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|. G-differential algebras



Motivating example

Let G be a Lie group and g be its Lie algebra.
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TN — a;
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Motivating example

Let G be a Lie group and g be its Lie algebra.

Suppose that G acts on a manifold M and for x € g let

exp(—tz)
t=0

TN — a;

be the generating vector fields of the g-action.

For a vector field X € X(M) let
¢ . x denotes the contraction (of a differential form) with X
e [ x denotes the Lie derivative

Then for any z,y € g we have that (as operators on Q°*(M))

[LCL‘M’ LyM] = L[m,y]Mv [LﬂﬁMv LIM] = layy [[’99]\/17(1] = LSL‘M

Hence we have a structure of a Lie superalgebra on the span of
d, tz,, @and L,,, for all z € g.
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g-differential spaces and algebras

Let A[¢] be the Grassmann algebra with generator ¢&.
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g-modules structure p: g — End(B).
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Let A[¢] be the Grassmann algebra with generator ¢&.
Let d := 0¢ € Der A[¢].
Set

0:=0-1900 P01 =g®A[f] € Cd.

Forzeg,letl,=2®1€gp, . =20&€g_1.
The non-zero brackets are

[Lx, Ly] = L[x,y]v [Lx, Ly] = lzy]s [Lx, d] =L, for z, yeg.

A g-differential spaces is a superspace B, together with a
g-modules structure p: g — End(B).

A g-differential algebra is a superalgebra B, equipped with a
structure of G-differential space such that p(z) € Der B for all
T €.
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Take B = Ag*, equipped with the coadjoint action of g.
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e The Lie derivatives are given by

L, = chf;j i Nty

k?j

e The differential d is given by Koszul’s formula
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Take B = Ag*, equipped with the coadjoint action of g.
e ¢; be a basis in g and f; be the dual basis in g* ~ Alg*

lei,ej] = E c”ek

e The contractions ¢, are deflned by

e, f7 = ([, €i)s te,(x Ny) = (te;x) Ny + (—1)degz:c A Ley.
e The Lie derivatives are given by
Lei = — Zcﬁj f] AN Lek'
k?j

e The differential d is given by Koszul’s formula

_%ZfaoLea,
a

Then Ag* is a g-differential algebra.
One can show that H(Ag*,d) = (Ag*)% = H(g).
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Il. Symmetric and exterior
algebra in the braided
monoidal categories



Braided monoidal categories

Let C be a monoidal category with the collection of associativity
constrains

aspc: (A®B)®C— A (BoC)  A,B,C e 0bj(C).
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Braided monoidal categories

Let C be a monoidal category with the collection of associativity
constrains

aspc: (A®B)®C— A (BoC)  A,B,C e 0bj(C).

A braiding on a monoidal category C is a natural isomophism o
between functors — ® — and — ®°P — such that the hexagonal
diagrams commute,

TA,BRQC

AR (B®(C)———= (BRC)® A

(A®B)®C B (C®A)

aB,A,C

(BA)®C————BR(A0)
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Braided monoidal categories

Let C be a monoidal category with the collection of associativity
constrains

aspc: (A®B)®C— A (BoC)  A,B,C e 0bj(C).

A braiding on a monoidal category C is a natural isomophism o
between functors — ® — and — ®°P — such that the hexagonal
diagrams commute,

TA,BRQC

AR (B®(C)———= (BRC)® A

(A B)®C B®(C®A)
(BA)C Bac B® (A® ()

A braided monoidal category is a pair consisting of a monoidal

category and a braiding.
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The Yang—Baxter equation

If C is a strict braided monoidal category with braiding o then for
all A, B,C € Obj(C) the braiding satisfies the following
Yang—Baxter equation

idp ®o 4,
BoAgC —2"""° . BoowA

oA,B®idg op,c®ida

A®B®C CRB®A

idg ®opB,c idc ®oa. B

oA,c®idc

ARC®B——>CQAQ®B
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Symmetric monoidal categories

A symmetric monoidal category is a braided monoidal category
such that 02 = id.
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Symmetric monoidal categories

A symmetric monoidal category is a braided monoidal category
such that 02 = id.

