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CMB observations and BSM physics

• (ns, r) precision measurements from CMB
• No signal of physics beyond the Standard Model (BSM) 

at the LHC

credit: NASA
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Planck Collaboration: Constraints on Inflation
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Fig. 8. Marginalized joint 68 % and 95 % CL regions for ns and r at k = 0.002 Mpc�1 from Planck alone and in combination with
BK14 or BK14 plus BAO data, compared to the theoretical predictions of selected inflationary models. Note that the marginalized
joint 68 % and 95 % CL regions assume dns/d ln k = 0.

limits obtained from a ⇤CDM-plus-tensor fit. We refer the inter-
ested reader to PCI15 for a concise description of the inflationary
models studied here and we limit ourselves here to a summary
of the main results of this analysis.

– The inflationary predictions (Mukhanov & Chibisov 1981;
Starobinsky 1983) originally computed for the R2 model
(Starobinsky 1980) to lowest order,

ns � 1 ' �
2
N
, r '

12
N2 , (48)

are in good agreement with Planck 2018 data, confirm-
ing the previous 2013 and 2015 results. The 95 % CL al-
lowed range 49 < N⇤ < 58 is compatible with the R2 ba-
sic predictions N⇤ = 54, corresponding to Treh ⇠ 109 GeV
(Bezrukov & Gorbunov 2012). A higher reheating temper-
ature Treh ⇠ 1013 GeV, as predicted in Higgs inflation
(Bezrukov & Shaposhnikov 2008), is also compatible with
the Planck data.

– Monomial potentials (Linde 1983) V(�) = �M4
Pl (�/MPl)p

with p � 2 are strongly disfavoured with respect to the
R2 model. For these values the Bayesian evidence is worse
than in 2015 because of the smaller level of tensor modes
allowed by BK14. Models with p = 1 or p = 2/3
(Silverstein & Westphal 2008; McAllister et al. 2010, 2014)
are more compatible with the data.

– There are several mechanisms which could lower the pre-
dictions for the tensor-to-scalar ratio for a given potential
V(�) in single-field inflationary models. Important exam-
ples are a subluminal inflaton speed of sound due to a non-
standard kinetic term (Garriga & Mukhanov 1999), a non-
minimal coupling to gravity (Spokoiny 1984; Lucchin et al.

1986; Salopek et al. 1989; Fakir & Unruh 1990), or an ad-
ditional damping term for the inflaton due to dissipation in
other degrees of freedom, as in warm inflation (Berera 1995;
Bastero-Gil et al. 2016). In the following we report on the
constraints for a non-minimal coupling to gravity of the type
F(�)R with F(�) = M2

Pl + ⇠�
2. To be more specific, a quartic

potential, which would be excluded at high statistical signif-
icance for a minimally-coupled scalar inflaton as seen from
Table 5, can be reconciled with Planck and BK14 data for
⇠ > 0: we obtain a 95 % CL lower limit log10 ⇠ > �1.6 with
ln B = �1.6.

– Natural inflation (Freese et al. 1990; Adams et al. 1993) is
disfavoured by the Planck 2018 plus BK14 data with a Bayes
factor ln B = �4.2.

– Within the class of hilltop inflationary models
(Boubekeur & Lyth 2005) we find that a quartic poten-
tial provides a better fit than a quadratic one. In the quartic
case we find the 95 % CL lower limit log10(µ2/MPl) > 1.1.

– D-brane inflationary models (Kachru et al. 2003; Dvali et al.
2001; Garcı́a-Bellido et al. 2002) provide a good fit to
Planck and BK14 data for a large portion of their parame-
ter space.

– For the simple one parameter class of inflationary potentials
with exponential tails (Goncharov & Linde 1984; Stewart
1995; Dvali & Tye 1999; Burgess et al. 2002; Cicoli et al.
2009) we find ln B = �1.0.

– Planck 2018 data strongly disfavour the hybrid model driven
by logarithmic quantum corrections in spontaneously broken
supersymmetric (SUSY) theories (Dvali et al. 1994), with
ln B = �5.0.

18

CMB constraint on inflation models 
[Fig. from Planck 2018]

• Monomial potentials (p ≧ 2) in GR are disfavored.

• What if we could nail down to further precision?

proofs JCAP_076P_0415

5.4 Potential driven G5-inflation: h5 = const.

Finally, we consider the simplest case of h5 = −1/M5, for which the Lagrangian is of the
form

L =
M2

PR

2
+X − V − 1

M5
XGµν∇µ∇νφ

+
1

6M5

[
(!φ)3 − 3!φ(∇µ∇νφ)

2 + 2(∇µ∇νφ)
3
]
. (5.32)

As far as we know, inflation dynamics of this Lagrangian has not been addressed in the
literature (although the model itself was proposed in [32]). Below, we show that inflation
with sub-strong coupling excursion is possible in this model.

Assuming that the h5 term dominates over the canonical kinetic term in the equation
of motion during inflation, realized when (using the equation of motion)

H3φ̇ ≫ M5, i.e. M
2(2p−3)
2p+3

P m
4(4−p)
2p+3 ≫ M

10
2p+3 , (5.33)

we have an expression for φ̇ in terms of φ,

φ̇ = −
√

M5Vφ

9H4
, (5.34)

which can be used to calculate the e-folding number during inflation

N =

∫
H

φ̇
dφ ≃ 2√

3p3/2(2p+ 3)

m4−p

M3
PM

5/2
φN

p+ 3
2 − p

2p+ 3
. (5.35)

Thus the field value N e-folds before the end of inflation is given by

φN ≃
[
√
3p3/2

(
p+

3

2

)
M3

PM
5/2

m4−p

(
N +

p

2p+ 3

)] 2
2p+3

. (5.36)

The Planck normalization gives one constraint on the parameters, which can be written
as

Pζ =
1

16π2
√
2p

p+6
2p+3

[√
3

(
p+

3

2

)(
N +

3

2p+ 3

)] 4p+3
2p+3

(
m

MP

) 2(p+6)
2p+3 (m

M

)− 5p
2p+3

. (5.37)

For instance, taking p = 2, N = 60 yields

m = 2.2× 10−12

(
M

MP

)−5/3( Pζ

2.2× 10−9

) 7
6

MP . (5.38)

Substituting this back into φN=60, we obtain an upper bound for the field excursion during
inflation

∆φ " φN=60 = 4.1× 10−2

(
M

1011GeV

)5/3( Pζ

2.2× 10−9

)−1 (√
ϵMPH

2
) 1

3 , (5.39)

which is smaller than (
√
ϵMPH2)1/3 if M " 1011GeV.
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Starobinsky R2 Inflation  
[Starobinsky 1980; Mukhanov & Chibisov 1981]

• One of the oldest models of Inflation, before models of 
Sato and Guth

• A single parameter M characterizes the model.

S =
1

2�2

�
d4x
�
�g

�
R +

R2

6M2

�
+ Sm

← Higgs Sm =
�

d4x
�
�g

�
�1

2
(��)2 � V (�)

�

+ minimally coupled SM, RHN 
+ “desert”  or BSM 
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R2 Inflation as scalar-tensor theory  
[Whitt 1984; Maeda 1988]

SJ =
1

2�2

�
d4x

�
�ĝ

�
R̂ +

R̂2

6M2

�
+ Sm

Sm =
�

d4x
�
�ĝ

�
�1

2
(�̂�̂)2 � V (�̂)

�
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R2 Inflation as scalar-tensor theory  
[Whitt 1984; Maeda 1988]
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Then the gravitational Lagrangian reads [27, 28]

Lgrav =
p
�g

"
M

2
p

2
R�

1

2
@
µ
�@µ�� V (�)

#
, (14)

where we have redefined R with the rescaled metric and
removed carets (ˆ) on variables. We call this conformally
(Weyl) rescaled frame as the Einstein frame, where � is
the canonically normalized scalar field that drives infla-
tion in the early universe (dubbed inflaton or scalaron).

In the Einstein frame picture, inflation takes place dur-
ing slow rolling of the scalaron on the flat part of its
potential V (�) [Eq. (13)]. Therefore, we can use stan-
dard formulas on potential-driven slow roll inflation in
the literature (see, e.g., [12, 30] for reviews). The power
spectra of primordial curvature and gravitational wave
perturbations (⇣k and �+,⇥

k , respectively) on large scales
are given by

P⇣(k) =
k
3

2⇡2
|⇣k|

2
'

H
2

8⇡2✏M2
p

'
V

24⇡2✏V M
4
p

, (15)

P�(k) =
k
3

⇡2
|�k|

2
'

2H2

⇡2M2
p

'
2V

3⇡2M4
p

, (16)

where all quantities are evaluated at the CMB scale k =
k⇤ and slow roll parameters are defined as

✏ = �
Ḣ

H2
, ✏V =

V
02
M

2
p

2V
. (17)

From Eqs. (13), (15) and (17), we get

P⇣(k) '
3M2

128⇡2M2
p

e
2
p

2
3

�
Mp '

N
2
M

2

24⇡2M2
p

, (18)

where the number of e-folds is given by

N⇤ = �

Z ⇤

f
dtH '

3

4
e
p

2
3

�⇤
Mp . (19)

The unique parameter, scalaron mass M , is thus fixed
by the COBE-WMAP normalization of the amplitude of
curvature perturbations as [28, 31–33]

M ' 10�5
Mp

4⇡
p
30

N⇤

✓
P⇣(k⇤)

2⇥ 10�9

◆1/2

(20)

⇠ 10�5
Mp ⇠ 1027cm�1

⇠ 1051Mpc�1
,

which is roughly the physical size of the Hubble horizon
at the end of inflation.

The primordial amplitude of gravitational waves is
characterized by the ratio between Eqs. (16) and (15):

r =
P�(k)

P⇣(k)
' 16✏ '

12

N2
⇤
. (21)

Scale dependences of the primordial spectra are given
by

ns � 1 =
d lnP⇣(k)

d ln k
' �6✏V + 2⌘V ' �

2

N⇤
, (22)

nt =
d lnP�(k)

d ln k
' �2✏V ' �

3

2N2
⇤
, (23)

dns

d ln k
' 16✏V ⌘V � 24✏2V � 2⇠2V ' �

2

N2
⇤
, (24)

dnt

d ln k
' 4✏V ⌘V � 8✏2V ' �

3

N3
⇤
, (25)

where we have used ✏V ' 3/(4N2
⇤ ), ⌘V = V

00
M

2
p/V '

�1/N⇤ and ⇠2V = V
0
V

000
M

4
p/V

2
' 1/N2

⇤ .
A precise value of N⇤ depends on particle contents of

the universe and how they couple to the inflaton dur-
ing reheating. How does reheating take place after the
R

2-inflation? The matter sector is assumed to be confor-
mally coupled to gravity in the original work [1, 2], where
he estimated the gravitational decay rate of the scalaron
by using Bogoliubov’s method in the Jordan frame (see
also [10, 34]). In this frame, the Ricci scalar becomes dy-
namical, contrary to the general relativity, and starts os-
cillating after inflation. It is similar to a dust-dominated
phase.
In the Einstein frame picture, we can do the equivalent

analysis. Expanding the scalaron potential (13) around
the origin, we get V (�) ' M

2
�
2
/2 + · · · for � . Mp.

