^m,$$

where $K = q^{hH}$,

$$[m]_q = \frac{q^m - q^{-m}}{q - q^{-1}}, \quad [m]_q! = [m]_q[m - 1]_q \dots [1]_q.$$

Note

$$q^{H\otimes H/\hbar}(v\otimes w) = q^{(\mathrm{wt}(v),\mathrm{wt}(w))}v\otimes w.$$

- $\operatorname{Rep}_1 U_q(\mathfrak{g})$ is a braided monoidal category
- ullet the universal R-matrix $\mathcal{R} \in U_q(\mathfrak{g}) \widehat{\otimes} U_q(\mathfrak{g})$

$$\rho_V \colon U_q(\mathfrak{g}) \to \operatorname{End}(V), \qquad \rho_W \colon U_q(\mathfrak{g}) \to \operatorname{End}(W)$$

$$\sigma_{\mathcal{R}, V \otimes W} := \tau \circ (\rho_V \otimes \rho_W)(\mathcal{R}),$$

• For $U_q(\mathfrak{sl}_2)$,

$$\mathcal{R} = q^{H \otimes H/2} \sum_{m=0}^{+\infty} \frac{q^{m(m-1)/2} (q - q^{-1})^m}{[m]_q!} E^m \otimes F^m,$$

where $K = q^{\hbar H}$,

$$[m]_q = \frac{q^m - q^{-m}}{q - q^{-1}}, \quad [m]_q! = [m]_q[m - 1]_q \dots [1]_q.$$

Note

$$q^{H\otimes H/\hbar}(v\otimes w) = q^{(\mathrm{wt}(v),\mathrm{wt}(w))}v\otimes w.$$

• $\sigma_{\mathcal{R}} \circ \sigma_{\mathcal{R}} \neq \mathrm{id}$: the category is not symmetric!

(1)

• Eigenvalues of $\sigma_{\mathcal{R}}$ on $V_{2\pi} \otimes V_{2\pi}$:

$$V_{2\pi}\otimes V_{2\pi}=V_{4\pi}\oplus V_{2\pi}\oplus V_0.$$

• Eigenvalues of $\sigma_{\mathcal{R}}$ on $V_{2\pi} \otimes V_{2\pi}$:

$$V_{2\pi}\otimes V_{2\pi}=V_{4\pi}\oplus V_{2\pi}\oplus V_0.$$

Then

$$\sigma_{\mathcal{R}} = q^2 \operatorname{id}_{V_{4\pi}} - q^{-2} \operatorname{id}_{V_{2\pi}} + q^{-4} \operatorname{id}_{V_0}.$$

• Eigenvalues of $\sigma_{\mathcal{R}}$ on $V_{2\pi} \otimes V_{2\pi}$:

$$V_{2\pi}\otimes V_{2\pi}=V_{4\pi}\oplus V_{2\pi}\oplus V_0.$$

Then

$$\sigma_{\mathcal{R}} = q^2 \operatorname{id}_{V_{4\pi}} - q^{-2} \operatorname{id}_{V_{2\pi}} + q^{-4} \operatorname{id}_{V_0}.$$

• the coboundary structure is given by

$$\tilde{\sigma}_{\mathcal{R},V\otimes W} := \sqrt{\sigma_{\mathcal{R},W\otimes V}^{-1}\sigma_{\mathcal{R},V\otimes W}^{-1}}\,\sigma_{\mathcal{R},V\otimes W}.$$

• Eigenvalues of $\sigma_{\mathcal{R}}$ on $V_{2\pi} \otimes V_{2\pi}$:

$$V_{2\pi}\otimes V_{2\pi}=V_{4\pi}\oplus V_{2\pi}\oplus V_0.$$

Then

$$\sigma_{\mathcal{R}} = q^2 \operatorname{id}_{V_{4\pi}} - q^{-2} \operatorname{id}_{V_{2\pi}} + q^{-4} \operatorname{id}_{V_0}.$$