Example

Vectk, o(v @ w) = w ® v.
Note that

SV ={veT(V)|o@) =0}, AV ={veT(V)| o) =—uv}

AV = T(V)/(5?V), SV =T(V)/(A*V).

Example
SVecty, o(v @ w) = (—1)P@PO)y @ v,
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Nichols algebras

Let B,, be the braid group of n strands generated by
Bi1,- .., Bn_1 subject to the relations

BiBi+18i = Bix1BiBi+1, 1<i,j<n—-2
%3iﬁ3j = lgjlgia 1< iaj <n-— 27|i - j’ > 2.
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Nichols algebras

Let B,, be the braid group of n strands generated by
Bi1,- .., Bn_1 subject to the relations

BiBi+1Bi = Bi+1BiBi+1 1<i,j<n-2
(V, o) defines a representation of B,, on V&"
Pno: Bn — Aut(VE"),  pp(B) =id® - ®id ®o®id ® - - -®id,

i — 1times

S: Sn — B, such that S(ti) = Bl‘, S(titi_;_l) = S(ti)s(ti+1)

= D Puols(9): VO - VER
gGSn
The Nichols algebra of a braided vector space (V, o) is

= P Bu(V), where B, (V)=T"(V)/ker(&).

nGZZO

Woronowicz'89, K.—O Buachalla—Strung’23 10/26



Coboundary structures

Let C be a braided monoidal category linear over C[[#]] and
assume that the braiding satisfies

ow,v e} ov.wW = idV®W +O(h)
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ow,v e} ov.wW = idV®W +O(h)
Then the map
—1/2

Gv,w = ov,w o (ow,v o ov,w)

is called a coboundary structure on C.
In particular, we have that 5% = id and

GA®B,C

AR B®C CRA®B
\Lidc(@&A,B

C®B®A

\LC}A,B@C

BeC®A
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Coboundary structures

Let C be a braided monoidal category linear over C[[#]] and
assume that the braiding satisfies

ow,v e} ov.wW = idV®W +O(h)
Then the map
—1/2

Gv,w = ov,w o (ow,v o ov,w)

is called a coboundary structure on C.
In particular, we have that 5% = id and

GA®B,C

AR B®C CRA®B
\L&A’B®C \Lidc(@&A,B
BC®A CRB®A

Leads to representations of Cactus groups.

oB,c®idg
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lll. Quantised
s[(2)-differential algebras



Drinfeld—Jimbo Quantum Groups: sl, case

Fix ¢ € C such that ¢ is not a root of unity.
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Drinfeld—Jimbo Quantum Groups: sl, case

Fix ¢ € C such that ¢ is not a root of unity. The quantised
universal enveloping algebra of sl, is the algebra with four
generators E, F, K, K ! satisfying the defining relations
KK '=K 'K =1, KEK™ ' =¢°E, KFK—'=¢7?F,
K—-K1
g—q '’
The Hopf algebra structure is given by

[E,F|=EF — FE =

AEy=EK+1®E, A(F)=F®1+K '®F, A(K)=K®K,
S(K*) = K¥', $(E)=-EK™', S(F)=-KF,
e(K*) =1, e(E)=¢(F)=0.

Note that for U(g):

Alz)=z®1+1®x, xE€g.
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U,(sly): Representation Theory

Let « be a simple root of sl; and A be an integral weight of sls.
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U,(sly): Representation Theory

Let « be a simple root of sl; and A be an integral weight of sls.
e the Verma module M) over U,(sl>) generated by vy with
relations

(Aa),

Ervy=0 Kl>v)\—q (Y

where o is the corresponding simple coroot.
e If 5[5 is @ dominant weight of g then M), has a maximal proper
submodule I, generated by F(*)+1y, and

Vi := My /I,

is a finite-dimensional irreducible representation of U, (slz).
e Such representations are called type-1 representations.
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The left adjoin action of U, (sl>) on itself is defined by
adg b = Z a(l)bS(a(Q)) fora,b e Uq(ﬁ[g).
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The left adjoin action of U, (sl>) on itself is defined by
ad, b = Z a(l)bS(a(z)) fora,b e Uq(ﬁ[g).

