

Australian National University

The SABRE South Experiment at the Stawell Underground Physics Laboratory

Dr. Zuzana Slavkovská

Australian National University

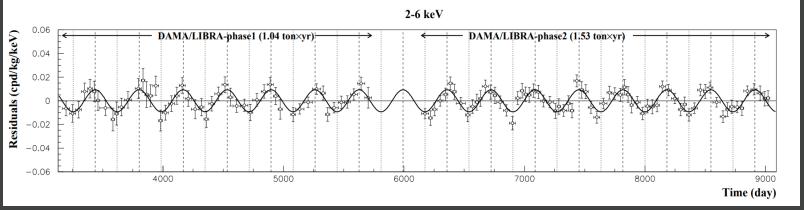
DSU 2024 13th September, Corfu

On behalf of the SABRE South collaboration

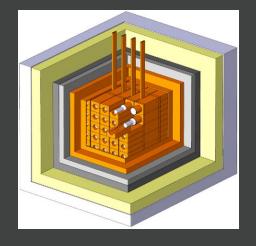
Talk Content

SABRE South dark matter experiment

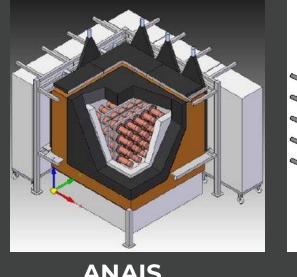
SUPL underground lab in an active gold mine

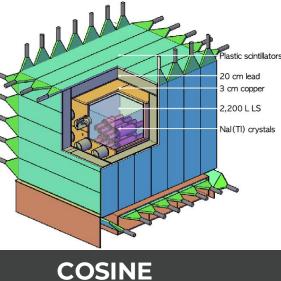

First deep underground lab in the Southern Hemisphere

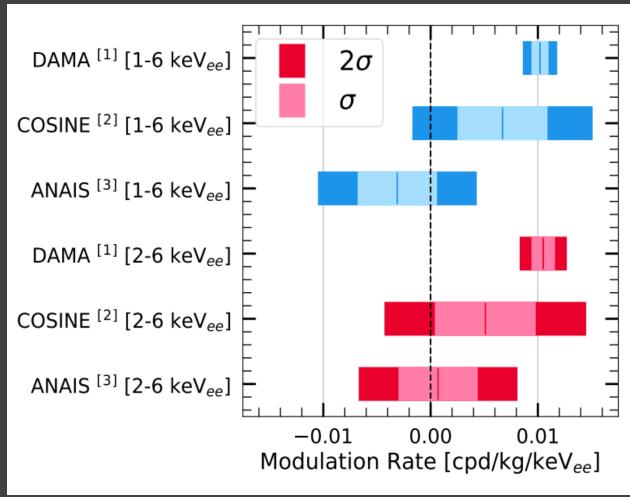
SABRE Motivation


- DAMA/LIBRA at Laboratori Nazionali der Gran Sasso (LNGS) in Italy
 250 kg pure NaI(TI) crystals
- ~20 years of observation, signal modulation period of exactly 1 year
- Observed ~0.01 cpd/kg/keV modulation in the 1-6 keV energy range
- Other experiments could not confirm DAMA/LIBRA results

Bernabei et al. 2021




Is it dark matter? Other NaI(TI) experiments could not confirm the modulation.


Other Nal(Tl) Experiments

- Anomaly tested by similar improved detectors: DAMA has the smallest uncertainty and best sensitivity)
- ANAIS at Canfranc underground lab, Spain
- COSINE at Yangyang lab, South Korea

 Bernabei et al. Annual modulation results from DAMA/LIBRA, 2023.
 Adhikari et al, Three-year annual modulation search with COSINE-100, 2021.
 Coarasa et al., ANAIS-112 three years data: a sensitive model independent negative test of the DAMA/LIBRA dark matter signal, 2024.

The SABRE South Experiment at SUPL

SABRE: A Dual Site Experiment

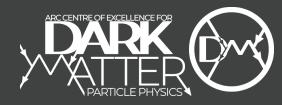
The scientific program of SABRE foresees two detectors in two underground locations:

- SABRE North at Laboratori Nazionali del Gran Sasso (LNGS) in Italy
- SABRE South at Stawell Underground Physics Laboratory (SUPL) in Australia

SABRE: A Dual Site Experiment

The SABRE South Experiment at SUPL

Stawell vs. Sydney



The SABRE South Experiment at SUPL

The SABRE Collaboration

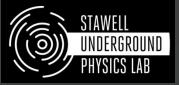
SABRE North and South have common core features:

- Same crystal production and R&D.
- Same detector module concept (ultra-pure crystals and HPK R11065 PMTs).
- Common simulation, DAQ and data processing framework.
- Exchange of engineering know-how with collaboration agreements between the ARC Centre of Excellence for Dark Matter Particle Physics and INFN.