• the coboundary structure is given by

$$\tilde{\sigma}_{\mathcal{R},V\otimes W} := \sqrt{\sigma_{\mathcal{R},W\otimes V}^{-1}\sigma_{\mathcal{R},V\otimes W}^{-1}}\,\sigma_{\mathcal{R},V\otimes W}.$$

Eigenvalues of $\tilde{\sigma}_{\mathcal{R}}$:

$$\tilde{\sigma}_{\mathcal{R}} = \mathrm{id}_{V_{4\pi}} - \mathrm{id}_{V_{2\pi}} + \mathrm{id}_{V_0}.$$

• Eigenvalues of $\sigma_{\mathcal{R}}$ on $V_{2\pi} \otimes V_{2\pi}$:

$$V_{2\pi}\otimes V_{2\pi}=V_{4\pi}\oplus V_{2\pi}\oplus V_0.$$

Then

$$\sigma_{\mathcal{R}} = q^2 \operatorname{id}_{V_{4\pi}} - q^{-2} \operatorname{id}_{V_{2\pi}} + q^{-4} \operatorname{id}_{V_0}.$$

• the coboundary structure is given by

$$\tilde{\sigma}_{\mathcal{R},V\otimes W} := \sqrt{\sigma_{\mathcal{R},W\otimes V}^{-1}\sigma_{\mathcal{R},V\otimes W}^{-1}}\,\sigma_{\mathcal{R},V\otimes W}.$$

Eigenvalues of $\tilde{\sigma}_{\mathcal{R}}$:

$$\tilde{\sigma}_{\mathcal{R}} = \mathrm{id}_{V_{4\pi}} - \mathrm{id}_{V_{2\pi}} + \mathrm{id}_{V_0}.$$

ullet $\tilde{\sigma}_{\mathcal{R},V\otimes W}$ does not satisfies the Yang–Baxter equation.

• Eigenvalues of $\sigma_{\mathcal{R}}$ on $V_{2\pi} \otimes V_{2\pi}$:

$$V_{2\pi}\otimes V_{2\pi}=V_{4\pi}\oplus V_{2\pi}\oplus V_0.$$

Then

$$\sigma_{\mathcal{R}} = q^2 \operatorname{id}_{V_{4\pi}} - q^{-2} \operatorname{id}_{V_{2\pi}} + q^{-4} \operatorname{id}_{V_0}.$$

the coboundary structure is given by

$$\tilde{\sigma}_{\mathcal{R},V\otimes W} := \sqrt{\sigma_{\mathcal{R},W\otimes V}^{-1}\sigma_{\mathcal{R},V\otimes W}^{-1}}\,\sigma_{\mathcal{R},V\otimes W}.$$

Eigenvalues of $\tilde{\sigma}_{\mathcal{R}}$:

$$\tilde{\sigma}_{\mathcal{R}} = \mathrm{id}_{V_{4\pi}} - \mathrm{id}_{V_{2\pi}} + \mathrm{id}_{V_0}.$$

- $\tilde{\sigma}_{\mathcal{R},V\otimes W}$ does not satisfies the Yang–Baxter equation.
- For any $V \in \mathsf{Rep}_1(U_q(\mathfrak{g}))$, let us denote

$$S_q^2 V := \{ x \in V \otimes V \mid \tilde{\sigma}_{\mathcal{R}}(x) = x \}, \quad \Lambda_q^2 V := \{ x \in V \otimes V \mid \tilde{\sigma}_{\mathcal{R}}(x) = -x \}.$$

• Eigenvalues of $\sigma_{\mathcal{R}}$ on $V_{2\pi} \otimes V_{2\pi}$:

$$V_{2\pi}\otimes V_{2\pi}=V_{4\pi}\oplus V_{2\pi}\oplus V_0.$$

Then

$$\sigma_{\mathcal{R}} = q^2 \operatorname{id}_{V_{4\pi}} - q^{-2} \operatorname{id}_{V_{2\pi}} + q^{-4} \operatorname{id}_{V_0}.$$

