The Dark Side of the Universe - DSU2024

Domain walls beyond Z₂

Ye-Ling Zhou

國科大杭州髙等研究院 Hangzhou Institute for Advanced Study, UCAS

SEP 8 - 14, 2024

2024-09-13

基础物理与数学科学学院

School of Fundamental Physics and Mathematical Sciences

Contents

- Brief introduction of Z_2 domain walls \bigcirc
- Domain walls from Z_N breaking (N > 2) 0
- Non-Abelian domain walls, tetrahedral/octahedral cases (A_4/S_4) 0
- Gravitational waves from domain walls beyond Z_2 0
- Application in the testability of discrete flavour symmetries
- Talk based on

[1] Gravitational wave signatures from discrete flavor symmetries,

[2] Collapsing domain walls beyond Z_2 , [3] Classification of Abelian domain walls,

- G. Gelmini, S. Pascoli, E. Vitagliano, YLZ, 2009.01903
 - Y. Wu, K.P. Xie, YLZ, 2204.04374
 - Y. Wu, K.P. Xie, YLZ, 2205.11529
- [4] Non-Abelian domain walls, B. Fu, S. King, L. Marsili, S. Pascoli, J. Turner, YLZ, 2409.xxxxx

Effective potential including finite-*T* corrections $V(\phi, T) \approx D(T^2 - T_0^2)\phi^2 - \tilde{\mu}_T \phi^3 + \frac{\lambda_T}{\Lambda}\phi^4$

Domain walls: static solution of classic field in 1D

11

Z_2 domain wall —— the simplest domain wall

EOM of field
$$\partial^2 h + \frac{\partial V(h)}{\partial h} = 0$$

Soliton solution: scalar solution along z direction

$$h(z) = -v \tanh\left(\frac{z}{\delta}\right)$$
$$h|_{z \to -\infty} = +v - \cdots$$

Vilenkin, Phys. Rept.121 (1985) 263

Z_2 domain wall —— the simplest domain wall

Given a toy potential for a real scalar in Z_2

EOM of field
$$\partial^2 h + \frac{\partial V(h)}{\partial h} = 0$$

Tension / surface energy

Thickness

Vilenkin, Phys. Rept.121 (1985) 263

Necessity to include a bias term

Stable domain wall leads to cosmological problem 0

(scaling solution) $\rho_{\rm DW} \sim \sigma H$

No fundamental rules to force discrete symmetry to be an exact symmetry 0

- Bias term:

$$\delta V = \epsilon v h \left(\frac{1}{3}h^2 - v^2\right)$$

Vacua splitting

 (V_{bias})

Sufficient small to stabilise vacuum configuration and to survive the domain walls for a certain period Not to small to provide enough vacuum pressure to push the wall outside the horizon at a certain

stage before BBN

Gravitational waves spectrum is peaked during the collapsing domain walls

$$\frac{\rho_{\rm DW}}{\rho_c} \sim \frac{\sigma G}{H} \sim \frac{\lambda^{1/2} v^3}{M_{\rm pl} T^2} \qquad \rho_c = \frac{3H^2}{8\pi G}$$

Gravity and chiral anomaly may break discrete symmetries explicitly at quantum level

Hiramatsu, Kawasaki, Saikawa, 1002.1555

$$_{s})_{10} = V|_{+v} - V|_{-v} = -\frac{4}{3}\epsilon v^{4}$$

-> see Alexander Vikman's talk

14

- Z_N from $U(1)_{PO}$ breaking
- Discrete symmetries in SUSY 0 e.g. Z_3 in NMSSM
- $\sim Z_N$ as flavour symmetry
- Non-Abelian discrete flavour symmetries A_4, S_4, \ldots

0 P. Sikivie, 1982

.....

Review in Chung, Everett, Kane, King, Lykken, Wang, 0312378

Reviews e.g., Altarelli, Feruglio, 1002.0211 King, Luhn, 1301.1340; Xing, 1909.09610; Feruglio, Romanino, 1912.06028

Z_N (N > 2) and its vacuum configuration

 Z_N -invariant potential for a complex scalar $\phi = (h + ia)/\sqrt{2}$

$$V = -\mu^{2} |\phi|^{2} + \lambda_{1} |\phi|^{4} - \lambda_{2} \mu^{4-N} (\phi^{N} + \phi^{*N})$$

(assuming CP conservation, simplest form)

N degenerate vacua: $v_k = v_0 e^{i2\pi \frac{k}{N}}$ $k = 0, 1, \ldots, N - 1$

Y.C. Wu, K.P. Xie, **YLZ**, 2205.11529

Z₃ domain walls

Tenson
$$\implies \sigma = \int_{-\infty}^{+\infty} \varepsilon(z) dz$$

$$\mu^{2} |\phi|^{2} + \lambda_{1} |\phi|^{4} - \lambda_{2} \mu (\phi^{3} + \phi^{*3}) \qquad \beta = 3\lambda_{2} / \sqrt{8\lambda_{1}} > 0$$
$$k = 0, 1, 2 \qquad \qquad v_{0} = \frac{\mu}{\sqrt{2\lambda_{1}}} (\beta + \sqrt{1 + \beta^{2}})$$