In particular, for b € Uy(sly),

adgb= EbK ' —bEK ™!, adp b= Fb— K 'bKF,
adg b= KbK 1, adp—1b =K 'bK.
Denote by sl,(2) the span of
vo = K,

v=q *EF —FE=(q—q ") (K -K ') —q '(q—q ")EF,
v_9 = KF.

Let = € P be the fundamental weight of sl,. The elements v,,
o, v—2 spans U, (slz)-module V5, with respect to the left adjoint
action.

adE Vg = 0, adK Vg = q21)2, adp V2 = — o,
adgvo = — (¢+q Hve, adg vy = vo, adpvo = (¢ + ¢ ")v_s

adgv_o = vy, adg v_o = q*2v,2, adpv_o = 0.
15/26
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The universal R-matrix

e Rep,U,(g) is a braided monoidal category
« the universal R-matrix R € U,(g)®U,(g)

pv: Uq(g) = End(V), pw : Ug(g) = End(W)

orvew = To (py @ pw)(R), (1)
e For U, (5[2),

1t m(m— 1)/2(

—1\m
Z [m]q! ’
where K = ¢"H
qr—q "
[m]q = o —1 0 [m]q! = [m]q[m —1]q.. . [1]g.
q—4q
Note

qH®H/h(’U ® ’LU) _ q(wt(v),wt(w))v ® w.

e o o o # id: the category is not symmetric!
16 /26



Quantum exterior algebras

17/26



Quantum exterior algebras

e Eigenvalues of oz on Vo, ® Vor:
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Quantum exterior algebras

e Eigenvalues of oz on Vo, ® Vor:
V27r®‘/27r :‘/47T@V27T€B‘/0'
Then
9. —92. 4.
or = q"idy,, —q" “idy,, +q~ " idy; .
e the coboundary structure is given by
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V27r®‘/27r :‘/47T@V27T€B‘/0'
Then
9. —92. 4.
or = q"idy,, —q" “idy,, +q~ " idy; .
e the coboundary structure is given by

~ o —1 —1
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Quantum exterior algebras

e Eigenvalues of oz on Vo, ® Vor:
V27r®‘/27r :‘/47T@V27TEB‘/O'
Then
9. —92. 4.
or = q"idy,, —q" “idy,, +q~ " idy; .
e the coboundary structure is given by

~ o —1 —1
ORVOW = \/UR,W®VUR,V®W OR,VOW -
Eigenvalues of
oR = idv47T — idv27r + idvo .

e o vew does not satisfies the Yang—Baxter equation.
e Forany V € Rep,(Uy,(g)), let us denote

SiVi={x e VRV |or(z) =a}, AV :={zeVaV |dir(z)=—a}.
e the BZ quantum exterior algebra A,(V') of V to be
Ag(V) =T (V)/(S2V).
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For U, (sl), the algebra A, V>, has the classical dimension.

vg A vg =0,

Vo N\ U9 = —q72v2/\v0,
1— 4

Vg N\ vg = wvg/\v,g,

(]3

V_92 ANV_2

(WA

V_2 A\ Vg

=0,

-2
—q “vo A\ V-2,

— vy AN V_9.

18/26



For U, (sl), the algebra A, V>, has the classical dimension.

vo A vg =0, v_9 ANv_g =0,
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Let A be a Hopf algebra and V' be an A-module.
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For U, (sl), the algebra A, V>, has the classical dimension.

vo A vg =0, v_9 ANv_g =0,
vg ANV = — q72v2 N Vg, V_o ANvg = — quUQ NvV_2,
_(1-4qY _
Vg N\ vg = 3 vy AN V_9, V_o ANVg = — U2 AVU_9.
q

Let A be a Hopf algebra and V' be an A-module. A bilinear
form (-,-) on V is invariant if

(agy>v,ap) >w) =¢(a)(v,w) forallac A, v,weV.