• the coboundary structure is given by

$$\tilde{\sigma}_{\mathcal{R},V\otimes W}:=\sqrt{\sigma_{\mathcal{R},W\otimes V}^{-1}\sigma_{\mathcal{R},V\otimes W}^{-1}}\,\sigma_{\mathcal{R},V\otimes W}.$$

Eigenvalues of $\tilde{\sigma}_{\mathcal{R}}$:

$$\tilde{\sigma}_{\mathcal{R}} = \mathrm{id}_{V_{4\pi}} - \mathrm{id}_{V_{2\pi}} + \mathrm{id}_{V_0}.$$

- $\tilde{\sigma}_{\mathcal{R},V\otimes W}$ does not satisfies the Yang–Baxter equation.
- For any $V \in \text{Rep}_1(U_q(\mathfrak{g}))$, let us denote

$$S_q^2V := \{ x \in V \otimes V \mid \tilde{\sigma}_{\mathcal{R}}(x) = x \}, \quad \Lambda_q^2V := \{ x \in V \otimes V \mid \tilde{\sigma}_{\mathcal{R}}(x) = -x \}.$$

• the *BZ quantum exterior algebra* $\Lambda_q(V)$ of V to be

$$\Lambda_q(V) := \mathcal{T}(V)/\langle S_q^2 V \rangle.$$

For $U_q(\mathfrak{sl}_2)$, the algebra $\Lambda_q V_{2\pi}$ has the classical dimension.

$$v_{2} \wedge v_{2} = 0, \qquad v_{-2} \wedge v_{-2} = 0,$$

$$v_{0} \wedge v_{2} = -q^{-2}v_{2} \wedge v_{0}, \qquad v_{-2} \wedge v_{0} = -q^{-2}v_{0} \wedge v_{-2},$$

$$v_{0} \wedge v_{0} = \frac{(1-q^{4})}{q^{3}}v_{2} \wedge v_{-2}, \qquad v_{-2} \wedge v_{2} = -v_{2} \wedge v_{-2}.$$

For $U_q(\mathfrak{sl}_2)$, the algebra $\Lambda_q V_{2\pi}$ has the classical dimension.

$$v_{2} \wedge v_{2} = 0, \qquad v_{-2} \wedge v_{-2} = 0,$$

$$v_{0} \wedge v_{2} = -q^{-2}v_{2} \wedge v_{0}, \qquad v_{-2} \wedge v_{0} = -q^{-2}v_{0} \wedge v_{-2},$$

$$v_{0} \wedge v_{0} = \frac{(1-q^{4})}{q^{3}}v_{2} \wedge v_{-2}, \qquad v_{-2} \wedge v_{2} = -v_{2} \wedge v_{-2}.$$

Let A be a Hopf algebra and V be an A-module.

For $U_q(\mathfrak{sl}_2)$, the algebra $\Lambda_q V_{2\pi}$ has the classical dimension.

$$v_{2} \wedge v_{2} = 0, \qquad v_{-2} \wedge v_{-2} = 0,$$

$$v_{0} \wedge v_{2} = -q^{-2}v_{2} \wedge v_{0}, \qquad v_{-2} \wedge v_{0} = -q^{-2}v_{0} \wedge v_{-2},$$

$$v_{0} \wedge v_{0} = \frac{(1-q^{4})}{q^{3}}v_{2} \wedge v_{-2}, \qquad v_{-2} \wedge v_{2} = -v_{2} \wedge v_{-2}.$$

Let A be a Hopf algebra and V be an A-module. A bilinear form $\langle \cdot, \cdot \rangle$ on V is invariant if

$$\langle a_{(1)} \triangleright v, a_{(2)} \triangleright w \rangle = \varepsilon(a) \langle v, w \rangle \quad \text{ for all } a \in A, \, v, w \in V.$$

For $U_q(\mathfrak{sl}_2)$, the algebra $\Lambda_q V_{2\pi}$ has the classical dimension.

