Exclusion bounds for neutral gauge bosons

Zoltán Péliwith Z. Trócsányi @ PRD 015027 / arXiv: [2402.14786]

Outline

What is a Z' boson?

- Free parameters
- Light Z' bosons
- Heavy Z' bosons
- Conclusions

A Z' boson is a hypothetical elementary particle in particle physics. Here's a detailed explanation of what it is:

What is a Z' Boson?

- Hypothetical Particle: The Z' boson (pronounced "Z-prime") is a proposed particle that extends beyond the particles described in the Standard Model of particle physics.
- Gauge Boson: Like the Z boson in the Standard Model, the Z' boson is a gauge boson. Gauge bosons are force carrier particles that mediate the fundamental forces of nature.

Motivation for extra neutral gauge bosons (Z')

- Fifth fundamental interaction?
- Breaking a larger gauge group with a scalar VeV \rightarrow the unbroken subgroup has U(1)-s (e.g.: GUT, SUSY, string)
- Z' can connect to a secluded sector in the SM:
- A discovery would have a lot of consequences: extended scalar (make Z' massive) and extended fermion sectors (cancel gauge anomalies)

Free parameters

Minimal extension of the SM with Z'

- SM gauge group + $U(1)_z$: new gauge field B'_{μ}
- Covariant derivative is modified:

$$D_{\mu}^{U(1)} = -i (y z) \begin{pmatrix} g_{y} & -g_{z} \eta \\ 0 & g_{z} \end{pmatrix} \begin{pmatrix} B_{\mu} \\ B_{\mu}' \end{pmatrix}$$

- $\eta \propto \text{kinetic mixing } (F'_{\mu\nu}F^{\mu\nu})$
- Rotate to mass eigenstates (3 neutral gauge bosons):

$$\begin{pmatrix} B_{\mu} \\ W_{\mu}^{3} \\ B_{\mu}' \end{pmatrix} = \begin{pmatrix} c_{W} & -s_{W} & 0 \\ s_{W} & c_{W} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{Z} & -s_{Z} \\ 0 & s_{Z} & c_{Z} \end{pmatrix} \begin{pmatrix} A_{\mu} \\ Z_{\mu} \\ Z_{\mu}' \end{pmatrix}$$
Corfu Workshop 2024 (Pello 2) (

Extra fields

- New singlet scalar field χ with z_{χ} : make the Z' massive
- $z_{\chi} \sim$ normalize g_z , such that $z_{\chi} \coloneqq -1$
- New fermion fields ν_R (right handed neutrinos) with z_N : cancel gauge anomalies
- $z_N \sim$ neutrino mass generation mechanism: tree level Majorana mass term is allowed if $z_{\chi} + 2z_N = 0$ ($\sim \chi \bar{\nu}_R \nu_R^c$)

z charge remarks

- 2 free z charges: anomaly cancellation + Yukawa masses + normalization of g_z
 - Fixes z_{ϕ}

• Usually z_u and z_q are chosen as free ones \rightarrow choose z_{ϕ} , z_N instead [hep-ph/0212073]

z charge assignment

$ \begin{array}{c} \text{field} \\ Q_{\text{L}} \\ \\ U_{\text{R}} \\ \\ \\ D_{\text{R}} \end{array} $	$egin{array}{c} SU(3)_{c} & & \ 3 & & \ 3 & & \ 3 & & \ 3 & & \ \end{array}$	$\begin{array}{c} SU(2)_{\rm L} \\ 2 \\ 1 \\ 1 \end{array}$	$\begin{array}{c} y\\ \frac{1}{6}\\ \frac{2}{3}\\ -\frac{1}{2} \end{array}$	$z_{q} = \frac{1}{3}(z_{\phi} - z_{N})$ $z_{u} = \frac{1}{3}(4z_{\phi} - z_{N})$ $z_{d} = -\frac{1}{2}(2z_{\phi} + z_{N})$	 Cancel anomalies +Yukawa mass terms = Fix all, but two <i>z</i> charges
$\frac{\ell_{\rm L}}{N_{\rm R}}$	1	2	$-\frac{1}{2}$ 0	$z_{\ell} = z_N - z_{\phi}$ z_N	 χ : new singlet scalar N: right handed (sterile)
e_{R} ϕ χ	1 1 1	1 2 1	-1 $\frac{1}{2}$ 0	$z_e = z_N - 2z_\phi$ z_ϕ $z_{\gamma} = -1$	• Choose z_N and z_{ϕ} to be free

z charge remarks

- 2 free z charges: anomaly cancellation + Yukawa masses + normalization of g_z
 - \bigcirc Fixes z_{ϕ}