The U,(sl2)-module V3, admits a nondegenerate invariant
bilinear form given by

2

(v2,v_2) = ¢, (vo,v0) = q_3(1 + QQ)Ca (v_2,v2) = cq 7,

where ¢ € Clg, ¢ 1].
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For U, (sl), the algebra A, V>, has the classical dimension.

vo A vg =0, v_9 ANv_g =0,
vg ANV = — q72v2 N Vg, V_o ANvg = — quUQ NvV_2,
_(1-4qY _
Vg N\ vg = 3 vy AN V_9, V_o ANVg = — U2 AVU_9.
q

Let A be a Hopf algebra and V' be an A-module. A bilinear
form (-,-) on V is invariant if

(agy>v,ap) >w) =¢(a)(v,w) forallac A, v,weV.

The U,(sl2)-module V3, admits a nondegenerate invariant
bilinear form given by

(v2,v_2) = ¢, (vo,v0) = q_3(1 + QQ)Ca (v_o,v9) = cq 2,

where ¢ € Clg, ¢ 1].
Note that (-, -) is symmetric with respect to 7.
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Definition
Let Cly(Var, R, (-, ) := T'(Var)/I, where the corresponding
two-sided ideal I is generated by

rRYy+or(r®y) — 2(x,y)l forall z,y € Vs, (2)

and o is the normalized braiding for Vo, ® Var.
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Definition
Let Cly(Var, R, (-, ) := T'(Var)/I, where the corresponding
two-sided ideal I is generated by

x®y+&7z(:v®y) —2<:c,y>1 forall z,y € Vs, (2)

and ¢ is the normalized braiding for Vo, ® Va.

In what follows we refer to Cl,(Var, 5%, (-, -)) as the g-deformed
Clifford algebra of sl, and denote it by Cl,(sl2). Note that the
algebra Cl,(sly) is an associative algebra in the braided
monoidal category of U,(sl2)-module, since the ideal (2) is
invariant under the action of U, (sl>).
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Lemma
The algebra Cl,(sly) is of the PBW type.

20/26



Lemma
The algebra Cl,(sly) is of the PBW type.

VoV = 0, V_92U_92 = 0,
vov2 = — g *vavp, v_ovg = — g *vov_2,

1—q¢* 241 241
VU = ( q3q )vgv,z + qicl, V_9Vg = — VoU_9o + 4 " cl,

where ¢ € C[q,q7!].
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Lemma
The algebra Cl,(sly) is of the PBW type.

VoV = 0, V_92U_92 = 0,
vov2 = — g *vavp, v_ovg = — g *vov_2,

1—¢* 241 241
VU = ( ng )vgv,g + 4 cl, v _ovy= —wvv_9+ 4 " cl,

where ¢ € Clg, ¢ 1].
e Dirac operators K.—Pandzi¢’25
¢ (quasi-)Poisson geometry Alekseev—K.25

e ¢-deformed Clifford analysis K.—Lavicka—Soucek WIP
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Quantised sl(2)-differential spaces and

Definition
A supervector space W is called a quantised sl,-differential
space if it is equipped with
@ Lie derivatives L, € End(WW) for x € U,(sl2) which define a
U,(slz)-module structure on W;
® a Uy(sly)-equivariant action c: A Vor @ W — W of A\ Var;
© a U,(slz)-equivariant differential dyy: W — W;
@ such that they satisfy Cartan’s magic formula

L, =1zodw +dw ot for x € sl,(2).

A morphism between two quantised sl,-differential spaces is
a morphism in the category of U, (sl2)-modules which
intertwines contractions and differentials (and also Lie
derivatives).
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Quantised sl(2)-differential algebras

Definition
An algebra A is called a quantised sl,-differential algebra if it is
a quantised sl,-differential space such that

© the Lie derivatives satisfy
Lo(ab) =Y (Lyy,a)(Leyb)  fora,be A, x € Uy(sl),

in other words, A is an algebra in the monoidal category of
U,(sl2)-modules;
@ the differential d 4 satisfies the (graded) Leibniz rule.
A morphism between two quantised sl,-differential algebras is
an algebra morphism in the category of U, (sl2)-modules which
intertwines contractions and differentials (and also Lie
derivatives).
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Example: Cl,(sly)
For z,y € Cl,(sl;) homogeneous with respect to parity set
[z,yl5 = (mcL, — (=P Wine o 5’) (r®y),

where mc, denotes the multiplication map in Cl,(sl3).
q q
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Example: Cl,(sly)
For z,y € Cl,(sl;) homogeneous with respect to parity set
[z,yl5 = (mcL, — (=P Wine o 5’) (r®y),

where mcy, denotes the multiplication map in Cl,(slz).
Define a linear map £, : sl,(2) — Cl,(sl2) by