$$v_{2} \wedge v_{2} = 0, \qquad v_{-2} \wedge v_{-2} = 0,$$

$$v_{0} \wedge v_{2} = -q^{-2}v_{2} \wedge v_{0}, \qquad v_{-2} \wedge v_{0} = -q^{-2}v_{0} \wedge v_{-2},$$

$$v_{0} \wedge v_{0} = \frac{(1-q^{4})}{q^{3}}v_{2} \wedge v_{-2}, \qquad v_{-2} \wedge v_{2} = -v_{2} \wedge v_{-2}.$$

Let A be a Hopf algebra and V be an A-module. A bilinear form $\langle \cdot, \cdot \rangle$ on V is invariant if

$$\langle a_{(1)} \triangleright v, a_{(2)} \triangleright w \rangle = \varepsilon(a) \langle v, w \rangle \quad \text{ for all } a \in A, \, v, w \in V.$$

The $U_q(\mathfrak{sl}_2)$ -module $V_{2\pi}$ admits a nondegenerate invariant bilinear form given by

$$\langle v_2, v_{-2} \rangle = c, \quad \langle v_0, v_0 \rangle = q^{-3}(1 + q^2)c, \quad \langle v_{-2}, v_2 \rangle = cq^{-2},$$

where $c \in \mathbb{C}[q, q^{-1}]$.

For $U_q(\mathfrak{sl}_2)$, the algebra $\Lambda_q V_{2\pi}$ has the classical dimension.

$$v_{2} \wedge v_{2} = 0, \qquad v_{-2} \wedge v_{-2} = 0,$$

$$v_{0} \wedge v_{2} = -q^{-2}v_{2} \wedge v_{0}, \qquad v_{-2} \wedge v_{0} = -q^{-2}v_{0} \wedge v_{-2},$$

$$v_{0} \wedge v_{0} = \frac{(1-q^{4})}{q^{3}}v_{2} \wedge v_{-2}, \qquad v_{-2} \wedge v_{2} = -v_{2} \wedge v_{-2}.$$

Let A be a Hopf algebra and V be an A-module. A bilinear form $\langle \cdot, \cdot \rangle$ on V is invariant if

$$\langle a_{(1)} \triangleright v, a_{(2)} \triangleright w \rangle = \varepsilon(a) \langle v, w \rangle \quad \text{ for all } a \in A, \, v, w \in V.$$

The $U_q(\mathfrak{sl}_2)$ -module $V_{2\pi}$ admits a nondegenerate invariant bilinear form given by

$$\langle v_2, v_{-2} \rangle = c, \quad \langle v_0, v_0 \rangle = q^{-3}(1+q^2)c, \quad \langle v_{-2}, v_2 \rangle = cq^{-2},$$

where $c \in \mathbb{C}[q, q^{-1}]$.

Note that $\langle \cdot, \cdot \rangle$ is symmetric with respect to $\tilde{\sigma}_{\mathcal{R}}$.

Definition

Let $\operatorname{Cl}_q(V_{2\pi}, \tilde{\sigma}_{\mathcal{R}}, \langle \cdot, \cdot \rangle) := T(V_{2\pi})/I$, where the corresponding two-sided ideal I is generated by

$$x \otimes y + \tilde{\sigma}_{\mathcal{R}}(x \otimes y) - 2\langle x, y \rangle 1$$
 for all $x, y \in V_{2\pi}$, (2)

and σ is the normalized braiding for $V_{2\pi} \otimes V_{2\pi}$.

Definition

Let $\mathrm{Cl}_q(V_{2\pi}, \tilde{\sigma}_{\mathcal{R}}, \langle \cdot, \cdot \rangle) := T(V_{2\pi})/I$, where the corresponding two-sided ideal I is generated by

$$x \otimes y + \tilde{\sigma}_{\mathcal{R}}(x \otimes y) - 2\langle x, y \rangle 1$$
 for all $x, y \in V_{2\pi}$, (2)

and σ is the normalized braiding for $V_{2\pi} \otimes V_{2\pi}$.