Thus we can interpret an oscillating homogeneous field
� as a condensate of massive scalar particles (scalarons)
with zero momenta and mass M . When the metric is
rescaled, interaction between the scalaron and matter
sector is semi-classically [35] and quantum mechanically
[36] induced as

Lmatt
p
�ĝ

=� ĝ
µ⌫(Dµ�̂)

⇤
D⌫ �̂� ��(�̂

⇤
�̂)2 �

m
2
�

f
�̂
⇤
�̂

�
ˆ̄
 

h
ê
µ
↵�

↵(@µ � �̂µ � igÂµ) + f
�1/2

m 

i
 ̂

�
1

4
F̂

µ⌫
F̂µ⌫ +

�h(g)

2g
(ln f)F̂µ⌫

F̂µ⌫ , (26)

where the standard model is symbolically treated as the
matter sector in which fields of spin-0 (�), spin-1/2 ( )
and spin-1 (Aµ) are rescaled as

�̂ = f
�1/2

�,  ̂ = f
�3/4

 , (27)

Âµ = Aµ, Â
µ = f

�1
A

µ
, (28)

respectively, and the covariant derivative for scalars is
defined as

Dµ�̂ = @µ�̂+ �̂@µ(ln f
1/2)� igÂµ�̂. (29)

The spin connection is conformally invariant: �̂µ = �µ

(see footnote 4 of [36]). The gauge coupling constant is
denoted by g and its running is associated with the beta

Starobinsky R2 Inflation  
[Starobinsky 1980; Mukhanov & Chibisov 1981]

Scalaron mass M is fixed by CMB temp. anisotropy

� 1013GeV
<latexit sha1_base64="vcYLBQVGnbOv5uq6mMpQODZDPVI="></latexit><latexit sha1_base64="/jUdtG+7/qUShMjzEFYwzk4oSXc="></latexit><latexit sha1_base64="/jUdtG+7/qUShMjzEFYwzk4oSXc="></latexit><latexit sha1_base64="mHKNR6ScmadLIug1hj50BN3P6BE="></latexit>
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Starobinsky R2 Inflation  
[Starobinsky 1980; Mukhanov & Chibisov 1981]
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Gravitational reheating by scalaron decay  
[YW & Komatsu gr-qc/0612120; YW 1011.3348; YW & White 1503.08430]

Lscalar = �1
2
�µ��µ� � ���

6
�µ��µ�� �2�2

12
�µ��µ�� m2

�

2
e�

2�
6
���2

Lfermion = ��̄ /D� � e�
1�
6
��m��̄�

� � e�
3�

2
�

6
��̂

� � e�
��
6
��̂
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Gravitational reheating by scalaron decay  
[YW & Komatsu gr-qc/0612120; YW 1011.3348; YW & White 1503.08430]

Lscalar = �1
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12
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��
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� �

�

�

�

�

�(�� �̄�) =
N�m2

�M

48�M2
Pl

�(�� ��) =
N�(M2 + 2m2

�)2

192�M2
PlM

� N�M3

192�M2
Pl

+
N�m2

�M

48�M2
Pl

Trh � 0.1
�

�totMp

�
Ntot

100

��1/4

Leading term
Hrh = �

Gravitational reheating by scalaron decay  
[YW & Komatsu gr-qc/0612120; YW 1011.3348; YW & White 1503.08430]
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�(�� �̄�) =
N�m2

�M

48�M2
Pl

�(�� ��) =
N�(M2 + 2m2

�)2

192�M2
PlM

� N�M3

192�M2
Pl

+
N�m2

�M

48�M2
Pl

Trh � 0.1
�

�totMp

�
Ntot

100

��1/4

Leading term

4

function from heavy intermediate particles �h(g). Insert-
ing ln f =

p
2/3(�/Mp) into Eq. (29) while expanding

Eq. (12) as

f = 1 +

r
2

3

�

Mp
+

1

3

✓
�

Mp

◆2

+ · · · , (30)

we get order by order expansion of the interaction La-
grangian with respect to �. The scalaron � can decay
into the matter sector via trilinear interactions [36]:

L3leg
p
�g

=
�1

p
6Mp

�@
µ
�
⇤
@µ��

1
p
6Mp

�
⇤
@
µ
�@µ�

+
2m2

�
p
6Mp

��
⇤
�+

m
2
 

p
6Mp

� ̄ 

+
�h(g)

2
p
6gMp

�F
µ⌫
Fµ⌫

=
2

p
6Mp

�@
µ
�
⇤
@µ�+

4m2
�

p
6Mp

��
⇤
�+

m
2
 

p
6Mp

� ̄ 

+
�h(g)

2
p
6gMp

�F
µ⌫
Fµ⌫ , (31)

where we have integrated by parts, used equations of mo-
tion for � and �⇤ to get the second equality, and omitted
carets on the variables. Note that we did not take a uni-
tary gauge because the electroweak gauge symmetry is
likely restored due to thermal corrections from standard
model particles before the scalaron decay. Otherwise, it
is convenient to take a unitary gauge with massive gauge
bosons.

Based on the above gravitationally induced couplings,
the scalaron decay rate is given by [35, 36] (also see [37,
38])

�tot = �(�! �
+
�
�) + �(�!  ̄ ) + �(�! 2Aµ),

�(�! �
+
�
�) =

N�

⇥
M

2(1 + 6⇠) + 2m2
�

⇤2

96⇡MM2
p

r
1�

4m2
�

M2
,

(32)

�(�!  ̄ ) =
N Mm

2
 

48⇡M2
p

 
1�

4m2
 

M2

!3/2

, (33)

�(�! 2Aµ) =
NAM

3

192⇡M2
p

2

4 ↵
p
8⇡

X

i=heavy

bi

3

5
2

, (34)

where N�, N and NA are the number of modes for each
field. In Eq. (32), we have included non-minimal gravita-
tional coupling to the Higgs boson ⇠R�⇤

�. If ⇠ = �1/6, �
is conformally coupled to gravity and the induced deriva-
tive coupling cancels out; as a result, the leading term in
Eq. (32) vanishes. We shall assume a minimal coupling
of the Higgs boson to gravity (⇠ = 0) to avoid complexity
for now. As is well known, massless fermions are confor-
mally invariant and the decay rate to a pair of massless

fermions vanishes [see Eq. (33)]. These rates are consis-
tent with the Jordan frame analysis [2, 10, 34]
Although the scalaron cannot decay into gauge fields

classically, it does quantum mechanically via the gauge
trace anomaly process with the rate of Eq. (34), where
↵ = g

2
/(4⇡) and bi’s are the lowest coe�cients of the

beta functions from charged particles heavier than the
scalaron. In the original setup [1], the gravitational trace
anomaly induces the R

2 term whose dimensionless con-
stant M

2
p/M

2
⇠ O(1010) is required to match with the

observed amplitude of primordial curvature perturba-
tions, which would naively imply the excessive number
of degrees of freedom Ngrav ⇠ O(1010) (also see [39]).
Even if tiny fraction of Ngrav is charged under the stan-
dard model gauge group, we can expect |

P
i=heavy bi| ⇠

O(102)�O(104) at reheating while avoiding strong cou-
plings at inflationary energy scales. Since the gauge
coupling constant takes value of ↵/(

p
8⇡) ⇠ O(10�2) �

O(10�1) at the energy scale ⇠ O(109 GeV), the anomaly
process could dominate over the scalar channel. In this
case, the shadow of heavy charged particles determines
the reheating process [36]. Note that this apparently con-
troversial property is similar to the gauge trace anomaly
of quantum chromodynamics [40] and to the super-Weyl-
Kähler anomaly [41].
If there is no charged particle heavier than the scalaron

at reheating, then the anomaly process cannot be ex-
pressed by the local e↵ective Lagrangian [the last term
of Eq. (26)]. In this case, the anomalous decay rate has
to be computed directly from loop diagrams with light
intermediate charged particles as in [36].
Now we can estimate the reheating temperature by

using the scalaron decay rate (or equivalently lifetime)
as

Trh =

p
�totMp

(10⇡2)1/4

⇣
g⇤
100

⌘� 1
4

' M

s
M

Mp

r
N� + 2NA

h
↵p
8⇡

P
i bi

i2

8⇡(90)1/4

⇣
g⇤
100

⌘� 1
4

⇠ 10�9
Mp, (35)

where g⇤ = g⇤(Trh) is the e↵ective number of relativistic
species at the time of reheating and the reheating tem-
perature Trh is defined by the moment: �tot = 3H =

3⇡g1/2⇤ T
2
rh/(

p
10Mp). To get Trh = O(109 GeV), we have

assumed the standard model g⇤ = 106.75 as the matter
sector and that the scalar decay channel is dominant with
N� = 4 and ⇠ = 0 for the Higgs boson. If the anomaly
channel is dominant, the reheating temperature can be as
high as ⇠ O(109 � 1012 GeV) depending on the number
of heavy charged modes.
Since the scalaron oscillation phase evolves as a dust-

dominated phase, the number of efolds at the CMB scale
and the reheating temperature are associated by [30]

N⇤ ' 54 +
1

3
ln

✓
Trh

109 GeV

◆
, (36)

4

function from heavy intermediate particles �h(g). Insert-
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we get order by order expansion of the interaction La-
grangian with respect to �. The scalaron � can decay
into the matter sector via trilinear interactions [36]:
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where we have integrated by parts, used equations of mo-
tion for � and �⇤ to get the second equality, and omitted
carets on the variables. Note that we did not take a uni-
tary gauge because the electroweak gauge symmetry is
likely restored due to thermal corrections from standard
model particles before the scalaron decay. Otherwise, it
is convenient to take a unitary gauge with massive gauge
bosons.

Based on the above gravitationally induced couplings,
the scalaron decay rate is given by [35, 36] (also see [37,
38])
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where N�, N and NA are the number of modes for each
field. In Eq. (32), we have included non-minimal gravita-
tional coupling to the Higgs boson ⇠R�⇤

�. If ⇠ = �1/6, �
is conformally coupled to gravity and the induced deriva-
tive coupling cancels out; as a result, the leading term in
Eq. (32) vanishes. We shall assume a minimal coupling
of the Higgs boson to gravity (⇠ = 0) to avoid complexity
for now. As is well known, massless fermions are confor-
mally invariant and the decay rate to a pair of massless

fermions vanishes [see Eq. (33)]. These rates are consis-
tent with the Jordan frame analysis [2, 10, 34]
Although the scalaron cannot decay into gauge fields

classically, it does quantum mechanically via the gauge
trace anomaly process with the rate of Eq. (34), where
↵ = g

2
/(4⇡) and bi’s are the lowest coe�cients of the

beta functions from charged particles heavier than the
scalaron. In the original setup [1], the gravitational trace
anomaly induces the R

2 term whose dimensionless con-
stant M

2
p/M

2
⇠ O(1010) is required to match with the

observed amplitude of primordial curvature perturba-
tions, which would naively imply the excessive number
of degrees of freedom Ngrav ⇠ O(1010) (also see [39]).
Even if tiny fraction of Ngrav is charged under the stan-
dard model gauge group, we can expect |

P
i=heavy bi| ⇠

O(102)�O(104) at reheating while avoiding strong cou-
plings at inflationary energy scales. Since the gauge
coupling constant takes value of ↵/(

p
8⇡) ⇠ O(10�2) �

O(10�1) at the energy scale ⇠ O(109 GeV), the anomaly
process could dominate over the scalar channel. In this
case, the shadow of heavy charged particles determines
the reheating process [36]. Note that this apparently con-
troversial property is similar to the gauge trace anomaly
of quantum chromodynamics [40] and to the super-Weyl-
Kähler anomaly [41].
If there is no charged particle heavier than the scalaron

at reheating, then the anomaly process cannot be ex-
pressed by the local e↵ective Lagrangian [the last term
of Eq. (26)]. In this case, the anomalous decay rate has
to be computed directly from loop diagrams with light
intermediate charged particles as in [36].
Now we can estimate the reheating temperature by

using the scalaron decay rate (or equivalently lifetime)
as
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where g⇤ = g⇤(Trh) is the e↵ective number of relativistic
species at the time of reheating and the reheating tem-
perature Trh is defined by the moment: �tot = 3H =

3⇡g1/2⇤ T
2
rh/(

p
10Mp). To get Trh = O(109 GeV), we have

assumed the standard model g⇤ = 106.75 as the matter
sector and that the scalar decay channel is dominant with
N� = 4 and ⇠ = 0 for the Higgs boson. If the anomaly
channel is dominant, the reheating temperature can be as
high as ⇠ O(109 � 1012 GeV) depending on the number
of heavy charged modes.
Since the scalaron oscillation phase evolves as a dust-

dominated phase, the number of efolds at the CMB scale
and the reheating temperature are associated by [30]
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If we know the matter sector (e.g. SM minimally coupled to gravity), 
inflationary predictions can be made without uncertainty.
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where we have integrated by parts, used equations of mo-
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pressed by the local e↵ective Lagrangian [the last term
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assumed the standard model g⇤ = 106.75 as the matter
sector and that the scalar decay channel is dominant with
N� = 4 and ⇠ = 0 for the Higgs boson. If the anomaly
channel is dominant, the reheating temperature can be as
high as ⇠ O(109 � 1012 GeV) depending on the number
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Then the gravitational Lagrangian reads [27, 28]
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where we have redefined R with the rescaled metric and
removed carets (ˆ) on variables. We call this conformally
(Weyl) rescaled frame as the Einstein frame, where � is
the canonically normalized scalar field that drives infla-
tion in the early universe (dubbed inflaton or scalaron).