 $z_{\chi} \coloneqq -1$

- Usually z_u and z_q are chosen as free ones \rightarrow choose z_{ϕ} , z_N instead [hep-ph/0212073]
- z_{ϕ} and η appears only in the combination: $z_{\phi} \frac{\eta}{2}$
- In the branching ratios of Z' the combination appears:

$$\mathcal{Z} = \frac{z_{\phi} - \eta/2}{z_N}$$

• E.g.: in the B-L model: $\mathbf{Z} = \mathbf{0}$

The parameter $C_{w,s} \simeq 1.4 \cdot 10^{-4}$ is from three-body decays*

The mixing parameter η

• z_{ϕ} and η appears only in the combination: $z_{\phi} - \frac{\eta}{2} =$ effective z-charge

• Multiple paradigms, but all need an arbitrary scale:

$$z_{\phi} - \frac{\eta(\mu_0)}{2} = 0 \text{ or } \eta(\mu_0) = 0$$

- 1st option may need large couplings \rightarrow use the 2nd one
- Run the RG eqns. with largest possible variation: $\mu_0 = M_{\rm Pl}$
- We obtain uncertainty bands in **Z**: different models may have the same pheno! Corfu Workshop 2024 | Péli
 11

Other free parameters:

- $M_{Z'}$ (or rather $\xi = M_{Z'}/M_Z$ to treat diff. mass scales)
- Either the mixing angle S_z or the new gauge coupling g_z :

Other free parameters:

- $M_{Z'}$ (or rather $\xi = M_{Z'}/M_Z$ to treat diff. mass scales)
- Either the mixing angle s_z or the new gauge coupling g_z :

• The tree level prediction is:

$$\rho = \frac{M_W^2}{M_Z^2 c_W^2} = 1 + (\xi^2 - 1) s_Z^2$$
[2305.1193]
[2306.01836]

13

Corfu Workshop 2024 | Péli

Light Z' bosons

Constraints

• Indirect: EW. Precision Observables $\rightarrow \rho$ -parameter

$$|s_z| < 4.5 \cdot 10^{-3}$$
 or $|z_N g_z| < \frac{1.7 \cdot 10^{-3}}{|z|} @ 95\%$ C.L.

Constraints

• Indirect: EW. Precision Observables $\rightarrow \rho$ -parameter

$$|s_z| < 4.5 \cdot 10^{-3}$$
 or $|z_N g_z| < \frac{1.7 \cdot 10^{-3}}{|z|} @ 95\%$ C.L.

- Direct: searches for $Z' \rightarrow inv.$: BaBar [1702.03327], NA64 [1906.00176]
- Direct: searches for $Z' \rightarrow e^+e^-$: FASER [2308.05587]

Far from a complete list

• These experiments search for dark photons (A'):

 $\mathcal{L} \supset \frac{1}{2} m_{A'}^2 A'^2 + (e\epsilon) A'_{\mu} \sum_f Q_f \bar{f} \gamma^{\mu} f \rightarrow \epsilon (M_{Z'}, |s_z|, \mathcal{Z}) \text{ or } \epsilon (M_{Z'}, |z_N g_Z|, \mathcal{Z})$ Corfu Workshop 2024 | Péli $[1801 \ 04847] \qquad 16$

Matching to dark photons

- Relate similar processes (which is searched for) [1801.04847]
- For NA64 and BaBar one has

$$e\epsilon = \frac{|v_{Z',\ell}|}{2s_W c_W} \sqrt{\operatorname{Br}(Z' \to \operatorname{inv.})}$$

Matching to dark photons

- Relate similar processes (which is searched for) [1801.04847]
- For NA64 and BaBar one has

$$e\epsilon = \frac{|v_{Z',\ell}|}{2s_W c_W} \sqrt{\operatorname{Br}(Z' \to \operatorname{inv.})}$$

• For the FASER, the A' is also required to decay in the detector \rightarrow solve the matching equations

$$\Gamma(\pi^0 \to A' + \gamma) \operatorname{Br}(A' \to e^+ e^-) = \Gamma(\pi^0 \to Z' + \gamma) \operatorname{Br}(Z' \to e^+ e^-)$$

$$m_{A'}\Gamma_{A'} = M_{Z'}\Gamma_{Z'}$$

Corfu Workshop 2024 | Péli

Matching to dark photons

- Relate similar processes (which is searched for) [1801.04847]
- For NA64 and BaBar one has

$$e\epsilon = \frac{|v_{Z',\ell}|}{2s_W c_W} \sqrt{\operatorname{Br}(Z' \to \operatorname{inv.})}$$