In what follows we refer to $\mathrm{Cl}_q(V_{2\pi}, \tilde{\sigma}_{\mathcal{R}}, \langle \cdot, \cdot \rangle)$ as the q-deformed Clifford algebra of \mathfrak{sl}_2 and denote it by $\mathrm{Cl}_q(\mathfrak{sl}_2)$.

Definition

Let $\mathrm{Cl}_q(V_{2\pi}, \tilde{\sigma}_{\mathcal{R}}, \langle \cdot, \cdot \rangle) := T(V_{2\pi})/I$, where the corresponding two-sided ideal I is generated by

$$x \otimes y + \tilde{\sigma}_{\mathcal{R}}(x \otimes y) - 2\langle x, y \rangle 1$$
 for all $x, y \in V_{2\pi}$, (2)

and σ is the normalized braiding for $V_{2\pi} \otimes V_{2\pi}$.

In what follows we refer to $\operatorname{Cl}_q(V_{2\pi}, \tilde{\sigma}_{\mathcal{R}}, \langle \cdot, \cdot \rangle)$ as the q-deformed Clifford algebra of \mathfrak{sl}_2 and denote it by $\operatorname{Cl}_q(\mathfrak{sl}_2)$. Note that the algebra $\operatorname{Cl}_q(\mathfrak{sl}_2)$ is an associative algebra in the braided monoidal category of $U_q(\mathfrak{sl}_2)$ -module, since the ideal (2) is invariant under the action of $U_q(\mathfrak{sl}_2)$.

The algebra $Cl_q(\mathfrak{sl}_2)$ is of the PBW type.

The algebra $Cl_q(\mathfrak{sl}_2)$ is of the PBW type.

$$v_{2}v_{2} = 0, v_{-2}v_{-2} = 0,$$

$$v_{0}v_{2} = -q^{-2}v_{2}v_{0}, v_{-2}v_{0} = -q^{-2}v_{0}v_{-2},$$

$$v_{0}v_{0} = \frac{(1-q^{4})}{q^{3}}v_{2}v_{-2} + \frac{q^{2}+1}{q}c1, v_{-2}v_{2} = -v_{2}v_{-2} + \frac{q^{2}+1}{q^{2}}c1,$$

where $c \in \mathbb{C}[q, q^{-1}]$.

The algebra $Cl_q(\mathfrak{sl}_2)$ is of the PBW type.

$$\begin{split} v_2v_2 &= 0, & v_{-2}v_{-2} &= 0, \\ v_0v_2 &= -q^{-2}v_2v_0, & v_{-2}v_0 &= -q^{-2}v_0v_{-2}, \\ v_0v_0 &= \frac{(1-q^4)}{q^3}v_2v_{-2} + \frac{q^2+1}{q}c1, & v_{-2}v_2 &= -v_2v_{-2} + \frac{q^2+1}{q^2}c1, \end{split}$$

where $c \in \mathbb{C}[q, q^{-1}]$.

Dirac operators K.–Pandžić'25

The algebra $Cl_q(\mathfrak{sl}_2)$ is of the PBW type.

$$\begin{split} v_2v_2 &= 0, & v_{-2}v_{-2} &= 0, \\ v_0v_2 &= -q^{-2}v_2v_0, & v_{-2}v_0 &= -q^{-2}v_0v_{-2}, \\ v_0v_0 &= \frac{(1-q^4)}{q^3}v_2v_{-2} + \frac{q^2+1}{q}c1, & v_{-2}v_2 &= -v_2v_{-2} + \frac{q^2+1}{q^2}c1, \end{split}$$

where $c \in \mathbb{C}[q, q^{-1}]$.