In the Einstein frame picture, inflation takes place dur-
ing slow rolling of the scalaron on the flat part of its
potential V (�) [Eq. (13)]. Therefore, we can use stan-
dard formulas on potential-driven slow roll inflation in
the literature (see, e.g., [12, 30] for reviews). The power
spectra of primordial curvature and gravitational wave
perturbations (⇣k and �+,⇥

k , respectively) on large scales
are given by
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where all quantities are evaluated at the CMB scale k =
k⇤ and slow roll parameters are defined as
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From Eqs. (13), (15) and (17), we get
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where the number of e-folds is given by
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The unique parameter, scalaron mass M , is thus fixed
by the COBE-WMAP normalization of the amplitude of
curvature perturbations as [28, 31–33]
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which is roughly the physical size of the Hubble horizon
at the end of inflation.

The primordial amplitude of gravitational waves is
characterized by the ratio between Eqs. (16) and (15):
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Scale dependences of the primordial spectra are given
by
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A precise value of N⇤ depends on particle contents of

the universe and how they couple to the inflaton dur-
ing reheating. How does reheating take place after the
R

2-inflation? The matter sector is assumed to be confor-
mally coupled to gravity in the original work [1, 2], where
he estimated the gravitational decay rate of the scalaron
by using Bogoliubov’s method in the Jordan frame (see
also [10, 34]). In this frame, the Ricci scalar becomes dy-
namical, contrary to the general relativity, and starts os-
cillating after inflation. It is similar to a dust-dominated
phase.
In the Einstein frame picture, we can do the equivalent

analysis. Expanding the scalaron potential (13) around
the origin, we get V (�) ' M

2
�
2
/2 + · · · for � . Mp.

Thus we can interpret an oscillating homogeneous field
� as a condensate of massive scalar particles (scalarons)
with zero momenta and mass M . When the metric is
rescaled, interaction between the scalaron and matter
sector is semi-classically [35] and quantum mechanically
[36] induced as
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where the standard model is symbolically treated as the
matter sector in which fields of spin-0 (�), spin-1/2 ( )
and spin-1 (Aµ) are rescaled as
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respectively, and the covariant derivative for scalars is
defined as

Dµ�̂ = @µ�̂+ �̂@µ(ln f
1/2)� igÂµ�̂. (29)

The spin connection is conformally invariant: �̂µ = �µ

(see footnote 4 of [36]). The gauge coupling constant is
denoted by g and its running is associated with the beta
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the universe and how they couple to the inflaton dur-
ing reheating. How does reheating take place after the
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2-inflation? The matter sector is assumed to be confor-
mally coupled to gravity in the original work [1, 2], where
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by using Bogoliubov’s method in the Jordan frame (see
also [10, 34]). In this frame, the Ricci scalar becomes dy-
namical, contrary to the general relativity, and starts os-
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In the Einstein frame picture, we can do the equivalent
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where we have redefined R with the rescaled metric and
removed carets (ˆ) on variables. We call this conformally
(Weyl) rescaled frame as the Einstein frame, where � is
the canonically normalized scalar field that drives infla-
tion in the early universe (dubbed inflaton or scalaron).

In the Einstein frame picture, inflation takes place dur-
ing slow rolling of the scalaron on the flat part of its
potential V (�) [Eq. (13)]. Therefore, we can use stan-
dard formulas on potential-driven slow roll inflation in
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p

2
3

�⇤
Mp . (19)

The unique parameter, scalaron mass M , is thus fixed
by the COBE-WMAP normalization of the amplitude of
curvature perturbations as [28, 31–33]

M ' 10�5
Mp

4⇡
p
30

N⇤

✓
P⇣(k⇤)

2⇥ 10�9

◆1/2

(20)

⇠ 10�5
Mp ⇠ 1027cm�1

⇠ 1051Mpc�1
,

which is roughly the physical size of the Hubble horizon
at the end of inflation.

The primordial amplitude of gravitational waves is
characterized by the ratio between Eqs. (16) and (15):

r =
P�(k)

P⇣(k)
' 16✏ '

12

N2
⇤
. (21)

Scale dependences of the primordial spectra are given
by

ns � 1 =
d lnP⇣(k)

d ln k
' �6✏V + 2⌘V ' �

2

N⇤
, (22)

nt =
d lnP�(k)

d ln k
' �2✏V ' �

3

2N2
⇤
, (23)

dns

d ln k
' 16✏V ⌘V � 24✏2V � 2⇠2V ' �

2

N2
⇤
, (24)

dnt

d ln k
' 4✏V ⌘V � 8✏2V ' �

3

N3
⇤
, (25)

where we have used ✏V ' 3/(4N2
⇤ ), ⌘V = V

00
M

2
p/V '

�1/N⇤ and ⇠2V = V
0
V

000
M

4
p/V

2
' 1/N2

⇤ .
A precise value of N⇤ depends on particle contents of

the universe and how they couple to the inflaton dur-
ing reheating. How does reheating take place after the
R

2-inflation? The matter sector is assumed to be confor-
mally coupled to gravity in the original work [1, 2], where
he estimated the gravitational decay rate of the scalaron
by using Bogoliubov’s method in the Jordan frame (see
also [10, 34]). In this frame, the Ricci scalar becomes dy-
namical, contrary to the general relativity, and starts os-
cillating after inflation. It is similar to a dust-dominated
phase.
In the Einstein frame picture, we can do the equivalent

analysis. Expanding the scalaron potential (13) around
the origin, we get V (�) ' M

2
�
2
/2 + · · · for � . Mp.

Thus we can interpret an oscillating homogeneous field
� as a condensate of massive scalar particles (scalarons)
with zero momenta and mass M . When the metric is
rescaled, interaction between the scalaron and matter
sector is semi-classically [35] and quantum mechanically
[36] induced as

Lmatt
p
�ĝ

=� ĝ
µ⌫(Dµ�̂)

⇤
D⌫ �̂� ��(�̂

⇤
�̂)2 �

m
2
�

f
�̂
⇤
�̂

�
ˆ̄
 

h
ê
µ
↵�

↵(@µ � �̂µ � igÂµ) + f
�1/2

m 

i
 ̂

�
1

4
F̂

µ⌫
F̂µ⌫ +

�h(g)

2g
(ln f)F̂µ⌫

F̂µ⌫ , (26)

where the standard model is symbolically treated as the
matter sector in which fields of spin-0 (�), spin-1/2 ( )
and spin-1 (Aµ) are rescaled as

�̂ = f
�1/2

�,  ̂ = f
�3/4

 , (27)

Âµ = Aµ, Â
µ = f

�1
A

µ
, (28)

respectively, and the covariant derivative for scalars is
defined as

Dµ�̂ = @µ�̂+ �̂@µ(ln f
1/2)� igÂµ�̂. (29)

The spin connection is conformally invariant: �̂µ = �µ

(see footnote 4 of [36]). The gauge coupling constant is
denoted by g and its running is associated with the beta

scalaron masse-folds of inflation

grav. waves tilt and running of spectra

� 1013GeV
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PBH formation after R2 inflation?     
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Perturbations during the inflaton-oscillation era 
[Finelli, Brandenberger 1999; Jedamzik, Lemoine, Martin 2010]    
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Overproduction of PBHs during oscillation era  
[Martin, Papanikolaou, Venin 2020]
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Our viewpoint



The evolution of the anisotropy 
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Pancake Collapse Effect  
[Khlopov, Polnarev 1980; Harada, Yoo, Kohri, Jhingan 2016]
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The Spin Effect  
[Harada, Yoo, Kohri, Nakao 2017]

PBH production is suppressed very very very much!!!
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Result: No PBH dominant era
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The spin effect comes into play.
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Conclusion
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[J. Martin, Papanikolau, Venin 2020]
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Appendix: SUSY Scenarios



this is the first study of inflaton decay and gravitino production in the theory described by a

modified action of supergravity. In section 3, we study various partial decay rates of the inflaton.

In section 4, we discuss the cosmological constraints from gravitino abundance. We summarize

and discuss differences from the original (non-SUSY) version of the Starobinsky model in sec-

tion 5. The duality transformation between a higher derivative SUGRA and the corresponding

standard SUGRA is reviewed, and some generalization of it is discussed in Appendix A. We use

the reduced Planck unit c = ! = MG = 1 with MG = MPl/
√
8π = 1/

√
8πG unless otherwise

stated, and basically use the notation and convention of Ref. [52].

2 Starobinsky model embedded in matter-coupled old-minimal

supergravity

The Starobinsky model is based on a pure gravity action with a second order term of scalar

curvature. In the supergravity side, a generic (super)gravitational action up to matter and

(super)derivatives is

Sgrav =

∫
d4xd4θEN(R, R̄) +

[∫
d4xd2Θ2EF (R) + H.c.

]
, (1)

where R is the curvature chiral superfield, E is the full density, E is the chiral density, Θ is

the so-called new Θ variable [52], N(R, R̄) is a Hermitian function, and F (R) is a holomorphic

function.2

To discuss inflaton decay and reheating of the universe, we consider a simple way of coupling

the above action to matter sector. We take the minimal coupling between the SUGRA sector

described by the curvature chiral superfieldR and the matter sector described by chiral superfields

φi and vector superfields V A:

S =

∫
d4xd4θE

(
N(R, R̄) + J

(
φ, φ̄egV

))

+

[∫
d4xd2Θ2E

(
F (R) + P (φ) +

1

4
hAB(φ)W

AWB

)
+H.c.

]

=

∫
d4xd4θEN(R, R̄)

+

[∫
d4xd2Θ2E

(
F (R) +

3

8

(
D̄D̄ − 8R

)
e−K(φ)/3 + P (φ) +

1

4
hAB(φ)W

AWB

)
+H.c.

]
,

(2)

where g is the gauge coupling constant, φ collectively denotes φi’s, J
(
φ, φ̄egV

)
is a Hermitian

function, P (φ) is a holomorphic function, and K(φ)(φ, φ̄egV ) = −3 ln
(
−J(φ,φ̄egV )

3

)
is the Kähler

potential of the matter fields.

2The first, non-holomorphic term is called D-term action as it is from D-component of Kähler potential of R,

while the second, holomorphic term is called F -term action as it is from F -component of superpotential of R.

3

Higher derivative SUGRA [Cecotti 1987; Ferrara & Porrati 2014] 

↓  duality trans. by T, S (T is the Lagrange multiplier)  
The above action can be recast into the following form [30, 50]:

S =

∫
d4xd2Θ2E

3

8

(
D̄D̄ − 8R

)
e−K/3 +W +

1

4
hABW

AWB +H.c., (3)

with the Kähler potential and superpotential specified as follows,

K = −3 ln

(
T + T̄ −N(S, S̄)− J(φ, φ̄egV )

3

)
, (4)

W = 2TS + F (S) + P (φ). (5)

The derivation (in a more general setup) is reviewed in Appendix A. Note that the dependence

of these potentials on the inflaton T is completely determined by the structure of the theory:

the origin of the inflaton T is the Lagrange multiplier.3 This structure is not altered even if

non-minimal couplings between R and matter superfields, which we do not discuss in this paper,

are introduced because they become non-minimal couplings between S (but not T ) and matter

superfields in the transformed theory.4 Therefore, in this sense, the couplings between T and

matters discussed in this paper are universal in old-minimal Starobinsky inflation.

The Kähler metric and its inverse are given by

gIJ̄ =
3

(
T + T̄ −N − J

)2

⎛

⎜⎝
1 −NS̄ −Jj̄

−NS NSS̄

(
T + T̄ −N − J

)
+NSNS̄ NSJj̄

−Ji NS̄Ji Jij̄
(
T + T̄ −N − J

)
+ JiJj̄

⎞

⎟⎠ ,

(6)

gĪJ =
T + T̄ −N − J

3

⎛

⎜⎝

(
T + T̄ −N − J

)
+NSNS + JkJk NS J j

N S̄ N S̄S 0

J ī 0 J īj

⎞

⎟⎠ , (7)

where I, J, · · · = T, S, i, j, . . . (or φi,φj , . . . ) are field indices, N S̄S = (NSS̄)
−1, J īj is the inverse

matrix of Jij̄ , and indices are uppered and lowered by these matrices, e.g. NS = N S̄SNS̄ and

J ī = J ījJj . The scalar potential is

V =

(
3

A

)2 (
N S̄S |2T + FS |2 + |2S|2

(
A+NSN

S + JiJ
i
)
+ P̄īJ

ījPj

+
{
2S̄
[
(2T + FS)N

S + PiJ
i − 3W

]
+ h.c.