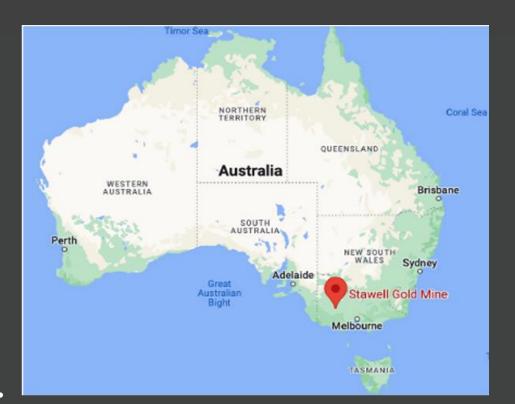
The SABRE Collaboration

SABRE North and South have common core features:

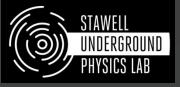
- Same crystal production and R&D.
- Same detector module concept (ultra-pure crystals and HPK R11065 PMTs).
- Common simulation, DAQ and data processing framework.
- Exchange of engineering know-how with collaboration agreements between the ARC Centre of Excellence for Dark Matter Particle Physics and INFN.


SABRE North and South have different shielding designs:

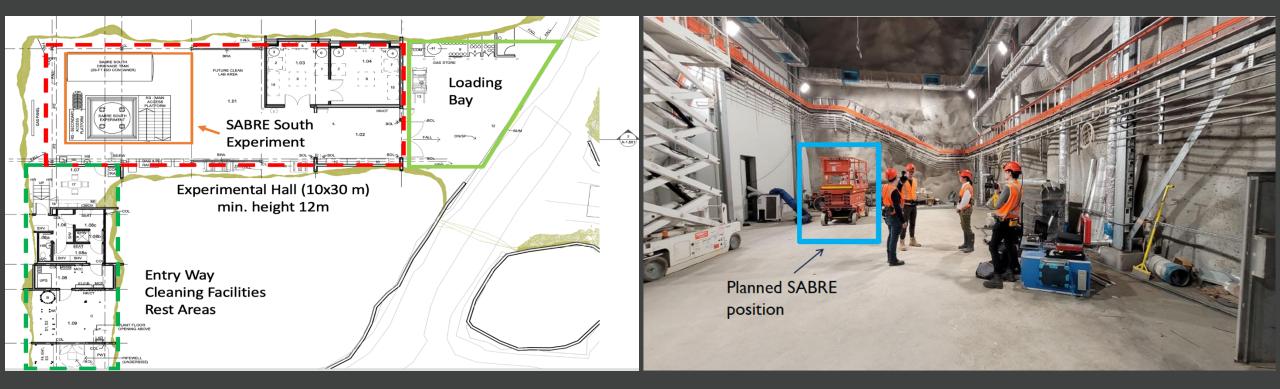
- SABRE North has a fully passive shielding
- **SABRE South** uses liquid scintillator: it will be used for in-situ evaluation and validation of the background in addition to background rejection and particle identification.

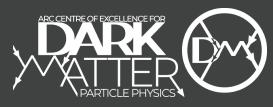


SUPL


SUPL (Stawell Underground Physics Laboratory)

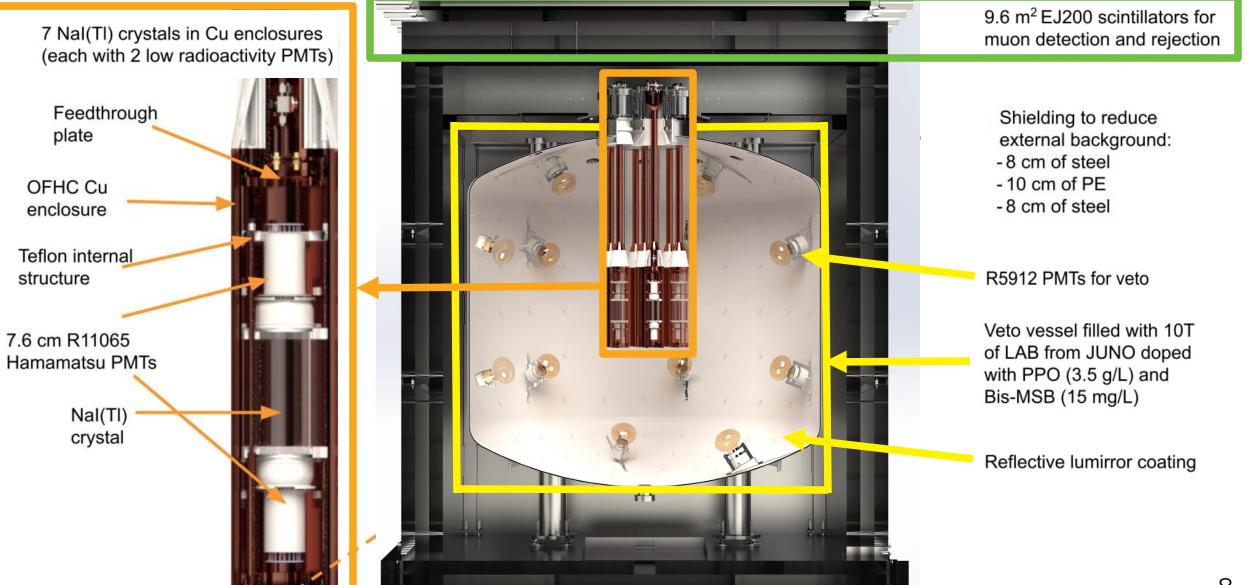
- In an **active gold mine** in Stawell, Victoria, Australia.
- 1,025 m underground (2900 m water equivalent).
- Decline mine with a single portal.
- 30-minute drive to the laboratory.
- 40°C (104 F).
- First underground lab in the **Southern Hemisphere**.