2
Be(X) = —%wvo, By(Y) = —%000—27 By(Z2) = ! Zq (1020—2 — 1> -

Proposition
Forw € Cly(slz), z € sl4(2) = Span(va, vg, v—2)

1
wa = [ﬁq(X),OJ]&, lagW = 5[.’13,&1]5—, dClw = [7(]7(")]5'7

where v, = — 2i2 (cvp + vougU—_2).
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For z,y € Cl,(sl;) homogeneous with respect to parity set
[z,yl5 = (mcL, — (=P Wine o 5’) (r®y),

where mcy, denotes the multiplication map in Cl,(slz).
Define a linear map £, : sl,(2) — Cl,(sl2) by

2
Be(X) = —%wvo, By(Y) = —%000—27 By(Z2) = ! Zq (1020—2 — 1> -

Proposition
Forw € Cly(slz), z € sl4(2) = Span(va, vg, v—2)

1
wa = [ﬁq(X),OJ]&, lagW = 5[.’13,&1]5—, dClw = [7(]7(")]5'7

where v, = —%(cvo + vavgU_2).
For z,y € sl,(2) = Span(vg, v, v—_2) We have that
[ﬁq(x)a Bq(y)]& = B4 (adg y)
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Example: /\quW

e Since A, V2 is the associated graded to Cly(sls), it is
a quantised sl(2)-deformed algebra too.
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Example: /\quW

e Since A, V2 is the associated graded to Cly(sls), it is
a quantised sl(2)-deformed algebra too.

e the corresponding differential is given by

2 3 2
q 1 q q
o= g (st et + rates)
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Example: /\quW

e Since A, V2 is the associated graded to Cly(sls), it is
a quantised sl(2)-deformed algebra too.

e the corresponding differential is given by

q2

T

1 ¢’ ¢
E’U_QLUQ =+ mUOLUO =+ ?'UQLU72 .

Nq

Recall that for AV we have

dp = %Zfaol/ea-
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Example: /\quW

e Since A, V2 is the associated graded to Cly(sls), it is
a quantised sl(2)-deformed algebra too.

e the corresponding differential is given by

q2

1 ¢ ¢
= 1t q4 E’U_QLUQ + mUOLUO + ?'UQLU72 .

Nq

Recall that for AV we have
— ’ o .
A\ 2 §a a €aq

o Forz,y, 2 € sl,(2)

tetydel,z = (adz ¥, 2)
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Quantised Chevalley—Elenberg complex

(Joint works in progress with E. Boffo and T. Weber)
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Quantised Chevalley—Elenberg complex

(Joint works in progress with E. Boffo and T. Weber)
Recall that the Casimir element in U, (sl») is given by

1 _(PK+K')+FE.

‘-
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Quantised Chevalley—Elenberg complex

(Joint works in progress with E. Boffo and T. Weber)
Recall that the Casimir element in U, (sl») is given by
q

C,=— (*?K+ K™Y+ FE.
! (q2—1)2(q tET+
Set ) ;
vy = Tv_9, vp = el 0 = }vg
2T T ) T ™
o)
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Quantised Chevalley—Elenberg complex

(Joint works in progress with E. Boffo and T. Weber)
Recall that the Casimir element in U, (sl») is given by

q 2 -1
C,=———("K+K FE.
! (q2—1)2(q tET+
Set ) ;
vy = —V_g, V)= g 05 —2 = 1027
c(1+¢?)

o)

(v7,v5) = 0y
Lemma

LetV be a U,(slz)-moadule. Set Cy(g,V) =V @ A sl4(2) and

. 2 _ )2
dep(wew) = Y (Loma, )o(id @or®id)(0;@0] ®w®w)+q(32 - 1)

(3

(Cqw)@da, (W),

where L: sl,(2) ® V — V denotes the action map. Then
d¢p = 0.
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Thank you!