})
+

g2

2
DADA, (8)

where we have defined a compact notation A ≡ T + T̄ −N−J .5 Indices of D-terms, DA (DA), are

lowered (lifted) by (the inverse of) the real part of the gauge kinetic matrix function hRAB (hAB
R ).

3Recently, the work [53] suggested a higher derivative SUGRA model in which a superpotential term of S and

T is given by W = g(T )S. Such a superpotential can be realized if T is not a Lagrange multiplier but a chiral

multiplet coupled to R and R̄ (see Ref. [54] for an earlier discussion). We briefly discuss similar extensions in

Appendix A. In this work, we discuss the minimal case that the chiral multiplets T and S are purely originated

from the gravitational multiplet and its higher derivative modes, and that the superpotential term of T and S is

given by W = 2TS as in eq. (5).
4We briefly discuss a possibility of T dependent gauge kinetic functions in Appendix A.
5 It is often denoted as Ω = −3A in the standard notation [52], and φ̃ = −3A in the conformal SUGRA

notation [55]. The functional form of Ω is important for the SUSY breaking effects on inflationary dynamics [56].
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J ī = J ījJj . The scalar potential is

V =

(
3

A

)2 (
N S̄S |2T + FS |2 + |2S|2

(
A+NSN

S + JiJ
i
)
+ P̄īJ
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T is given by W = g(T )S. Such a superpotential can be realized if T is not a Lagrange multiplier but a chiral

multiplet coupled to R and R̄ (see Ref. [54] for an earlier discussion). We briefly discuss similar extensions in

Appendix A. In this work, we discuss the minimal case that the chiral multiplets T and S are purely originated

from the gravitational multiplet and its higher derivative modes, and that the superpotential term of T and S is

given by W = 2TS as in eq. (5).
4We briefly discuss a possibility of T dependent gauge kinetic functions in Appendix A.
5 It is often denoted as Ω = −3A in the standard notation [52], and φ̃ = −3A in the conformal SUGRA

notation [55]. The functional form of Ω is important for the SUSY breaking effects on inflationary dynamics [56].
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The inflaton (or SUGRA) sector (T and S) of this class of modified SUGRA models was

studied in Ref. [34]. The Starobinsky model is realized in this setup essentially as the modified

Cecotti model [31]:

N(S, S̄) =− 3 +
12

m2
Φ

SS̄ −
ζ

m4
Φ

(
SS̄
)2

, (9)

F (S) =0, (10)

where mΦ is the inflaton mass at the vacuum, and ζ (> 0) gives a SUSY-breaking mass to

S and stabilizes its potential. The real part of T becomes the inflaton, and the canonically

normalized scalar potential is that of the Starobinsky model, V =
3m2

Φ
4

(
1− e−

√
2/3R̂eT

)2
, where

R̂eT ≡ −K/
√
6 is the canonically normalized inflaton field (during inflation). S is the sGoldstino

field that breaks SUSY during inflation. At the vacuum (T = S = 0), SUSY is preserved.

Introduction of the linear term in S/mΦ into eq. (9) can make SUSY breaking vacua with

an almost vanishing cosmological constant without spoiling inflation [57]. This is an interesting

possibility because the higher derivative version of the purely supergravitational theory describes

not only the inflation but also SUSY breaking. However, the SUSY breaking scale becomes

the inflation scale (mΦ ∼ 1013 GeV), which typically makes the Higgs particle too heavy [58].

Although the tree-level contributions to soft SUSY breaking parameters can be suppressed by

assuming a minimal coupling between the MSSM sector and the SUGRA sector as in our setup,

there are anomaly-mediated contributions to gaugino masses, which in turn give other particles

their masses through renormalization group running.

Therefore, we concentrate on models that deviate (if any) only slightly from the simple model

(9), (10). For definiteness, we assume |NS | and |N S̄SFSS | are at most of order the gravitino mass

m3/2, which is supposed to be much smaller than the inflaton mass, m3/2 ≪ mΦ. Perturbation

by higher order terms are negligible because VEV of S is suppressed.6 Since the inflaton sector

does not break SUSY at the vacuum, we introduce a hidden SUSY breaking sector. We treat the

SUSY breaking sector as general as possible, but occasionally we assume a simple SUSY breaking

sector described by

J(z, z̄) =|z|2 −
|z|4

Λ2
, (11)

P (z) =µ2z +W0, (12)

where J(z, z̄) and P (z) are the Kähler potential and superpotential of the SUSY breaking field

z [see equations (4) and (5)]. We also assume that VEVs of φi, J(φi, φ̄j̄), P (φi), and their

derivatives are negligibly small except for those of SUSY breaking field z, which is easily satisfied

if φi’s are charged under some unbroken symmetry.

All of the four scalar degrees of freedom and four fermionic degrees of freedom in the inflaton

sector are degenerate in their masses (= mΦ) at the zeroth order of perturbation with respect

6 Although it vanishes at the leading order, it has a value of the order of the gravitino mass after SUSY breaking.

See the following discussion.
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5.2 The R +R
2 supergravity inflation

The embedding of the Starobinsky model of inflation in old-minimal supergravity in a superspace

approach consists of reproducing the Lagrangian (47). This is achieved by the action [92, 93, 94, 95,

96]

L = �3M2
P

Z
d
4
✓E


1� 4

m2
RR̄+

⇣

3m4
R

2
R̄

2

�
. (59)

Modifications and further properties can be found in [97, 98, 99, 101, 102, 103, 104, 100, 105, 106,

107, 108, 109, 110]. We mention that attention should be paid to the full couplings of the inflaton

field that may yield a di↵erent reheating temeprature in each of these models since not all of them

are pure supergravitational.

The old-minimal supergravity multiplet contains the graviton (eam), the gravitino (G̃ =  
↵
m), and a

pair of auxiliary fields: the complex scalarM and the real vector bm. Lagrangian (59) when expanded

to components yields R2 terms and kinematic terms for the “auxiliary” fields M and bm. One may

work directly with (59) but it is more convenient to turn to the dual description in terms of two

chiral superfields: T and S and standard supergravity [92]. During inflation the universe undergoes

a quasi de Sitter phase which implies that supersymmetry is broken, the the mass of the sgoldstino

S becomes large and it can be integrated out [111, 112]. In this stage a non-linear realization of

supersymmetry during inflation is possible [113, 114, 115, 116]. The real component of T is not

integrated out due to the non-linear realization and it is the only dynamic degree of freedom during

inflation [93, 94, 96]. Eventually one finds the e↵ective model (48).

The inflationary predictions for the supergravity R
2 model are found to be identical to the non-

supersymmetric Starobinsky R
2 predictions (49). In addition, the reheating phase is much similar

and the inflaton decay rate roughly the same. Indeed, in the work of [117] the inflaton decay

channels were identified and the branching ratios calculated. The total decay rate was parametrized

as �sugra-inf = c
0
m

3
�/M

2
Pl, where m� ⌘ minf and the reheating temperature was estimated to be

Trh|sugraR2 =

✓
90

⇡2g⇤(Trh)

◆1/4 p
�sugra-infMPl ⇠ 109 GeV . (60)

The fact that the reheating temperature is found to be about the same with that predicted in

the non-supersymmetric R2 model (52) means the supergravity and non-supergravity versions of the

R
2 inflation models are completely degenerate in terms of the inflationary predictions. However,

the details of the expansion history of the universe after the decay of the inflaton should break the

degeneracy between the supergravity-R2 and gravity R
2. We can directly apply the analysis and the

results of the previous sections by minimally completing the supergravity R
2 sector with the MSSM

and a basic supersymmetry breaking sector. Let us first examine the implications of the supergravity

R
2 inflation to the abundances of superparticles.

The R
2 supergravity scenario can be distinguished in two basic cases: the ultra high scale su-

persymmetry breaking m3/2 > m� and the sub-inflation supersymmetry breaking scale m� > m3/2

28

Real part of T becomes the inflaton Φ:  

↓
S, ImT are stabilized. 

↓
 Grav. coupling to matter φ, V 
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Starobinsky SUGRA R2 inflation 
The inflaton (or SUGRA) sector (T and S) of this class of modified SUGRA models was

studied in Ref. [34]. The Starobinsky model is realized in this setup essentially as the modified

Cecotti model [31]:

N(S, S̄) =− 3 +
12

m2
Φ

SS̄ −
ζ

m4
Φ

(
SS̄
)2

, (9)

F (S) =0, (10)

where mΦ is the inflaton mass at the vacuum, and ζ (> 0) gives a SUSY-breaking mass to

S and stabilizes its potential. The real part of T becomes the inflaton, and the canonically

normalized scalar potential is that of the Starobinsky model, V =
3m2

Φ
4

(
1− e−

√
2/3R̂eT

)2
, where

R̂eT ≡ −K/
√
6 is the canonically normalized inflaton field (during inflation). S is the sGoldstino

field that breaks SUSY during inflation. At the vacuum (T = S = 0), SUSY is preserved.

Introduction of the linear term in S/mΦ into eq. (9) can make SUSY breaking vacua with

an almost vanishing cosmological constant without spoiling inflation [57]. This is an interesting

possibility because the higher derivative version of the purely supergravitational theory describes

not only the inflation but also SUSY breaking. However, the SUSY breaking scale becomes

the inflation scale (mΦ ∼ 1013 GeV), which typically makes the Higgs particle too heavy [58].

Although the tree-level contributions to soft SUSY breaking parameters can be suppressed by

assuming a minimal coupling between the MSSM sector and the SUGRA sector as in our setup,

there are anomaly-mediated contributions to gaugino masses, which in turn give other particles

their masses through renormalization group running.

Therefore, we concentrate on models that deviate (if any) only slightly from the simple model

(9), (10). For definiteness, we assume |NS | and |N S̄SFSS | are at most of order the gravitino mass

m3/2, which is supposed to be much smaller than the inflaton mass, m3/2 ≪ mΦ. Perturbation

by higher order terms are negligible because VEV of S is suppressed.6 Since the inflaton sector

does not break SUSY at the vacuum, we introduce a hidden SUSY breaking sector. We treat the

SUSY breaking sector as general as possible, but occasionally we assume a simple SUSY breaking

sector described by

J(z, z̄) =|z|2 −
|z|4

Λ2
, (11)

P (z) =µ2z +W0, (12)

where J(z, z̄) and P (z) are the Kähler potential and superpotential of the SUSY breaking field

z [see equations (4) and (5)]. We also assume that VEVs of φi, J(φi, φ̄j̄), P (φi), and their

derivatives are negligibly small except for those of SUSY breaking field z, which is easily satisfied

if φi’s are charged under some unbroken symmetry.

All of the four scalar degrees of freedom and four fermionic degrees of freedom in the inflaton

sector are degenerate in their masses (= mΦ) at the zeroth order of perturbation with respect

6 Although it vanishes at the leading order, it has a value of the order of the gravitino mass after SUSY breaking.

See the following discussion.
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approach consists of reproducing the Lagrangian (47). This is achieved by the action [92, 93, 94, 95,

96]
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Modifications and further properties can be found in [97, 98, 99, 101, 102, 103, 104, 100, 105, 106,

107, 108, 109, 110]. We mention that attention should be paid to the full couplings of the inflaton

field that may yield a di↵erent reheating temeprature in each of these models since not all of them

are pure supergravitational.

The old-minimal supergravity multiplet contains the graviton (eam), the gravitino (G̃ =  
↵
m), and a

pair of auxiliary fields: the complex scalarM and the real vector bm. Lagrangian (59) when expanded

to components yields R2 terms and kinematic terms for the “auxiliary” fields M and bm. One may

work directly with (59) but it is more convenient to turn to the dual description in terms of two

chiral superfields: T and S and standard supergravity [92]. During inflation the universe undergoes

a quasi de Sitter phase which implies that supersymmetry is broken, the the mass of the sgoldstino

S becomes large and it can be integrated out [111, 112]. In this stage a non-linear realization of

supersymmetry during inflation is possible [113, 114, 115, 116]. The real component of T is not

integrated out due to the non-linear realization and it is the only dynamic degree of freedom during

inflation [93, 94, 96]. Eventually one finds the e↵ective model (48).