The SABRE South Experiment at SUPL Zuzana Slavkovska



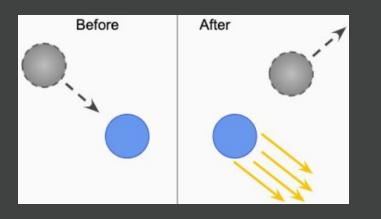
SUPL

Construction complete and installation of SABRE South experiment started in 2023. First detectors commissioned in early 2024, collecting data.


10 m x 16.4 m x 12 m experimental hall, two small gamma spectroscopy rooms + clean tent.

The SABRE South Experiment

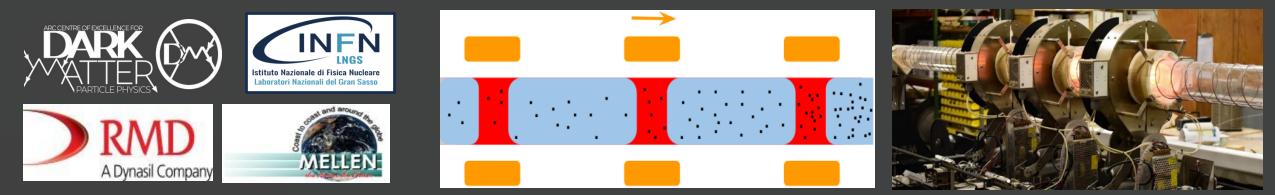
Three detector systems: Crystal, Liquid Scintillator and Muon detectors.


SABRE Principle

SABRE aims to observe WIMP's through scattering off target nuclei.

When this happens, the particle the dark matter scatters off will recoil with an energy related to **the dark matter properties.**

We use ultra-pure Nal(Tl) crystals as target.

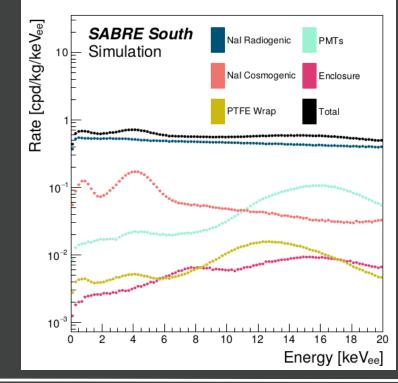


- SABRE (Sodium lodide with Active Background REjection)
- Ultra-pure astro-grade quality Nal powder from Merck.
- Seven ultra-pure Nal(Tl) crystals for (35 kg 50 kg total mass).
- Test crystals have been grown at RMD (US) and SICCAS (China).
- Light yield 9-12 phe/keV.
- 1 keV **energy threshold** for 1-6 keV RoI in NaI(TI).
- Handled in a **glove box.**

- Zone refining: Impurities are segregated to the end of the crystal.



The SABRE South Experiment at SUPL Zuzana Slavkovska

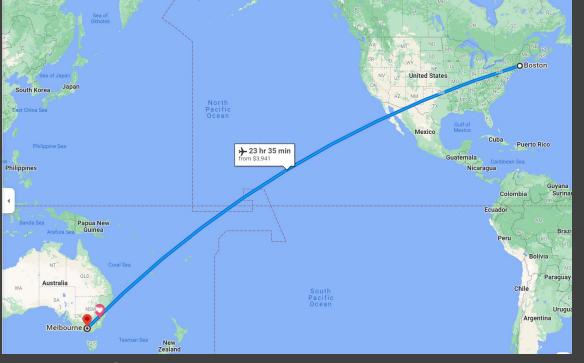

- Crystal intrinsic background – naturally occurring isotopes in the NaI(TI) powder (94% of the total).