- Dirac operators K.-Pandžić'25
- (quasi-)Poisson geometry Alekseev–K.'25

The algebra $Cl_q(\mathfrak{sl}_2)$ is of the PBW type.

$$\begin{split} v_2v_2 &= 0, & v_{-2}v_{-2} &= 0, \\ v_0v_2 &= -q^{-2}v_2v_0, & v_{-2}v_0 &= -q^{-2}v_0v_{-2}, \\ v_0v_0 &= \frac{(1-q^4)}{q^3}v_2v_{-2} + \frac{q^2+1}{q}c1, & v_{-2}v_2 &= -v_2v_{-2} + \frac{q^2+1}{q^2}c1, \end{split}$$

where $c \in \mathbb{C}[q, q^{-1}]$.

- Dirac operators K.-Pandžić'25
- (quasi-)Poisson geometry Alekseev-K.'25
- q-deformed Clifford analysis K.–Lávička–Souček WIP

Quantised $\mathfrak{sl}(2)$ -differential spaces and

Definition

A supervector space W is called a quantised \mathfrak{sl}_2 -differential space if it is equipped with

- 1 Lie derivatives $L_x \in \text{End}(W)$ for $x \in U_q(\mathfrak{sl}_2)$ which define a $U_q(\mathfrak{sl}_2)$ -module structure on W;
- 2 a $U_q(\mathfrak{sl}_2)$ -equivariant action $\iota \colon \bigwedge_q V_{2\pi} \otimes W \to W$ of $\bigwedge_q V_{2\pi}$;
- **3** a $U_q(\mathfrak{sl}_2)$ -equivariant differential $d_W \colon W \to W$;
- 4 such that they satisfy Cartan's magic formula

$$L_x = \iota_x \circ d_W + d_W \circ \iota_x$$
 for $x \in \mathfrak{sl}_q(2)$.

A morphism between two quantised \mathfrak{sl}_2 -differential spaces is a morphism in the category of $U_q(\mathfrak{sl}_2)$ -modules which intertwines contractions and differentials (and also Lie derivatives).

Quantised $\mathfrak{sl}(2)$ -differential algebras

Definition

An algebra A is called a quantised \mathfrak{sl}_2 -differential algebra if it is a quantised \mathfrak{sl}_2 -differential space such that

1 the Lie derivatives satisfy

$$L_x(ab) = \sum (L_{x_{(1)}}a)(L_{x_{(2)}}b) \qquad \text{for } a,b \in A,\, x \in U_q(\mathfrak{sl}_2),$$

in other words, A is an algebra in the monoidal category of $U_q(\mathfrak{sl}_2)$ -modules;

2 the differential d_A satisfies the (graded) Leibniz rule.

A morphism between two quantised \mathfrak{sl}_2 -differential algebras is an algebra morphism in the category of $U_q(\mathfrak{sl}_2)$ -modules which intertwines contractions and differentials (and also Lie derivatives).

Example: $Cl_q(\mathfrak{sl}_2)$

For $x,y\in\operatorname{Cl}_q(\mathfrak{sl}_2)$ homogeneous with respect to parity set

$$[x,y]_{\tilde{\sigma}} := \left(m_{\operatorname{Cl}_q} - (-1)^{p(x)p(y)} m_{\operatorname{Cl}_q} \circ \tilde{\sigma}\right) (x \otimes y),$$

where m_{Cl_q} denotes the multiplication map in $\operatorname{Cl}_q(\mathfrak{sl}_2).$

Example: $Cl_q(\mathfrak{sl}_2)$

For $x,y\in\operatorname{Cl}_q(\mathfrak{sl}_2)$ homogeneous with respect to parity set

$$[x,y]_{\tilde{\sigma}} := \left(m_{\operatorname{Cl}_q} - (-1)^{p(x)p(y)} m_{\operatorname{Cl}_q} \circ \tilde{\sigma}\right) (x \otimes y),$$

where m_{Cl_q} denotes the multiplication map in $\mathrm{Cl}_q(\mathfrak{sl}_2)$.