The inflationary predictions for the supergravity R
2 model are found to be identical to the non-

supersymmetric Starobinsky R
2 predictions (49). In addition, the reheating phase is much similar

and the inflaton decay rate roughly the same. Indeed, in the work of [117] the inflaton decay

channels were identified and the branching ratios calculated. The total decay rate was parametrized

as �sugra-inf = c
0
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3
�/M
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Pl, where m� ⌘ minf and the reheating temperature was estimated to be
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�sugra-infMPl ⇠ 109 GeV . (60)

The fact that the reheating temperature is found to be about the same with that predicted in

the non-supersymmetric R2 model (52) means the supergravity and non-supergravity versions of the

R
2 inflation models are completely degenerate in terms of the inflationary predictions. However,

the details of the expansion history of the universe after the decay of the inflaton should break the

degeneracy between the supergravity-R2 and gravity R
2. We can directly apply the analysis and the

results of the previous sections by minimally completing the supergravity R
2 sector with the MSSM

and a basic supersymmetry breaking sector. Let us first examine the implications of the supergravity

R
2 inflation to the abundances of superparticles.

The R
2 supergravity scenario can be distinguished in two basic cases: the ultra high scale su-

persymmetry breaking m3/2 > m� and the sub-inflation supersymmetry breaking scale m� > m3/2
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Z may dominate after inflation.

The inflaton (or SUGRA) sector (T and S) of this class of modified SUGRA models was

studied in Ref. [34]. The Starobinsky model is realized in this setup essentially as the modified

Cecotti model [31]:

N(S, S̄) =− 3 +
12

m2
Φ

SS̄ −
ζ

m4
Φ

(
SS̄
)2

, (9)

F (S) =0, (10)

where mΦ is the inflaton mass at the vacuum, and ζ (> 0) gives a SUSY-breaking mass to

S and stabilizes its potential. The real part of T becomes the inflaton, and the canonically

normalized scalar potential is that of the Starobinsky model, V =
3m2

Φ
4

(
1− e−

√
2/3R̂eT

)2
, where

R̂eT ≡ −K/
√
6 is the canonically normalized inflaton field (during inflation). S is the sGoldstino

field that breaks SUSY during inflation. At the vacuum (T = S = 0), SUSY is preserved.

Introduction of the linear term in S/mΦ into eq. (9) can make SUSY breaking vacua with

an almost vanishing cosmological constant without spoiling inflation [57]. This is an interesting

possibility because the higher derivative version of the purely supergravitational theory describes

not only the inflation but also SUSY breaking. However, the SUSY breaking scale becomes

the inflation scale (mΦ ∼ 1013 GeV), which typically makes the Higgs particle too heavy [58].

Although the tree-level contributions to soft SUSY breaking parameters can be suppressed by

assuming a minimal coupling between the MSSM sector and the SUGRA sector as in our setup,

there are anomaly-mediated contributions to gaugino masses, which in turn give other particles

their masses through renormalization group running.

Therefore, we concentrate on models that deviate (if any) only slightly from the simple model

(9), (10). For definiteness, we assume |NS | and |N S̄SFSS | are at most of order the gravitino mass

m3/2, which is supposed to be much smaller than the inflaton mass, m3/2 ≪ mΦ. Perturbation

by higher order terms are negligible because VEV of S is suppressed.6 Since the inflaton sector

does not break SUSY at the vacuum, we introduce a hidden SUSY breaking sector. We treat the

SUSY breaking sector as general as possible, but occasionally we assume a simple SUSY breaking

sector described by

J(z, z̄) =|z|2 −
|z|4

Λ2
, (11)

P (z) =µ2z +W0, (12)

where J(z, z̄) and P (z) are the Kähler potential and superpotential of the SUSY breaking field

z [see equations (4) and (5)]. We also assume that VEVs of φi, J(φi, φ̄j̄), P (φi), and their

derivatives are negligibly small except for those of SUSY breaking field z, which is easily satisfied

if φi’s are charged under some unbroken symmetry.

All of the four scalar degrees of freedom and four fermionic degrees of freedom in the inflaton

sector are degenerate in their masses (= mΦ) at the zeroth order of perturbation with respect

6 Although it vanishes at the leading order, it has a value of the order of the gravitino mass after SUSY breaking.

See the following discussion.
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Inflaton decay after SUGRA R2 inflation 

Equations (41) and (44) can be used to obtain shifts of quantities e.g. A ≃ 3+3m2
3/2/m

2
Φ induced

by SUSY breaking.

The mixing matrix A has two effects: canonicalization of kinetic terms and diagonalization

of mass terms. We assume that there is a single SUSY breaking field φz = z, and its kinetic term

and mass term are dominated by the diagonal part (proportional not zz nor z̄z̄ but to zz̄) for

simplicity, and then the matrix element is simplified [68]

(A−1)zΦR±
=

gz̄z

m2
Φ −m2

z

(√
3

2
(VT z̄ + VT̄ z̄ + Jz̄ (VT T̄ + VT̄ T̄ ))±

mΦ

4
√
3
(VSz̄ + VS̄z̄ + Jz̄ (VST̄ + VS̄T̄ ))

)
.

(45)

For the former part regarding T , only the VT T̄ ≃ 4N S̄S term remains. If m2
Φ ≫ m2

z, this term

cancels the term in GT proportional to Gz. For the latter part regarding S, all the four terms

are nonzero:

ṼTS =− 8N S̄SNSSS̄|S|
2 − 4S̄, (46)

ṼT S̄ =− 8N S̄SNSS̄S̄ |S|
2 + 2N S̄S

(
F̄S̄S̄ + 2NS̄ + 2S̄NS̄S̄

)
− 8S, (47)

ṼSz̄ + ṼS̄z̄ =
(
4
(
S + S̄

)
J k̄ + 2PlJ

lk̄
)(

Jk̄z̄ − Jz̄kk̄J
k
)
− 4P̄z̄ + 2P̄k̄z̄J

k̄ − 2P̄k̄J
k̄lJlm̄z̄J

m̄, (48)

at the vacuum. Among these, −4P̄z̄ cancels the leading term in GS = 12m3/2/mΦ + · · · under

the same condition m2
Φ ≫ m2

z. Assuming J(z, z̄) = |z|2 − |z|4

Λ2 and P (z) = µ2z +W0, subleading

terms regarding this cancellation are still subdominant compared to terms in GT .

In summary, the effective coupling is approximated as

∣∣∣G(eff)
ΦR±

∣∣∣
2
≃2

∣∣∣∣∣

√
3

2

(

−6
m2

3/2

m2
Φ

+
1

3
JzGz

m2
z

m2
Φ −m2

z

)

±
mΦ

4
√
3

(
12W̄

m2
Φ

−
4GzGzW̄

m2
Φ −m2

z

)∣∣∣∣∣

2

≃6

∣∣∣∣∣3
m2

3/2

m2
Φ

+
m2

z

m2
z −m2

Φ

(
1

6
JzGz ∓

W̄

mΦ

)∣∣∣∣∣

2

. (49)

Finally, the effective coupling is simplified when mz is in particular ranges:

∣∣∣G(eff)
ΦR±

∣∣∣
2
≃

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

96
(
m3/2

mΦ

)4 (
m2

z ≪ mΦm3/2

)

6
(
m2

zm3/2

m3
Φ

)2 (
3mΦm3/2 ≪ m2

z ≪ m2
Φ

)

6
(
m3/2

mΦ

)2 (
m2

Φ ≪ m2
z

)
, (50)

where we have assumed again J(z, z̄) = |z|2 − |z|4

Λ2 and P (z) = µ2z + W0 to evaluate JzGz .

Therefore, the gravitino pair production rate is

Γ(ΦR± → ψ3/2ψ3/2) ≃
m3

Φ

48πM2
G

×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

16
(
m3/2

mΦ

)2 (
m2

z ≪ mΦm3/2

)
(

mz
mΦ

)4 (
3mΦm3/2 ≪ m2

z ≪ m2
Φ

)

1
(
m2

Φ ≪ m2
z

)
. (51)
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becomes leading. As stated at the end of the previous section, we first consider interactions

involving T , followed by similar analyses for S.

3.1 Two-body decay of T into scalars, spinors and gauge bosons

3.1.1 Decay into scalars

It is convenient to define the reduced scalar potential Ṽ as V =
(
3
A

)2
Ṽ + g2

2 D
ADA, or equivalently,

Ṽ =N S̄S |2T + FS |2 + |2S|2
(
A+NSN

S + JiJ
i
)
+ P̄īJ

ījPj

+
{
2S̄
[
(2T + FS)N

S + PiJ
i − 3W

]
+ h.c.

}
. (14)

Although T and S are singlets, derivatives of the D-term with respect to them are nonzero,

DAT =− igT īX̄
ī
A =

3

A2
iJīX̄

ī
A = −

1

A
GīDA

ī = −
1

A
DA ≃ −

1

3
DA, (15)

DAS =− igSīX̄
ī
A = −

3

A2
iNSJīX̄

ī
A =

1

A
NSGīDA

ī =
1

A
NADA ≃

1

3
NSDA, (16)

where G = K + ln |W |2 is the total Kähler potential, XA is the Killing vector of the Kähler

manifold, and we have used the gauge symmetry of the superpotential. With the aid of the

condition of the vanishing cosmological constant, V = 0, the stationary conditions for T and S

at the vacuum, VT = VS = 0, reduce to ṼT = ṼS = 0.

Using the above formulas and the facts ṼTT = ṼT i = ṼT ī = 0, the relevant vertex functions

are derived as

VT̃ ĩj̃ = −
2

A
Vĩj̃ ≃ −

2

3
Vĩj̃ , (17)

where tilded indexes may take both of holomorphic and anti-holomorphic indexes like Ĩ = I, Ī .

This means that the interaction terms are proportional to the mass terms of scalars. There is a

same order contribution from the kinetic term. Combining mass and kinetic term contributions,

the rate is

Γ(T → φiφ̄ī) =
3m4

i

8πM2
GmΦ

, (18)

where mi is the mass of the daughter particle φi. The kinetic term also provides the φiφj

production process with the rate

Γ(T → φiφj) =
m3

Φ

96πM2
G

|Jij |2. (19)

The partial decay rates of inflaton into ImT , S, or S̄ and φi are suppressed by Ji and phase

space factors.
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3.1.2 Decay into spinors

It is convenient to define the reduced fermion mass matrix M̃ as MIJ = eG/2M̃IJ , where MIJ is

the fermion mass matrix, or equivalently,

M̃IJ = ∇IGJ +GIGJ −
2

3
(⟨GI⟩GJ + ⟨GJ ⟩GI) +

2

3
⟨GIGJ⟩. (20)

Terms with VEVs are induced by the redefinition of the gravitino field to absorb goldstino

into gravitino. The inflaton-spinor-spinor vertex is obtained by differentiating the mass ma-

trix, MIJT = GTMIJ/2 + eG/2M̃IJT ≃ m3/2M̃IJT . Under the approximation like A ≃ 3 and

S ≃ W/2, and neglecting Gi, GT and GS , the reduced fermion matrix M̃ij is approximated as

M̃ij ≃ Pij/W +Jij −Jijz̄Gz̄ where z is the SUSY breaking field. Under the same approximation,

M̃ijT ≃ −M̃ij . (21)

On the other hand, M̃ijT̄ vanishes at the vacuum. The kinetic term gives a same order contri-

bution. Combining the mass and kinetic term contributions, the partial decay rate is expressed

as

Γ(T → χiχ̄ī) =
m2

imΦ

192πM2
G

, (22)

where mi is the mass of the spinor χi. We have assumed here that the mixing terms between

matter spinors and gauginos are smaller than the diagonal parts, |MIA| ≪ |MJK |.
The partial decay rates of inflaton into inflatino or S-ino and χi are suppressed by Ji and

phase space factor.