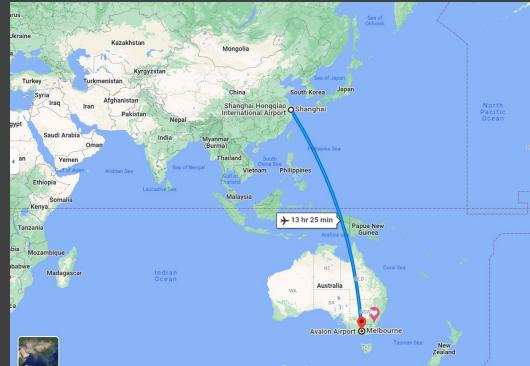
- Cosmogenic background through exposure to cosmic rays at sea-level.
- Cool-down period of 6 months to decrease activities.
- Background from material radioactivity various components (PMTs, PTFE wrap, crystal enclosure,...).

We expect 0.72 cpd/kg/keV in Rol, based on a background from the test crystal Nal-33.

	Rate	Veto Efficiency
	[cpd/kg/keV]	[%]
Crystal radiogenic	$5.2 \cdot 10^{-1}$	13
Crystal cosmogenic	$1.6 \cdot 10^{-1}$	40
Crystal PMTs	$3.8 \cdot 10^{-2}$	60
PTFE wrap	$4.5 \cdot 10^{-3}$	13
Enclosures	$3.2 \cdot 10^{-3}$	85
Conduits	$1.9 \cdot 10^{-5}$	96
Liquid scintillator	$4.9 \cdot 10^{-8}$	> 99
Steel vessel	$1.4 \cdot 10^{-5}$	> 99
Veto PMTs	$1.9\cdot 10^{-5}$	> 99
Shielding	$3.9 \cdot 10^{-6}$	> 99
External	$O(10^{-4})$	> 99
Total	$7.2 \cdot 10^{-1}$	27

The SABRE South Experiment at SUPL


Antonello et al., Eur. Phys. J .C 81, 299 (2021)


Potential crystal providers

RMD (Radiation Monitoring Devices, Boston, MA, US)

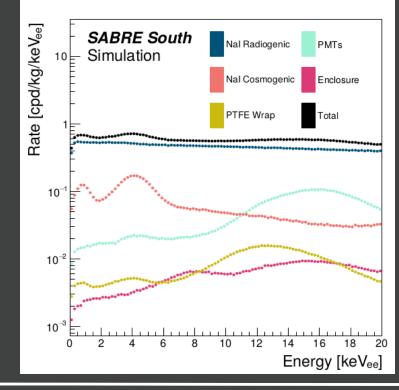
SICCAS (Shanghai Institute or Ceramics, Chinese Academy of Sciences)

- Activation during manufacturing, storage, transport taken into account
- Cosmogenic flux influenced by altitude, geomagnetic activity and solar activity

Boston to Stawell

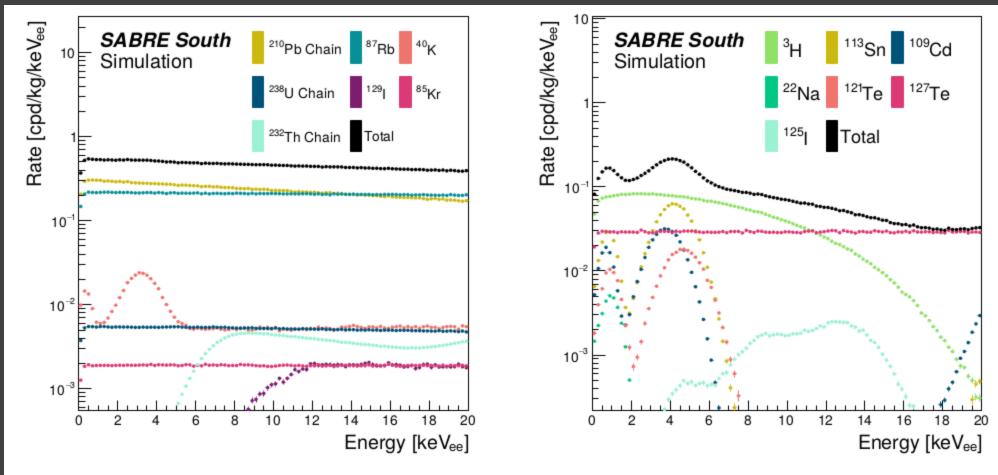

The SABRE South Experiment at SUPL

Shanghai to Stawell JPL Zuzana Slavkovska


- Crystal intrinsic background – naturally occurring isotopes in the NaI(TI) powder (94% of the total).