• For the FASER, the A' is also required to decay in the detector \rightarrow solve the matching equations. For $M_{Z'} \ll m_{\pi}^0$:

$$e\epsilon = \frac{|v_{Z',\ell}|}{2 s_W c_W} \sqrt{\operatorname{Br}(Z' \to e^+ e^-)} \text{ and } M_{Z'} = \operatorname{Br}(Z' \to e^+ e^-) M_{A'}$$

SWSM: $z_{\phi} = 1$ and $z_N = 1/2$

Sample exclusion bounds

Heavy Z' bosons

Constraints

• Indirect: EW. Precision Observables $\rightarrow \rho$ -parameter

$$|s_{z}| < 2.5 \cdot 10^{-3} \left[\frac{1 \text{ TeV}}{M_{z'}} \right] \text{ or } |z_{N} g_{z}| < \frac{0.11}{|z|} \left[\frac{M_{z'}}{1 \text{ TeV}} \right] @ 95\% \text{ C.L.}$$

Constraints

• Indirect: EW. Precision Observables $\rightarrow \rho$ -parameter

$$|s_z| < 2.5 \cdot 10^{-3} \left[\frac{1 \text{ TeV}}{M_{Z'}} \right] \text{ or } |z_N g_z| < \frac{0.11}{|z|} \left[\frac{M_{Z'}}{1 \text{ TeV}} \right] @ 95\% \text{ C.L.}$$

• Direct: searches in the LHC (ATLAS [1903.06248] and CMS [2103.02708]) in dilepton final states:

$$\sigma = \frac{4\pi^2}{3s} \frac{\Gamma_{Z'}}{M_{Z'}} \operatorname{Br}(Z' \to \ell^+ \ell^-) \sum_{q} \operatorname{Br}(Z' \to \overline{q}q) w_q(s, M_{Z'})$$

• experiments use assumptions for $\gamma_{Z'} = \Gamma_{Z'}/M_{Z'}$

Model independent bounds?

There is a **Z** value corresponding to a *loosest* bound!

Projections for future colliders

...using detector simulations for the HE-LHC and FCC-hh

Corfu Workshop 2024 | Péli

Interesting process

• For very large $M_{Z'}$ (~ 10 TeV) the decay $Z' \rightarrow Z + W^+ + W^-$

might dominate over the leptonic decay of the Z'!

• The ratio of the branching fractions (also the cross sections' in the NWA):

$$\frac{\sigma(pp \to Z' + X \to ZWW + X)}{\sigma(pp \to Z' + X \to \ell\ell + X)} = \frac{\operatorname{Br}(Z' \to Z + W^+ + W^-)}{\operatorname{Br}(Z' \to \ell^+ + \ell^-)} = 0.4 \left(\frac{Z^2}{2 - 6Z + 5Z^2}\right) \left[\frac{M_{Z'}}{10 \text{ TeV}}\right]^2$$

• Potentially relevant for FCC-hh

Conclusions

- Useful parametrization: different U(1) extensions can be investigated on the same footing
- The parametrization can be also be used in models with no sterile neutrinos, e.g: in the $L_{\mu} L_{\tau}$ model
- ρ can be used to quickly assess the constraints from EWPO
- In the $p + p \rightarrow Z' + X \rightarrow \ell^+ \ell^- + X$ searches there is a least severe bound: model independent constraints

Backup

V-A couplings

• Most of the Z' phenomenology depends on:

$$\mathcal{L}_{\mathrm{NC}}^{(Z')} = -\frac{e}{2s_w c_w} Z'_{\mu} \sum_f \bar{f} \gamma^{\mu} (v_{Z',f} - a_{Z',f} \gamma^5) f$$

- $v_{Z',f}$ and $a_{Z',f}$ are pretty simple for $\xi \gg 1$ and $\xi \ll 1$
- For instance: $a_{Z',f}$ is negligible for $\xi \ll 1$
- but $a_{Z',f} = \pm \frac{1}{2} s_z \xi^2$ for $\xi \gg 1$
- The vector cps. depend on $(s_z, \xi, \mathbf{Z}) \leftrightarrow (z_N g_z, \mathbf{Z})$ Corfu Workshop 2024 | Péli

B-L: $z_{\phi} = 0$ and $z_N = 1/2$

Uncertainty due to sterile neutrinos + running of η

31