3.1.3 Anomaly-induced decay into gauge sector

The inflaton T has the Lagrange multiplier origin so that it never appears in the gauge kinetic

function. We have to consider decay into gauge sector via the anomaly-induced one loop pro-

cess [61, 59] unless we introduce a non-minimal term depending on WA in the D-term action (see

Appendix A). The rate is [61, 59]

Γ(T → AA) + Γ(T → λλ) ≃
Ngα2

256π3
|XG|2m3

Φ, (23)

where Ng and α are the number of the generators and the fine structure constant of the gauge

group, XG =
√
6
[
(TG − TR)KT + 2TR

dR
(log detK|′′R) ,T

]
, TG and TR are the Dynkin indexes of

the adjoint representation and representation R, dR is the dimension of the representation R,

and K|′′R is the Kähler metric restricted to the matter whose representation is R. In our case,

the rate becomes (also see [62] for non-SUSY case)

Γ(T → AA) + Γ(T → λλ) ≃
3Ngα2m3

Φ

128π3M2
G

(
TG −

1

3
TR

)2

. (24)

8

3.1.2 Decay into spinors

It is convenient to define the reduced fermion mass matrix M̃ as MIJ = eG/2M̃IJ , where MIJ is

the fermion mass matrix, or equivalently,

M̃IJ = ∇IGJ +GIGJ −
2

3
(⟨GI⟩GJ + ⟨GJ ⟩GI) +

2

3
⟨GIGJ⟩. (20)

Terms with VEVs are induced by the redefinition of the gravitino field to absorb goldstino

into gravitino. The inflaton-spinor-spinor vertex is obtained by differentiating the mass ma-

trix, MIJT = GTMIJ/2 + eG/2M̃IJT ≃ m3/2M̃IJT . Under the approximation like A ≃ 3 and

S ≃ W/2, and neglecting Gi, GT and GS , the reduced fermion matrix M̃ij is approximated as

M̃ij ≃ Pij/W +Jij −Jijz̄Gz̄ where z is the SUSY breaking field. Under the same approximation,

M̃ijT ≃ −M̃ij . (21)

On the other hand, M̃ijT̄ vanishes at the vacuum. The kinetic term gives a same order contri-

bution. Combining the mass and kinetic term contributions, the partial decay rate is expressed

as

Γ(T → χiχ̄ī) =
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Constraints from gravitino abundance 

Figure 1: Constraint on masses of gravitino and SUSY breaking field from LSP overabundance

from gravitino decay. Blue, red, yellow, and green shaded regions, corresponding to direct pro-

duction, thermal production, z particle decay, and z coherent oscillation decay, are excluded.

parameter space in Fig. 1. In this figure, the dominant decay mode of the inflaton is assumed to

be a model-independent one, namely the anomaly-induced decay into gauge bosons and gauginos

as discussed in subsection 3.1.3. The inflaton mass is taken as mΦ = 3.2 × 1013 GeV, and the

reheating temperature after inflaton decay is TR ≃ 1.0 × 109 GeV. Instantaneous reheating oc-

curs in spite of the Planck-suppressed interaction [81]. As can be seen from the Figure, most of

the parameter space are excluded. The lower unshaded region is also excluded by the standard

constraint of the cosmological moduli problem [82, 83] unless baryon asymmetry is regenerated

e.g. by the Affleck-Dine mechanism [84]. (In this case the modulus (Polonyi) field is the SUSY

breaking field z.) Note that the range of gravitino mass 106GeV ! m3/2 ! 3× 1011GeV (corre-

sponding to 3TeV ! mwino ! TR; not shown in the Figure) is excluded by thermally produced

wino abundance [85] even without considering the wino LSP from gravitino decay. See also

Ref. [86] for non-thermal production of wino dark matter via the decay of long-lived particles. As

usual, this problem is ameliorated or solved by assuming R-parity breaking so that LSP decays

or thermal inflation [87] so that it is diluted.

5 Summary and Discussion

In this paper, we studied coupling of the SUSY Starobinsky model to matter sector in the old-

minimal supergravity, inflaton decay and its cosmological consequences. To this end, we first

transformed the supergravity theory of supercurvature R minimally coupled to matter to an

equivalent one in the form of the standard no-scale type supergravity of inflaton T plus another

matter superfield S. The notable feature there is that the interactions of the inflaton T to other

16

Gravitinos generated from:  

1) inflaton decay
2) thermal scatterings
3) decay of particles
4) decay of oscillating Z

Neutralino LSP (~TeV WIMP) 
is assumed for:

gravitino mass > 10^4.5 GeV
→ anomaly mediation 

gravitino mass < 10^4.5 GeV
→ gravity mediation

[Terada, YW, Yamada, Yokoyama 1411.6746] 
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Figure 1: The lefthand timeline represents the thermal history of the early universe when dark
matter is populated in the thermal bath that emerges shortly after after inflation. The right
timeline represents a possible nonthermal history where dark matter production occurs directly
from scalar decay.

occurs at Tf ' mX/20 and g⇤ ⇠ 100, assuming the e↵ective number of degrees of freedom is similar
to that of the Standard Model [39]. The abundance simplifies to

⌦therm
dm h

2
' 0.12

✓
1.63⇥ 10�26cm3

/s

h�vi

◆
. (7)

where we have used GeV�2
· c ' 1.17 ⇥ 10�17 cm3

/s. WIMPs with typical speeds (v ' 0.3c) and
electroweak cross-sections (⇡ 1 pb) yield ⌦therm

dm h
2
' 0.12 in agreement with the data, a coincidence

often called the WIMP miracle.

Simple SUSY models with thermal WIMPs are in growing conflict with collider data and direct
detection experiments [40]. By contrast, nonthermal models posit that dark matter production
occurs at temperatures below standard thermal freeze-out4 leading to dark matter with novel and
unexpected experimental signatures. For example, if a heavy relic comes to dominate the energy
density following inflation and the dark matter particle is one its decay products, the resulting relic
density is still given by (6) but with T = Tr and g⇤ = g⇤(Tr), the value at the time of reheating

⌦NT
dm h

2
' 8.60⇥ 10�11

✓
mX

g⇤(Tr)1/2h�viTr

◆
,

' 0.10
⇣

mX

100 GeV

⌘✓
10.75

g⇤

◆1/2✓3⇥ 10�23 cm3
/s

h�vi

◆✓
10 MeV

Tr

◆
. (8)

The similarity to the thermal freezeout result (6) arises because when the WIMPs are produced
from scalar decay they will rapidly annihilate until their number density reduces to the point where
annihilations can no longer occur. This process is essentially instantaneous (on cosmological time

4
If the particles were produced above their freeze-out threshold, they could thermalize via their mutual interactions.

5

CMB uncertainties from the post-inflationary evolution
 [Easther, Galvez, Ozsoy, Watson 2013]

2 CMB observables and the post-inflationary evolution

It is convenient to expand the power spectra of the dimensionless curvature perturbation as

PR(k) = As

✓
k

k⇤

◆ns�1+(1/2)(dns/d ln k) ln(k/k⇤)+(1/6)(d2ns/d ln k2)(ln(k/k⇤))2+...

(1)

where As is the scalar amplitude and the powers of the expansion are the scalar spectral index ns,

the running and the running of the ns. In general one can assume that the scale dependence of the

spectral index to be given at leading order by the expression

ns(k⇤) = 1� ↵

N⇤
, (2)

where N⇤ is the number of e-folds remaining till the end of inflation after the moment the pivot

scale k⇤ exits the Hubble radius, N⇤ ⌘
R tend
t⇤

Hdt = ln(aend/a⇤). The N⇤ is a critical quantity that

determines the ns value. It carries the information of how much the observable k
�1
⇤ CMB scale has

been stretched since the inflationary era. The uncertainty on the N⇤ comes mainly from the post-

accelaration stage and induces an uncertainty on the spectral index value given by the ns running

that for the Eq. (2) reads

�ns = ↵
�N

N2
=

(1� ns)2

↵
�N . (3)

For�N ⇠ 1�10 the�ns is of size O(1�10)h , that is within the accuracy of the future observations.

To explicitly estimate the N⇤ value one relates the size of the scale k�1
⇤ = (a⇤H⇤)�1, which exited

the Hubble radius H�1
⇤ during inflation, to the size of the present Hubble radius H�1

0 [3],

k⇤

a0H0
=

a⇤

aend

aend

aBBN

aBBN

aeq

aeq

a0

H⇤

Heq

Heq

H0
, (4)

where the subscripts refer to the time of horizon crossing (⇤), the time inflation ends (end), the time

BBN takes place (BBN), the radiation-matter equality (eq) and the present time (0). We define

Ñdark the number of e-folds from the end of inflation until the beginning of the BBN

Ñdark ⌘ ln

✓
aBBN

aend

◆
⌘ 1

3(1 + w̄dark)
ln

⇢end

⇢BBN
, (5)

where w̄dark stands for the average value of the equation of state parameter during the dark pre-

BBN period, and w̄dark 6= �1 has been assumed. We call this period dark due to the lack of

observational evidences of the transition to the radiation dominated phase from the super-cooled

conditions during inflation. Unless exotic forms of matter are assumed, such as thermal inflation or

sti↵ fluid domination, we can estimate the maximum value of the Ñdark to be around 56 for w̄dark = 0

and the minimum to be around 41 for w̄dark = 1/3. The observational uncertainty for temperatures

T & 1 MeV ⇠ TBBN [30] implies an uncertainty at the e-folds of inflation about �N ⇠ 15. We can

split the Ñdark into

Ñdark = Ñrh + ÑX + Ñrad (6)
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and the minimum to be around 41 for w̄dark = 1/3. The observational uncertainty for temperatures

T & 1 MeV ⇠ TBBN [30] implies an uncertainty at the e-folds of inflation about �N ⇠ 15. We can

split the Ñdark into
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Shift in (ns, r) due to late entropy production

• After inflaton decay, a diluter field X (modulus, flaton) may dominate the 
universe until BBN. Decays of X produce entropy:

where 1� n
(th)
s = ↵/N � �(N )/N2|N=N(th) and

F�

�
�NX , N

(th)
�
=(� � �

0
N )

�NX

N3
+ 2

✓
� � �

0
N +

1

4
�
00
N

2

◆
�N

2
X

N4
+

3

✓
� � �

0
N +

1

3
�
00
N

2 � 1

18
�
000
N

3

◆
�N

3
X

N5

����
N=N(th)

. (16)

The ”0” denotes d/dN and �, �
0, �00, �000 are estimated at N = N

(th). In the above expressions,

given than �NX > 1 and �NX/N
(th)

< 1, terms of order O (�N
4
X/N

6) and smaller have been

neglected. We have also assumed that the terms in the parentheses in Eq. (16) are roughly of order

�. Otherwise, if �0
, �

00
, �

000 � 1, the F� correction can be important, however such a behavior is not

found in any of the known universality classes [35]. One can see that the next-to-leading correction

�(N)/N2 is at most of h accuracy and for ↵�NX > � the contribution to the spectral index shift

is found to be subdominant with respect to the ↵-dependent terms.

In order to specify the �NX , elements of the X scalar cosmic evolution have to be specified.

When the scalar X coherently oscillates about the minimum of a e↵ectively quadratic potential it is

w̄X = 0. In such a case, at the cosmic time tdomX ⌧ ��1
X the energy density of X is larger than that of

the plasma and the universe enters a scalar dominated era that dilutes any pre-existing abundances

of the relativistic degrees of freedom at the time of the X decay. The X field decays and reheats

the universe with temperature T
rh
X ⌘ T

dec
X . Considering instant decay of the scalar X, the dilution

magnitude is estimated to be
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Safter

Sbefore
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g⇤(T dec
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where Sbefore and Safter denote the entropy density right before and after the decay of the X field. The

g⇤ and gs count the total number of the e↵ectively massless degrees of freedom for the energy density

and entropy respectively and can be taken to be approximately equal. The T
dec
X is the temperature

that the X scalar reheats the universe at the time H
�1 ' ��1

X . It is DX = 1 when no dilution takes

place. Overall, the size of the �NX due to the X scalar domination reads
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where we considered that w̄X = 0. After plugging in the dilution magnitude we get
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The maximum value of the �NX ⇠ 15 is achieved when Ñrh ! 0 and Ñrad ! 0. This case

corresponds to the maximum dilution scenario where the X field oscillations dominate the energy

density of the universe right after the end of high scale inflation until the onset of BBN. The�NX = 0
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The maximum value of the �NX ⇠ 15 is achieved when Ñrh ! 0 and Ñrad ! 0. This case

corresponds to the maximum dilution scenario where the X field oscillations dominate the energy

density of the universe right after the end of high scale inflation until the onset of BBN. The�NX = 0
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Figure 1: The shift in the spectral index value and the dilution magnitude DX due to scalar condensate
domination (SC) and due to thermal inflation (TI) for the Starobinsky R2 inflation (left panel), general
plateau and linear inflationary potentials (right panel). The maximum number of the dilution is given by
the ratio Trh/TBBN for scalar condensate domination and the �NX |TI . 10 constraint for thermal inflation.
The red dots show the e-folds number if there is no entropy production after infaton decay. It is N (th) ' 54
for R2 inflation and N (th) ' 56, 57 for the general plateau and linear potential respectively (red dots).
Order O(1) corrections to the dilution magnitude are expected due to the uncertainty at the number of the
relativistic degrees of freedom at ultra high energies.

and the parameters describing reheating are chosen. Then from Eq. (14) the n
(th)
s = ns(N (th)) and

the ns = ns(N (th) � �NX) can be estimated and hence the spectral index shift �ns, given by the

Eq. (15) or (20), is obtained. In Fig. 1 we illustrate the shift in the spectral index due to a non-

thermal phase that is implemented after reheating and before BBN. In the left panel we considered

the Starobinsky R
2 model that predicts Trh ⇠ 109 GeV [37], and in the right panel a Starobinsky-like

potential with non-gravitational interactions and a linear potential V / � both characterized by

a fiducial reheating temperature Trh = 1012 GeV. The knowledge of these inflaton features enables

the explicit calculation of the n
(th)
s value, that corresponds to the red dots in the plots. A scalar

condensate domination or thermal inflation shifts the spectral index value according to the formula

(20) as illustrated in the Fig. 1.