- Cosmogenic background through exposure to cosmic rays at sea-level.
- Cool-down period of 6 months to decrease activities.
- Background from material radioactivity various components (PMTs, PTFE wrap, crystal enclosure,...).

We expect 0.72 cpd/kg/keV in Rol, based on a background from the test crystal Nal-33.



Veto Efficiency Rate cpd/kg/keV] [%] Crystal radiogenic $5.2 \cdot 10^{-1}$ 13 $1.6 \cdot 10^{-1}$ Crystal cosmogenic 40Crystal PMTs $3.8 \cdot 10^{-2}$ 60 $4.5 \cdot 10^{-3}$ PTFE wrap 13Enclosures $3.2 \cdot 10^{-3}$ 85Conduits $1.9 \cdot 10^{-5}$ 96 $4.9 \cdot 10^{-8}$ Liquid scintillator > 99 $1.4 \cdot 10^{-5}$ Steel vessel > 99Veto PMTs $1.9 \cdot 10^{-5}$ > 99 $3.9 \cdot 10^{-6}$ Shielding > 99 $O(10^{-4})$ External > 99Total $7.2 \cdot 10^{-1}$ 27

The SABRE South Experiment at SUPL

Antonello et al., Eur. Phys. J .C 81, 299 (2021)

Crystal background rate expected from intrinsic (left) and cosmogenic (right) contamination

- One of the biggest challenges: **Purity**

- Radioactive and cosmic contaminants
- → might mimic dark matter signals

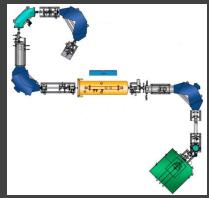
Isotope	Activity $[mBq/kg]$
$^{40}\mathrm{K}$	$1.4 \cdot 10^{-1}$
$^{238}\mathrm{U}$	$< 5.9 \cdot 10^{-3}$
$^{232}\mathrm{Th}$	$< 1.6 \cdot 10^{-3}$
$^{87}\mathrm{Rb}$	$< 3.1 \cdot 10^{-1}$
$^{210}\mathrm{Pb}$	$4.1 \cdot 10^{-1}$
85 Kr	$< 1.0 \cdot 10^{-2}$
129 I	1.3

Activity of **radiogenic isotopes** in SABRE crystals $t_{1/2}$ (⁴⁰K) = 1.25 Ga, primordial origin

Inductively Coupled Plasma – Mass Spectrometry Seastar CHEMICALS

BEAM INTERACTION WETH MATERIALS AND ATOMS

t_{1/2} (²¹⁰Pb) = 22.2 a, omnipresent α-counting + development of Accelerator Mass Spectrometry


Ratio of ²¹⁰Pb/²⁰⁸Pb

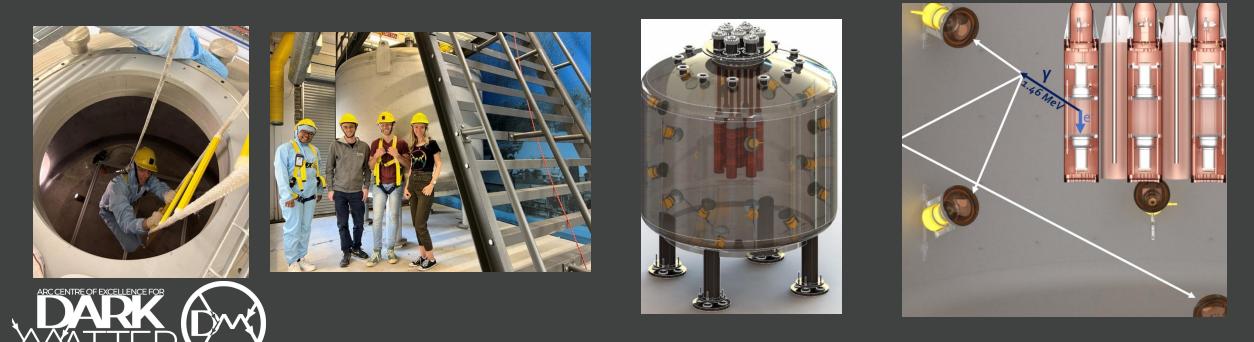
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms Volume 529, 15 October 2022, Pages 18-23

Scavenger hunt: Searching for the optimal target material for low-level ²¹⁰ Pb accelerator mass spectrometry

ما.B. Froehlich ^{م. ف} R هز Z. Slavkovská ^{م. b}. D. Koll ^{م. 1}, S. Pavetich ^a, F. Dastgiri ^{a, b}, L.K. Fifield ^a, M.A.C Hotchkis ^c, S. Aerchel ^{a, d, 2}, S.G. Tims ^a, A. Wallner ^{a, 1}