17

Z_3 domain walls

 m_a mass of pseudo Nambu-Goldstone boson

Z₄ domain walls

Z₄-invariant potential V = $v_k = v_0 e^{i\frac{2\pi}{4}k}$

Non-adjacent walls:

$$\mu^{2} |\phi|^{2} + \lambda_{1} |\phi|^{4} - \lambda_{2}(\phi^{4} + \phi^{*4}) \qquad \beta \equiv 2\lambda_{2}/\lambda_{1}$$

$$k = 0, 1, 2, 3 \qquad \qquad \nu_{0} = \frac{\mu}{\sqrt{2\lambda_{1}(1 - \beta)}}$$

$$v_0 v_1$$

- separating non-adjacent walls
 - e.g., that separating v_0 and v_2

$$v_0 v_2$$

Z₄ domain walls

Z₄ domain walls

 $\beta = 1/4$

$$v_0 \quad v_2 \quad \Rightarrow \quad v_0 \quad v_1 \quad v_2 \quad \Rightarrow \quad v_0 \quad v_1 \quad + \quad v_1 \quad v_2$$

For $\beta < 1/3$, $\sigma_2 > 2\sigma_1$, non-Adjacent DWs are unstable, decaying to two adjacent DWs

Z_N domain walls with small Z_N effects

Z_N walls with multi-scalars

e.g., Z₆-invariant potential with two scalars

$$/\mu_{\xi}^2/2\lambda_{\xi}$$

$$\frac{\beta + \sqrt{1 + \beta^2}}{\sqrt{2\lambda_1}} e^{\pm i2\pi k/3}$$

Walls wrapped by walls

Classification of Abelian domain walls

A incomplete list

Potential forms		breaking chains	textures of domain walls
single scalar	large ϕ^N	$Z_N \to 1$	adj. walls non-adj. walls $(N \ge 4)$
	small ϕ^N	appr. $U(1) \rightarrow Z_N \rightarrow 1$	string-bounded adj. walls
	C1	appr. $U(1) \rightarrow Z_N \rightarrow 1$	string-bounded adj. walls
multiscalar	C2	$Z_N \to Z_{\gcd(q_{\xi},N)} \to 1$	walls wrapped by walls
$ \langle \phi, \xi m with $ charges q_{ϕ}, q_{ξ})	C3	$Z_N \to \begin{cases} Z_{\gcd(q_{\xi},N)} \\ Z_{\gcd(q_{\phi},N)} \end{cases}$	walls blind among diff. types

C1) Charges of ϕ and ξ are coprime with N, i.e., $gcd(q_{\xi}, N) = gcd(q_{\phi}, N) = 1$.

C2) q_{ξ} has a non-trivial common divisor of N, but q_{ϕ} is still coprime with N, i.e., $gcd(q_{\xi}, N) > 1$ and $gcd(q_{\phi}, N) = 1$.

further require these two gcds are coprime with each other without loss of generality, otherwise, the essential symmetry is not Z_N but $Z_N / \text{gcd}(\text{gcd}(q_\phi, N), \text{gcd}(q_{\xi}, N))$.

Y. Wu, K.P. Xie, YLZ, 2205.11529

(gcd: greatest common divisor)

C3) Both q_{ϕ} and q_{ξ} have non-trivial common divisors with N, i.e., $gcd(q_{\phi}, N)$, $gcd(q_{\xi}, N) > 1$. We

Bias term and GWs from collapsing domain walls

$$\delta V = \frac{2e^{i\alpha}}{3\sqrt{3}} \epsilon \phi \left(\frac{1}{4}\phi^3 - v_0^3\right) + h.c. \qquad 10^{-5}$$

$$(V_{\text{bias}})_{10} = V|_{v_1} - V|_{v_0} = \epsilon v_0^4 \cos\left(\alpha + \frac{\pi}{6}\right)$$

$$(V_{\text{bias}})_{20} = V|_{v_2} - V|_{v_0} = \epsilon v_0^4 \cos\left(\alpha - \frac{\pi}{6}\right)$$

GW spectrum, broken power laws based on Saikawa [1703.02576]

Testability of Z_N walls via GWs: taking Z_3 as a case study

• Due to the different dynamics of Z_3 DW from Z_2 DW, we expect a different GW spectrum.

• However, a quantitative study requires a detailed simulation of domain walls.