From a more bottom-up approach, the postulation of a non-thermal phase during the pre-BBN era

is not enough to determine the �ns and �r. Although a rough estimation of the spectral index shift

can be done by the approximate expression (3) the result is far from accurate and cannot consistently

constrain the early universe cosmic history. The best method is to choose an inflation model that

is in accordance with a particular BSM description of the early universe (e.g. a supersymmetric,

stringy or modified gravity framework) and estimate the �ns and �r according to the pre-BBN

cosmology implied by the BSM theory at hand. Examples of BSM cosmic processes connected with

the expansion history of the universe are the dark matter production and the baryogenesis processes.

In the following we will consider the supersymmetric BSM scenario and determine features of the

11



Merits: Gauge coupling unification, stable dark matter, baryogenesis, 
stringy UV completion, … 

Supersymmetric dark matter scenarios

1. Gravitino LSP

2. Neutralino LSP (WIMP)

•  Thermal DM (freeze out): thermal scatterings with the MSSM, 
messenger fields

• Non-thermal DM (freeze in): decays, thermal scatterings

Light WIMP mass is disfavored by the LHC.
ΩDMh2 is severely constrained when sparticle masses increase:

3.3 Axino dark matter

In the sake of completeness of the basic LSP scenarios, we briefly comment here on the axino dark

matter. In supersymmetry, the axion solution to the strong CP problem comes with an extra scalar,

the saxion and a fermion, the axino ã. If the axino is the LSP it is a well motivated dark matter

candidate [78, 79]. It freezes out at high temperatures T
f.o.
ã ⇠ 1011GeV(fa/1012GeV)2, where fa

the axion decay constant. At lower temperatures it can be produced from thermal scatterings and

decays. In that case, for a radiation dominated universe, the axino relic density parameter is the

sum of the contributions from thermal scatterings, the gravitino decay and the NLSP decays

⌦ã '
mã

m3/2

⇣
⌦MSSM(sc)

3/2 + ⌦f̃(dec)
3/2

⌘
+

mã

mNLSP
⌦NLSP + ⌦MSSM(sc)

ã , (35)

for T
dec
3/2 below the NLSP freeze out temperature. We note that the two body decay of a squark

to an axino is subdominant for gluino masses less than squark mass [80]. It is ⌦MSSM(sc)
ã ⇠ 2.8 ⇥

108(mã/GeV)Yã where Yã(KSVZ) ⇠ 10�7(Trh/104GeV)(1011GeV/fa)2 for the KSVZ axion model,

see e.g [81], and Yã(DFSZ) ⇠ 10�5(µ/TeV)2(1011GeV/fa)2 for the DFSZ axion model where µ the

superpotential Higgs/Higgsino parameter, see e.g [82].

For axino mass not much smaller than the NLSP, the axino dark matter case is quite similar to

the neutralino LSP. For mã & TeV the axino dark matter is also cosmologically problematic since

its relic density parameter generally violates the ⌦DMh
2 = 0.12 bound, and the essential conclusion

is that, in general, a special thermal history of the universe is required for the axino dark matter

scenario as well. Remarkably in these models, the saxion can play the rôle of the diluter X for its

condensate decay can produce late entropy that successfully decreases the LSP abundance [83], see

also [84] for some recent results on the reheating temperature and the ⌦LSP constraint.

4 Alternative cosmic histories and supersymmetry

The overview of the predicted relic density of supersymmetric dark matter in section 3 suggests that

the observational value of ⌦DMh
2 gets generally severely violated when the sparticle masses increase.

For gravitino and neutralino LSP one can collectively write down a general scaling with respect to

the mass parameters and temperature

⌦3/2 / m
↵
3/2

✓
mg̃

m3/2

◆� ✓
mf̃

m3/2

◆�

T
�
rh , m3/2 < mg̃,mf̃ , (36)

and

⌦�̃0 / m
↵̃
�̃0 m

�̃
3/2

✓
mf̃

m3/2

◆�̃

T
�̃
rh , m�̃0 < m3/2,mf̃ (37)

where the exponents (↵, �, �, �) and (↵̃, �̃, �̃, �̃) are either positive or zero, depending on the dark

matter production mechanism considered.
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• If DX = 1 then Trh . m̃ or m̃ ⇠ TeV (A)

• If O(TeV) < (mLSP , m̃) < Trh then DX 6= 1 , (B)

where m̃ the sparticle mass scale.

Hence, scenarios with high reheating temperature generally require an extra scalar field that

causes dilution.

4.3 The diluter field X

In supersymmetric theories generically exist scalar fields with rather flat potentials and very weak or

MPl suppressed interactions. These kind of scalars, that are common in supergravity and superstring

theories, are here collectively labeled X. The X domination, either due to its nearly constant

potential energy or due to the energy stored in its oscillations about the vacuum, dilutes the LSP

abundance DX times and supplements it with the contribution from the diluter decay

⌦<
LSP ! ⌦<

LSP

DX
+ ⌦X

LSP ⌘ ⌦LSP , (39)

where we labeled ⌦<
LSP the LSP abundance before the X decay. In order to specify the ⌦LSP the

system of the three interacting cosmic fluids of X, LSP and radiation has to be solved and we refer

the reader to references [89, 86, 85] for detailed analytic results. For gravitino or axino LSP the above

expression generally applies. For the neutralino LSP one should also check whether the conditions (i)

T
dec
X < T

f.o.
�̃0 and (ii) n�̃0 h�vi < H(T dec

X ) hold. If not, then in the case (i) the neutralinos might reach

a thermal equilibrium value Y
(th)
�̃0 . In the case (ii) pair annihilations take place until the neutralino

yield reaches the value Y
(th)
�̃0 ⇥ (T f.o.

�̃0 /T
dec
X ); this corresponds to the so-called annihilation scenario

and works mostly for wino-like LSP with TeV mass scale. Let us mention here that the radiation

produced from the decay of the X particles for the times �X/H < 1 can produce neutralinos even

for T
dec
X < T

f.o.
�̃0 [89, 85], which accounts for an extra contribution to ⌦LSP that may be important

in particular scenarios without, however, modifying the conclusions of the current analysis. Finally,

the ⌦X
LSP depends on the branching ratio BrXLSP of the diluter into two LSPs (directly or via cascade

decays) and the X decay temperature T
dec
X . The LSP yield from the X decay reads

Y
X
LSP ⌘ nLSP

s
=

3

2
BrXLSP

T
dec
X

mX
. (40)

If the Y
X
LSP is subdominant the observed dark matter has to be produced by processes taking place

at higher temperatures than T
dec
X and was appropriately diluted by the decay of the scalar X. On

the other hand, if the dilution DX decreases the initial LSP abundance to negligible levels, then the

LSP production from the X decay should fit the observed dark matter abundance. The constraint

⌦LSPh
2  0.12 implies

DX � D
min
X ⌘ ⌦<

LSP

0.12h�2
, (41)
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Figure 5: The maximum possible dilution size, caused by a scalar X condensate, with respect to the
LSP mass, for gravitino LSP (black, brown) and neutralino LSP (blue). We have made the conservative
assumptionmX ' mLSP that maximizes the diluterX lifetime. In the area above the lines it is ⌦<

LSPh
2/DX >

0.12, hence it is an excluded parameter area. The solid and dashed lines correspond to c = 1 and c = 108

according to the parametrization (42). For a gravitationally decaying diluter (c=1), the thermal gravitino
scenario (brown solid line) is excluded because the X spoils the BBN predictions. The plot demonstrates
the decrease of the dilution e�ciency for large supersymmetry breaking scale and Trh = 109 GeV.

which determines the dilution magnitude and consequently the shift in the spectral index (20). The

D
min
X is referred as the required dilution throughout the text, necessary to give at most a critical

density of LSP particles today.

The X decay is not free from constraints. It must decay before the BBN [75], not overproduce

LSPs and not overproduce late decaying particles such as gravitinos. In the simple but quite unnat-

ural case that the X is lighter than LSP then it is BrXLSP = 0 and the X decay generates Standard

Model radiation only. The BrXLSP = 0 scenario becomes natural if mLSP < mX < 2mLSP since the

channel X ! G̃G̃ or �̃0
�̃
0 is forbidden due to kinematic constraints.

If the decay of the X produces LSPs or other late decaying particles the relevant branching ratios

have to be considered. This is a model dependent issue and should be examined in the context of

each model. In the next section we consider the supergravity R
2 inflation and we take into account

the X decay rate and channels. Actually, the details of the X decay do not change any of the

conclusions synopsised in the conditions (A) and (B). The minimum amount of dilution (41) is

necessary regardless the diluter branching ratios, and this is a key point of this work.

4.4 The maximum possible dilution due to a scalar condensate

If the diluter mass is about or larger than the LSP mass, mX & mLSP, then the dilution magnitude

is correlated with the supersymmetry breaking scale. A late time entropy production takes place
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when the radiation dominated era gets interrupted by an X domiation era at T dom
X < Trh, where Trh

is the reheating temperature caused by the inflaton decay. For an oscillating scalar field the dilution

magnitude is DX ' T
dom
X /T

dec
X . The decay rate of the X scalar can be parametrized as

�X =
c

4⇡

m
3
X

M
2
Pl

, (42)

and the X decay temperature is T
dec
X ' (⇡2

g⇤/90)�1/4(�XMPl)1/2. For c ⇠ 1 the X decays grav-

itationally and T
dec
X ⇠ 4MeV (MX/105GeV)3/2. For c � 1 non-gravitational decay channels ex-

ist; for example if the X field has Yukawa-like coupling yX to light degrees of freedom then it is

�X = y
2
XmX/8⇡. For the borderline case that T dom

X = Trh and mX = mLSP the dilution magnitude

due to an oscillating scalar field, DX , reaches a maximum value. Consequently, a minimum value for

the ⌦<
LSPh

2
/DX exists which obviously must be below the observational value ⌦DMh

2 = 0.12.

In particular, for gravitino LSP the lowest T dec
X value is achieved for �min

X = (c/4⇡)m3
LSP/M

2
Pl and

c ⇠ 1. Assuming that gravitinos are mainly produced by thermal scatterings then the maximum

possible dilution value, Dmax
X = Trh/T

dec(min)
X � DX , yields the lower bound

�̂sc c
1/2

✓
m3/2

7⇥ 108 GeV

◆5/2

<

⌦<
3/2h

2
/0.12

DX

 1 , (43)

where ⌦<
3/2 = ⌦MSSM(sc)

3/2 , �̂sc & 1, see Eq. (25), and the parameter c is explicitly written. Note that

although the Trh is dropped out in the above relation it must be Trh > m3/2. The constraint (43) says

that the abundance of gravitino LSPs produced from thermal scatterings in the plasma is possible to

get diluted to observationally acceptable values by an oscillating scalar field that obtains mass from

the supersymmetry breaking only if

m3/2 < 7⇥ 108 GeV . (44)

The constraint becomes more severe if �̂sc � 1, that is, if m2
3/2 ⌧ m

2
g̃ < T

2
rh, or for a non-gravitational

scalar X, c � 1 or for mX � m3/2. For thermalized gravitinos instead, the formula (28) applies and

the maximum possible dilution magnitude gives the following constraint

c
1/2

⇣
m3/2

105 GeV

⌘5/2
✓
109 GeV

Trh

◆
<

⌦<
3/2h

2
/0.12

DX

 1 , (45)

where ⌦<
3/2 = ⌦eq

3/2. We see from (45) that typical reheating temperatures Trh = 109�1012 GeV imply

a mass boundm3/2 . 106 GeV for thermalized LSP gravitinos. Although such heavy gravitinos hardly

get thermalized via interactions with the MSSM plasma, thermalized messengers can bring them to

thermal equilibrium. Again here, the bound (45) becomes more severe for c � 1 or for mX � m3/2.