- Identify

- Quantify

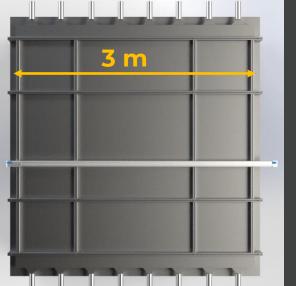

- Reduce

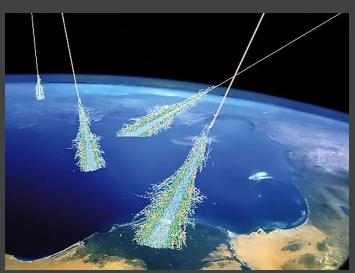
The SABRE South Experiment at SUPL

SABRE Veto

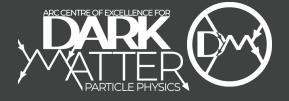
- Crystals embedded in a veto system for active background rejection

- -> tag and remove high energy background decay products with 4π coverage.
- Submerged in 12,000 litres LAB (Linear Alkyl Benzene) Scintillator.
- Key requirement: Reduction of 40 K by a factor of 10 (down to 1.3 * 10⁻² cpd/kg/keV_{ee}).

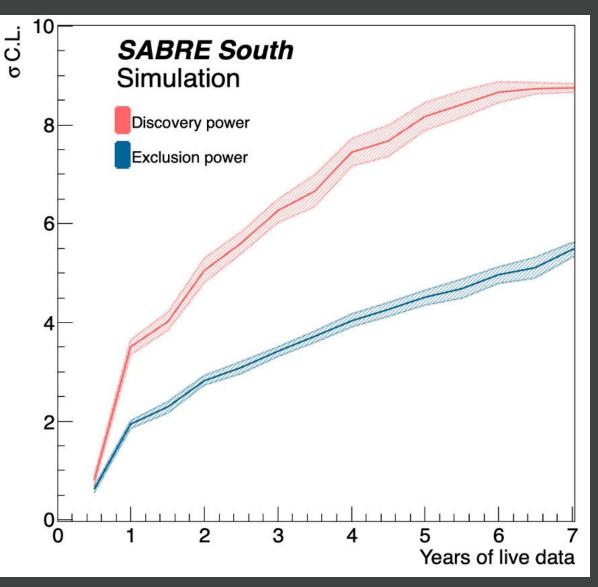

Veto PMT


SABRE Muon Detectors

- Tagging of cosmic rays by muon flux measurements.
- Plastic scintillator 300 cm x 40 cm x 5 cm.
- 8 muon panels covering 9.6 m².
- Information combined with liquid veto to reconstruct tracks.
- Muon detectors installed in SUPL and are collecting data:


1) Measuring muon flux and angular distribution.

2) First test of remote DAQ and processing pipelines.



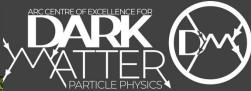
SABRE Sensitivity

SABRE South will have a **5σ discovery** (**3σ exclusion) power** to a DAMA-like signal within 2.5 years of data taking.

(The shaded regions indicate 1 sigma statistical uncertainty bands).

SABRE Summary

- SABRE is a dual site experiment with two similar detectors:
 - SABRE South at SUPL in Australia and
 - SABRE North at LNGS in Italy.
- SABRE uses ultra-high purity NaI(TI) crystals.
- Key design focus is the **low background.**
- Data taking has begun in early 2024.
- With the expected backgrounds, we expect a discovery or exclusion after about
 2.5 years of continuous operation.



SABRE South Collaboration

Australian National University

THE UNIVERSITY OF WESTERN AUSTRALIA

Australian Government Australian Research Council

THE UNIVERSITY OF MELBOURNE

INTERNATIONAL PARTNER ORGANISATIONS:

UNIVERSITEIT VAN AMSTERDAM

SABRE South Sensitivity

4.2 Projected sensitivity of the SABRE South experiment


The sensitivity of SABRE South to a typical WIMP has also been computed. These calculations are performed assuming the spin-independent effective field theory operator O1from Ref. [41], Standard Halo Model velocity distribution, an efficiency equivalent to that of COSINE [42], and the DAMA/LIBRA quenching factor values for both Na and I. Figure 8 shows the 90% confidence level (CL)

Table 15	Expected event rate and sample purity in the 121 Te and 40 K
measuren	nent regions

Total rate (cpd)	Sample purity
13	90%
0.32	> 99%
130	90%
3.2	> 99%
	13 0.32 130

The SABRE South Experiment at the SUPL

Focus on radioactive isotopes -> in detector materials

-> around the detector material (+ environment)

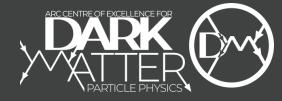
⁴⁰K, ¹²⁹I, ²¹⁰Pb, ²³²Th, ²³⁸U

in particular Radon

(radioactive chains from Th and U, decays in ²¹⁰Pb)