Define a linear map $\beta_q \colon \mathfrak{sl}_q(2) \to \operatorname{Cl}_q(\mathfrak{sl}_2)$ by

$$\beta_q(X) = -\frac{1}{c}v_2v_0, \ \beta_q(Y) = -\frac{1}{c}v_0v_{-2}, \ \beta_q(Z) = \frac{1+q^2}{q}\left(\frac{1}{c}v_2v_{-2} - 1\right).$$

Proposition

For
$$\omega \in \operatorname{Cl}_q(\mathfrak{sl}_2)$$
, $x \in \mathfrak{sl}_q(2) = \operatorname{Span}(v_2, v_0, v_{-2})$

$$L_x \omega = [\beta_q(X), \omega]_{\tilde{\sigma}}, \qquad \iota_x \omega = \frac{1}{2} [x, \omega]_{\tilde{\sigma}}, \qquad \mathrm{d}_{\mathrm{Cl}} \omega = [\gamma_q, \omega]_{\tilde{\sigma}},$$

where
$$\gamma_q = -\frac{1}{2c^2}(cv_0 + v_2v_0v_{-2})$$
.

Example: $Cl_q(\mathfrak{sl}_2)$

For $x,y\in\operatorname{Cl}_q(\mathfrak{sl}_2)$ homogeneous with respect to parity set

$$[x,y]_{\tilde{\sigma}} := \left(m_{\operatorname{Cl}_q} - (-1)^{p(x)p(y)} m_{\operatorname{Cl}_q} \circ \tilde{\sigma}\right) (x \otimes y),$$

where m_{Cl_q} denotes the multiplication map in $\mathrm{Cl}_q(\mathfrak{sl}_2).$

Define a linear map $\beta_q \colon \mathfrak{sl}_q(2) \to \operatorname{Cl}_q(\mathfrak{sl}_2)$ by

$$\beta_q(X) = -\frac{1}{c}v_2v_0, \ \beta_q(Y) = -\frac{1}{c}v_0v_{-2}, \ \beta_q(Z) = \frac{1+q^2}{q}\left(\frac{1}{c}v_2v_{-2}-1\right).$$

Proposition

For $\omega \in \mathrm{Cl}_q(\mathfrak{sl}_2)$, $x \in \mathfrak{sl}_q(2) = \mathrm{Span}(v_2, v_0, v_{-2})$

$$L_x \omega = [\beta_q(X), \omega]_{\tilde{\sigma}}, \qquad \iota_x \omega = \frac{1}{2} [x, \omega]_{\tilde{\sigma}}, \qquad \mathrm{d}_{\mathrm{Cl}} \omega = [\gamma_q, \omega]_{\tilde{\sigma}},$$

where $\gamma_a = -\frac{1}{2c^2}(cv_0 + v_2v_0v_{-2})$.

For $x, y \in \mathfrak{sl}_q(2) = \mathrm{Span}(v_2, v_0, v_{-2})$ we have that

$$[\beta_q(x), \beta_q(y)]_{\tilde{\sigma}} = \beta_q(\operatorname{ad}_x y)$$

Example: $\bigwedge_q V_{2\pi}$

ullet Since $\bigwedge_q V_{2\pi}$ is the associated graded to $\mathrm{Cl}_q(\mathfrak{sl}_2)$, it is a quantised $\mathfrak{sl}(2)$ -deformed algebra too.

Example: $\bigwedge_{a} V_{2\pi}$

- Since $\bigwedge_q V_{2\pi}$ is the associated graded to $\mathrm{Cl}_q(\mathfrak{sl}_2)$, it is a quantised $\mathfrak{sl}(2)$ -deformed algebra too.
- the corresponding differential is given by

$$d_{\wedge_q} = \frac{q^2}{1+q^4} \left(\frac{1}{c} v_{-2} L_{v_2} + \frac{q^3}{(1+q^2)c} v_0 L_{v_0} + \frac{q^2}{c} v_2 L_{v_{-2}} \right).$$