Non-Abelian domain walls

Symmetry: the octahedral group S_4

Representation matrices in the triplet $\mathbf{3}'$

$$T = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad \qquad S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Renormalisable potential

$$V(\phi) = -\frac{\mu^2}{2}I_1 + \frac{g_1}{4}I_1^2 + \frac{g_2}{2}I_2 \qquad g_1 > 0 \quad g_2 = I_1 = \phi_1^2 + \phi_2^2 + \phi_3^2$$
$$I_2 = \phi_1^2\phi_2^2 + \phi_2^2\phi_3^2 + \phi_3^2\phi_1^2$$

also applies to $A_4 \times Z_2^P (\phi \leftrightarrow - \phi)$

Irreps: 1, 1', 2, 3, 3'

Non-Abelian domain walls

Vacuum configuration

 $g_{2} > 0 \qquad Z_{2}\text{-preserving vacua}$ $v_{m} \in \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} -1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\-1 \end{pmatrix} \right\} v$

m = 1, 2, 3, 4, 5, 6

 $g_2 < 0$ Z_3 -preserving vacua

n = 1, 2, 3, 4, 5, 6, 7, 8

All possible domain walls from S_4 breaking

 \Rightarrow 5 types

Domain wall solutions

B. Fu, S. King, L. Marsili, S. Pascoli, J. Turner, YLZ, 2409.xxxxx

Domain wall solutions

B. Fu, S. King, L. Marsili, S. Pascoli, J. Turner, YLZ, 2409.xxxxx

Domain wall solutions

$$\overline{\sigma}_{\text{SII}}(\beta) \approx \frac{2\sqrt{2}}{3} \frac{1}{1+1.875\beta^{-1/2}} \left[1+0.5\frac{\beta^{1/2}}{1+2\beta}\right]$$

$$\tilde{\sigma}_{\text{TII}}(\beta) = \frac{0.77(-\beta)^{0.5}}{(1.5+\beta)^{0.25}} \qquad \tilde{\sigma}_{\text{TIII}}(\beta) = \frac{2.06(-\beta)^{0.5}}{1+0.09(-\beta)^{0.6}}$$

GW spectrums, for illustration

With bias $V_{\text{bias}}^{ij} = \epsilon_{ij} v^4$

Testing discrete flavour symmetries

$$\begin{split} & \text{A lepton flavour model} \quad \text{in } A_4 & \text{with explicit breaking} \\ \hline -\mathcal{L}_{l,\nu} \supset y_D \bar{L}_i \tilde{H} N_i + y_N \bar{N}_i N_j^c \chi_k + \frac{1}{2} u \bar{N}_i^c N_i \\ & + \frac{\varphi_i}{\Lambda} \bar{L}_i H(y_e e_R + \omega^{1-i} y_\mu \mu_R + \omega^{i-1} y_\tau \tau_R) + \text{h.c.} \\ \hline i \neq j \neq k \neq i, \ \omega = e^{i2\pi/3} & \hline i \neq j \neq k \neq i, \ \omega = e^{i2\pi/3} \\ \hline & \mu - \tau \text{ reflection symm. \& TM2 mixing} \\ & |U| = \begin{pmatrix} \frac{2}{\sqrt{6}} \cos \theta & \frac{1}{\sqrt{2}} \sin \theta | \\ |\frac{1}{\sqrt{6}} \cos \theta - \frac{i}{\sqrt{2}} \sin \theta | \\ |\frac{1}{\sqrt{6}} \cos \theta - \frac{i}{\sqrt{2}} \sin \theta | \\ |\frac{1}{\sqrt{6}} \cos \theta - \frac{i}{\sqrt{2}} \sin \theta | & \frac{1}{\sqrt{3}} & |\frac{1}{\sqrt{6}} \sin \theta + \frac{i}{\sqrt{2}} \cos \theta | \\ |\frac{1}{\sqrt{6}} \cos \theta - \frac{i}{\sqrt{2}} \sin \theta | & \frac{1}{\sqrt{3}} & |\frac{1}{\sqrt{6}} \sin \theta - \frac{i}{\sqrt{2}} \cos \theta | \\ \hline \theta_{23} = 45^* & \delta = \pm 90^* & a_{21}, a_{31} = 0.180^* & \sin \theta_{12} = \frac{1}{\sqrt{3} \cos \theta_{13}} & \sin \theta_{13} \simeq 2\sqrt{\frac{2}{3} \frac{|\epsilon_{22}|v_X M_2}{|\Delta M_{31}^2|}} \end{split}$$

h.c.
with explicit breaking
$$-\mathcal{L}_{A_4} = \frac{1}{2} \epsilon_{ij} v_{\chi} \bar{N}_i^c N_j + \text{h.c.}$$
$$\epsilon_{12} = \epsilon_{13} = 0, \ \epsilon_{22} = -\epsilon_{33}$$

Testability of domain walls in flavour symmetries

Testing non-Abelian discrete flavour symmetry

Summary & Outlook

- Abelian DWs, in general, can have properties very different from the Z₂ DW.
 - ✓ Two types of Z₄ DWs: adjacent and non-adjacent DWs. The latter may be unstable.
 - There might be more complicated DWs in Z_N, e.g., string-bounded DWs, DWwrapped DWs. We give an incomplete classification of Z_N DWs.
- ✓ Non-Abelian DW, taking S₄ as an example, is studied for the first time.
 - Five types are classified, SI, SII, TI, TII, TII. The former two separate Z₂ vacua and the latter three separate Z₃ vacua.
 - SI, TI, and TIII are unstable in some parameter space.
- Bias terms are required for domain walls to collapse before they dominates the Universe. Due to the existence of different DWs and different biases among the vacua, we expect a different dynamics of DW collapsing and the consequent GW spectrum should be different from Z₂ DW.

Thank you very much!