<10% from outside the crystal

Component	Rate (cpd/kg/keV)	Veto efficiency (%)
Crystal intrinsic	<5.2 x 10 ⁻¹	13
Crystal cosmogenic	1.6 x 10 ⁻¹	45
Crystal PMTs	3.8 x 10 ⁻²	57
Crystal wrap	4.5 x 10 ⁻³	11
Enclosures	3.2 x 10 ⁻³	85
Conduits	1.9 x 10 ⁻⁵	96
Steel vessel	1.4 x 10 ⁻⁵	>99
Veto PMTs	1.9 x 10 ⁻⁵	>99
Shielding	3.9 x 10 ⁻⁶	>99
Liquid scintillator	4.9 x 10 ⁻⁸	>99
External	5.0 x 10 ⁻⁴ >93	
Total	0.72	27


The SABRE South Experiment at the SUPL

Crystal growing

Cut into an octagonal shape using a diamond saw Polished with semiconductor grade ethanol/isopropyl alcohol to remove any surface contamination

Purification techniques developed to reduce ⁴⁰K and ²¹⁰Pb in the crystal

B. Suerfu et al., Phys. Rev. Research 2, 013223 (2020)

Crystal Nal-33

Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms Volume 529, 15 October 2022, Pages 18-23

Scavenger hunt: Searching for the optimal target material for low-level ²¹⁰ Pb accelerator mass spectrometry

M.B. Froehlich ^{a, b} A , L.K. Fifield ^a, M.A.C Hotchkis ^c, S. Merchel ^{a, d, 2}, S.G. Tims ^a, A. Wallner ^{a, 1}

Show more 🗸

+ Add to Mendeley 😪 Share 🗦 Cite

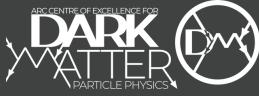
https://doi.org/10.1016/j.nimb.2022.08.015

Get rights and content

Highlights

- + For different lead compounds the $^{208}\text{PbO}_2^-$ and $^{208}\text{PbF}_3^-$ currents were 0.5–1.2 $\mu\text{A}.$
- The performance of \mbox{PbF}_2 mixed with AgF, \mbox{AgF}_2 and \mbox{SbF}_3 at different ratios was tested.

The SABRE South Experiment at the SUPL


Crystal growing

- **Requirements** based on simulations and DAMA/LIBRA purity
- Desired total intrinsic radiogenic crystal background < 0.4 cpd/kg/keV
- ²¹⁰Pb and ⁴⁰K levels of critical importance

Background	Limit mBq/kg
Pb-210	< 0.3
K-39	< 0.3 (10 ppb)
Rb-87	< 0.31
U-238	< 0.05
Kr-85	< 0.01
Th-232	< 0.035

Crystal Nal-33

Desired light yield > 10 pe/keV corresponding to ~ 30 photons/keV

The SABRE South Experiment at the SUPL

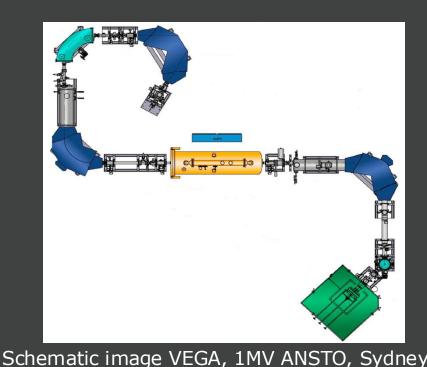
- Most problematic radio-impurity is ²¹⁰Pb

Isotope	Rate, veto ON
	[cpd/kg/keV _{ee}]
²¹⁰ Pb	$2.8 \cdot 10^{-1}$
⁸⁷ Rb	$< 2.2 \cdot 10^{-1}$
⁴⁰ K	$1.3 \cdot 10^{-2}$
²³⁸ U	$< 5.4 \cdot 10^{-3}$
⁸⁵ Kr	$< 1.9 \cdot 10^{-3}$
²³² Th	$< 3.4 \cdot 10^{-4}$
¹²⁹ I	$9.2 \cdot 10^{-5}$
Total	$< 5.2 \cdot 10^{-1}$

$$t_{1/2}$$
 (²¹⁰Pb) = 22.2 a

²¹⁰Pb produces spectrum in the low energy region that cannot be vetoed

Present in environment due to naturally occurring ²³⁸U and ²²⁶Rn, also in dust


Need to develop a measurement technique for material screening

- Technique used: Accelerator Mass Spectrometry (AMS)
- Precise atom counting technique utilising accelerator technology
- Sample material sputtered
- Mass analysed
- Electrons stripped off, molecular breakup
- Selection in analysing magnet
- Counting nuclei