Example: $\bigwedge_{a} V_{2\pi}$

- Since $\bigwedge_q V_{2\pi}$ is the associated graded to $\mathrm{Cl}_q(\mathfrak{sl}_2)$, it is a quantised $\mathfrak{sl}(2)$ -deformed algebra too.
- the corresponding differential is given by

$$d_{\wedge_q} = \frac{q^2}{1+q^4} \left(\frac{1}{c} v_{-2} L_{v_2} + \frac{q^3}{(1+q^2)c} v_0 L_{v_0} + \frac{q^2}{c} v_2 L_{v_{-2}} \right).$$

Recall that for $\bigwedge V$ we have

$$\mathbf{d}_{\wedge} = \frac{1}{2} \sum_{a} f_a \circ L_{e_a}.$$

Example: $\bigwedge_{a} V_{2\pi}$

- Since $\bigwedge_q V_{2\pi}$ is the associated graded to $\mathrm{Cl}_q(\mathfrak{sl}_2)$, it is a quantised $\mathfrak{sl}(2)$ -deformed algebra too.
- the corresponding differential is given by

$$d_{\wedge_q} = \frac{q^2}{1+q^4} \left(\frac{1}{c} v_{-2} L_{v_2} + \frac{q^3}{(1+q^2)c} v_0 L_{v_0} + \frac{q^2}{c} v_2 L_{v_{-2}} \right).$$

Recall that for $\bigwedge V$ we have

$$\mathbf{d}_{\wedge} = \frac{1}{2} \sum_{a} f_a \circ L_{e_a}.$$

• For $x, y, z \in \mathfrak{sl}_q(2)$

$$\iota_x \iota_y \mathrm{d}_{\mathrm{Cl}_q} z = \langle \mathrm{ad}_x \, y, z \rangle$$

(Joint works in progress with E. Boffo and T. Weber)

(Joint works in progress with E. Boffo and T. Weber)

Recall that the Casimir element in $U_q(\mathfrak{sl}_2)$ is given by

$$C_q = \frac{q}{(q^2 - 1)^2} (q^2 K + K^{-1}) + FE.$$

(Joint works in progress with E. Boffo and T. Weber)

Recall that the Casimir element in $U_q(\mathfrak{sl}_2)$ is given by

$$C_q = \frac{q}{(q^2 - 1)^2} (q^2 K + K^{-1}) + FE.$$

Set

$$v_2^* = \frac{q^2}{c}v_{-2}, \quad v_0^* = \frac{q^3}{c(1+q^2)}v_0, \quad v_{-2}^* = \frac{1}{c}v_2,$$

so

$$\langle v_i^*, v_j \rangle = \delta_{i,j}$$

(Joint works in progress with E. Boffo and T. Weber)

Recall that the Casimir element in $U_q(\mathfrak{sl}_2)$ is given by

$$C_q = \frac{q}{(a^2 - 1)^2} (q^2 K + K^{-1}) + FE.$$

Set

$$v_2^* = \frac{q^2}{c}v_{-2}, \quad v_0^* = \frac{q^3}{c(1+q^2)}v_0, \quad v_{-2}^* = \frac{1}{c}v_2,$$

SO

$$\langle v_i^*, v_j \rangle = \delta_{i,j}$$

Lemma

Let V be a $U_q(\mathfrak{sl}_2)$ -module. Set $C_q(\mathfrak{g},V)=V\otimes \bigwedge_q\mathfrak{sl}_q(2)$ and

$$\mathrm{d}_{\mathrm{CE}}(w \otimes \omega) = \sum_{i} (L \otimes m_{\wedge_{q}}) \circ (\mathrm{id} \otimes \sigma_{\mathcal{R}} \otimes \mathrm{id}) (v_{i} \otimes v_{i}^{*} \otimes w \otimes \omega) + \frac{q(q^{2}-1)^{2}}{q^{2}+1} (C_{q}w) \otimes \mathrm{d}_{\wedge_{q}}(\omega),$$

where $L \colon \mathfrak{sl}_q(2) \otimes V \to V$ denotes the action map. Then $\mathrm{d}^2_{\mathrm{CE}} = 0$.

Thank you!