(ratio of radioactive to stable isotope): ²¹⁰Pb/²⁰⁸Pb

~3 mg

The SABRE South Experiment at the SUPL

Material screening, cleaning and selection

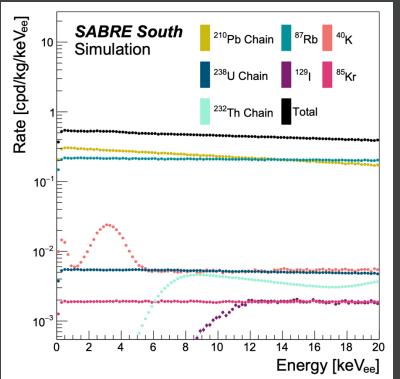
- Focus on ²¹⁰Pb
- Accelerator Mass Spectrometry used: Not enough Pb to produce AMS sample after Nal extraction
- **Optimal carrier,** as low ²¹⁰Pb content as possible
- 18th century roof, detector shielding, Roman lead, Hampton Court Palace roof

- Chemical processing

+ Accelerator Mass Spectrometry

Crystal Glove Box

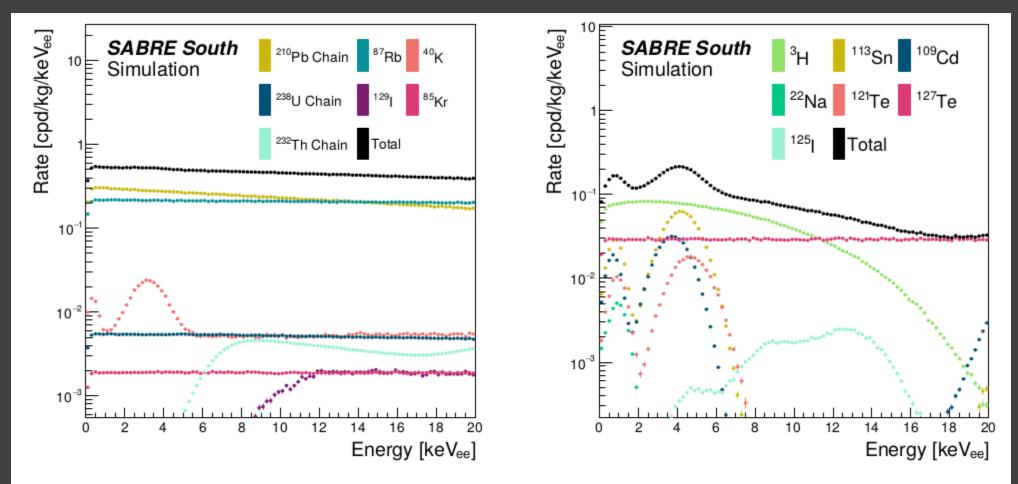
Crystal handling


Mock-up glove box testing

Procedure testing inside the glove box

The SABRE South Experiment at the SUPL

Material screening, cleaning and selection: intrinsic + cosmogenic crystal radiation > 90% total background


	Rate		
	[cpd/kg/keVee]	Isotope	Rate, veto ON
Crystal radiogenic	$5.2 \cdot 10^{-1}$		[cpd/kg/keVee]
Crystal cosmogenic	$1.6 \cdot 10^{-1}$	²¹⁰ Pb	$2.8 \cdot 10^{-1}$
Crystal PMTs	$3.8 \cdot 10^{-2}$		
PTFE wrap	$4.5 \cdot 10^{-3}$	⁸⁷ Rb	$< 2.2 \cdot 10^{-1}$
Enclosures	$3.2 \cdot 10^{-3}$	⁴⁰ K	$1.3 \cdot 10^{-2}$
Conduits	$1.9 \cdot 10^{-5}$	²³⁸ U	$< 5.4 \cdot 10^{-3}$
Liquid scintillator	$4.9 \cdot 10^{-8}$	⁸⁵ Kr	$< 1.9 \cdot 10^{-3}$
Steel vessel	$1.4 \cdot 10^{-5}$	²³² Th	$< 3.4 \cdot 10^{-4}$
Veto PMTs	$1.9 \cdot 10^{-5}$	129 ₁	
Shielding	$3.9 \cdot 10^{-6}$	1291	$9.2 \cdot 10^{-5}$
External	O(10 ⁻⁴)	Total	$< 5.2 \cdot 10^{-1}$
Total	$7.2 \cdot 10^{-1}$		

Careful cleaning in clean room environment

The SABRE South Experiment at the SUPL

Radio-impurities

ARCCENTRE OF EXCELLENCE FOR DARTICLE PHYSICS

Crystal background rate expected from intrinsic (left) and cosmogenic (right) contamination

The SABRE South Experiment at the SUPL