When the neutralino is the LSP the �̃
0 relic abundance is determined at the freeze out tempera-

ture that is T f.o.
�̃0 ⇠ m�̃0/20. If the decay temperature of the X field is below the T f.o.

�̃0 the neutralinos
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• If DX = 1 then Trh . m̃ or m̃ ⇠ TeV (A)

• If O(TeV) < (mLSP , m̃) < Trh then DX 6= 1 , (B)
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where we labeled ⌦<
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system of the three interacting cosmic fluids of X, LSP and radiation has to be solved and we refer

the reader to references [89, 86, 85] for detailed analytic results. For gravitino or axino LSP the above

expression generally applies. For the neutralino LSP one should also check whether the conditions (i)
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dec
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a thermal equilibrium value Y
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yield reaches the value Y
(th)
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dec
X ); this corresponds to the so-called annihilation scenario

and works mostly for wino-like LSP with TeV mass scale. Let us mention here that the radiation

produced from the decay of the X particles for the times �X/H < 1 can produce neutralinos even

for T
dec
X < T

f.o.
�̃0 [89, 85], which accounts for an extra contribution to ⌦LSP that may be important

in particular scenarios without, however, modifying the conclusions of the current analysis. Finally,

the ⌦X
LSP depends on the branching ratio BrXLSP of the diluter into two LSPs (directly or via cascade

decays) and the X decay temperature T
dec
X . The LSP yield from the X decay reads

Y
X
LSP ⌘ nLSP

s
=

3

2
BrXLSP

T
dec
X

mX
. (40)

If the Y
X
LSP is subdominant the observed dark matter has to be produced by processes taking place

at higher temperatures than T
dec
X and was appropriately diluted by the decay of the scalar X. On

the other hand, if the dilution DX decreases the initial LSP abundance to negligible levels, then the

LSP production from the X decay should fit the observed dark matter abundance. The constraint

⌦LSPh
2  0.12 implies

DX � D
min
X ⌘ ⌦<

LSP

0.12h�2
, (41)
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Figure 6: The scalar tilt (in black) and tensor-to-scalar ratio (in orange) values when post-inflationary
dilution is considered for the Starobinsky R2 inflation model. The solid line corresponds to a change of
factor 10 in the number of e↵ective degrees of freedom in the energy density at the times T dom

X and T dec
X ,

i.e. g⇤(T dom
X ) = 10 g⇤(T dec

X ), and the dashed line corresponds to no change, i.e. g⇤(T dom
X ) = g⇤(T dec

X ).

5.2.2 The ns and r predictions for particular supersymmetry breaking examples

In this subsection we explore the impact on (ns, r) observables of the two base case dark matter sce-

narios of supersymmetry, the gravitino and the neutralino, when the initial conditions for the hot Big

Bang are set by the supergravity Starobinsky inflation. We consider both thermal and non-thermal

dark matter production from the hot plasma and scalar decays. We examine di↵erent and illustra-

tive supersymmetry breaking schemes and we quantify how the expected values for the inflationary

observables change due to a non-thermal post-reheating phase dictated by the universal constraint

⌦LSPh
2  0.12. We mention that this analysis, that probes cosmologically a BSM scheme, can be

applied to any other inflationary model after the appropriate adjustments regarding the reheating

phase, the reheating temperature and the inflaton field branching ratios.

Example I: Gravitino Dark Matter. The gravitino is the LSP if the supersymmetry breaking

is mediated more e�ciently to the MSSM than to the supergravity sector. The standard paradigm

is the gauge mediation scenario [49]. In such a scenario the supersymmetry breaking Z field de-

cays dominantly into MSSM fields with non-gravitational interactions. Following realistic models

[66, 67, 68], it is the imaginary part of the Z field that decays last and the dominant channel is onto

a pair of gauginos, in particular binos, with the decay temperature given by

T
dec
Z ' 760MeV

✓
15

g⇤

◆1/4 ⇣
mZ

TeV

⌘1/2
✓
GeV

m3/2

◆⇣
mg̃

TeV

⌘2
✓
1� 4

m
2
g̃

m
2
Z

◆1/4

. (73)
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5.1 The Starobinsky R
2 inflation

The Starobinsky model [90] is an f(R) gravity model described by the Lagrangian

e
�1
L = �M

2
Pl

2
R +

M
2
Pl

12m2
R

2
. (47)

This theory is conformally equivalent to the Einstein gravity with a scalar field ', the scalaron,

minimally coupled to gravity

e
�1
L = �M

2
Pl

2
R� 1

2
@'@'� 3

4
m

2
M

2
Pl

⇣
1� e

�
p

2
3'/MPl

⌘2

. (48)

From the CMB normalization [1] we get m ' 1.3 ⇥ 10�5
MPl. The inflationary predictions of the

R
2 theory [91] at leading order are given by the following expressions of the primordial spectra and

tensor-to-scalar-ratio r⇤ = 16✏⇤,

ns = 1� 2

N⇤
,

dns

d ln k
' � 2

N2
⇤
, r⇤ =

12

N2
⇤
. (49)

Also, the tensor spectral tilt and running are respectively nt = �3/(2N2
⇤ ), dnt/d ln k ' �3/N3

⇤ .

After the end of the inflationary expansion the inflaton is a homogeneous condensate of scalar

gravitons. The scalaron universally interacts with other elementary particles only with gravitational

strength and the inflaton perturbative decay process can be computed. The lifetime of the scalaron

is rather long and ' decays after it has oscillated excessively many times about the minimum of its

potential. The universe during scalaron oscillation phase evolves as a pressureless matter dominated

phase and the e↵ective value of the equation of state during reheating is to good approximation zero,

w̄rh = 0, [37]. Thus the �Nrh given by the expression (10) reads

�Nrh|R2 =
1

12
ln

✓
⇢end

⇢rh

◆
. (50)

The energy density of the inflaton at the end of inflation is found to be ⇢end ' (3/2)VR2('end) '
3.3 ⇥ 10�11

M
4
Pl. The energy density at the end of reheating, ⇢rh = (⇡2

/30)g⇤rhT 4
rh, is determined by

the reheating temperature Trh and the number of the degrees of freedom g⇤(Trh) ⌘ g⇤rh. In total, for

the R
2 inflation the expression (12) is recast into

N⇤|R2 = 55.9 +
1

4
ln ✏⇤ +

1

4
ln

V⇤

⇢end
+

1

12
ln
⇣
g⇤rh

100

⌘
+

1

3
ln

✓
Trh

109 GeV

◆
��NX . (51)

The reheating temperature is estimated by equating �inf = H, where �inf ⌘ �' is the decay rate of

the scalar graviton,

Trh |R2 =

✓
⇡
2

90
g⇤rh

◆�1/4 p
�infMPl ⇠ 109 GeV

✓
100

g⇤rh

◆1/4

. (52)
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Assuming only Standard Model degrees of freedom, at that energy scales it is g⇤rh = 106.75, thus

Trh ⇠ 109 GeV. For the R
2 we get for the first slow roll parameter ✏⇤ = (3/4)/N2

⇤ thus 1/4 ln ✏⇤ =

�2.1+1/2 ln(54/N⇤). In addition the R2 plateau potential changes very slowly with the ' value and

for N⇤ = 45� 60 it is 1/4 ln(V⇤/⇢end) ⇡ 0.2, hence

N⇤|R2 = N
(th)

��
R2 ��NX = 54��NX . (53)

In the above equation the logarithmic correction 1/2 ln(54/N⇤) has been neglected because its value

is less than 0.1 for relevant values of the N⇤. The thermal n
(th)
s value that the standard Starobinsky

R
2 inflation model predicts at leading order is found when we substitute the thermal e-folds number

N
(th) = 54 into the Eq. (49), that is n(th)

s = 0.963. In terms of the e-folds number, the other two slow

roll parameters for the Starobinsky model read ⌘V ' �1/N and ⇠V ' 1/N2. Since the corrections

at second order in slow roll at the scalar tilt will not be negligible in the future it is crucial to go to

order 1/N2. Also, going at next-to-leading order we could probe �NX ⇠ 1 changes that could shed

light on the pre-BBN cosmic history. For the Starobinsky model the expression (14) reads [33]

ns = 1� ↵R2

N
+

�R2(N)

N2
= 1� 2

N
+

0.81 + 3/2 ln(N)

N2
. (54)

Also, going to order 1/N3 the tensor-to-scalar ratio and running read

r =
12

N2
� 18

N3
(2.1 + lnN) and ↵s = ��2

N2
+

1

N3
(�0.68 + 3 lnN) . (55)

Plugging N
(th) = 54 in Eq.(54) the thermal scalar tilt value is obtained

n
(th)
s

��
R2 = 0.965 , (56)

that is 2h larger than the leading order prediction. We also take at next-to-leading order

r
(th)

��
R2 = 0.0034 and ↵

(th)
s

��
R2 = �0.037 . (57)

Note that the r value is 17% smaller than the value obtained at leading order. Furthermore, going

to accuracy level 1/N3 the r = r(ns) relation reads

r � 3(1� ns)
2 +

23

4
(1� ns)

3 = 0 . (58)

The Eq. (58) was obtained from the expressions ns = ns(✏V , ⌘V , ⇠V ) and r = r(✏V , ⌘V ) written up to

1/N3 order. In particular for the Starobinsky model it is ns � 1 = 2⌘V � (19/6)⌘2V � 2C⌘
2
V + O(⌘3V )

and r = 12⌘2V +(8�24C)⌘3V +O(⌘4V ) where C ⌘ �2+ln 2+�, with � the Euler-Mascheroni constant.

If nature is successfully described by the Standard Model of particle physics and the R
2 inflation

model then the �NX has to be zero and hence ns = n
(th)
s . Next we review and estimate the expected

ns and r values for the R
2 supergravity inflation model.
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★ Dilution factor D_X changes CMB 
observables:
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# mZ m3/2 mf̃ m�̃0 (LSP) D(X) N⇤ ns r Origin

1 107 106 106 103 102|min 52|max 0.964|max 0.0036|min Non-th
2 109 108 108 103 102|min 52|max 0.964|max 0.0036|min Th
3 108 107 107 105 108|min 48|max 0.961|max 0.0042|min Non-th

4 105 105 105 103 1 54 0.965 0.0034 Th

Table 2: The ns and r prediction for neutralino LSP and anomaly/gravity mediation scheme for
the R

2 supergravity model. In the case # 1 the neutralino annihilate after the decay of gravitinos,
while in case # 2 neutralinos acquire a thermal abundance. In the case # 3 the neutralinos from the
gravitino decay are overabundant and a diluter X is required. The case # 4 is the standard thermal
WIMP scenario. The masses are in GeV units.

Example II: Neutralino Dark Matter. For gravity or anomaly mediation of supersymmetry

breaking the gravitino mass is naturally heavier than the neutralinos. The gravitino decay populates

the universe with neutralinos. Here we assume the gravitino mass to be above 105 GeV not to spoil

BBN predictions at the time of decay. The gravitinos are produced non-thermally by the decay of

the inflaton, see Eq. (63), which generally accounts for a subleading contribution in the framework of

R
2 supergravity inflation, and by the decay of the supersymmetry breaking scalar field Z. Contrary

to the GMSB case the Z scalar oscillations are not thermally damped and generally the Z produces

late entropy if displaced from the zero temperature minimum. The temperature that the Z field

decays is estimated by considering the various partial decay rates. The dominant decay channel is

into a pair of gravitinos, when mZ � m3/2, and the total decay rate yields the decay temperature

T
dec
Z ' 4⇥ 109GeV

⇣
mZ

108GeV

⌘5/2
✓
GeV

m3/2

◆
. (75)

If the Z field oscillations dilute the thermal plasma then the gravitinos coming from the Z decay

are the leading source of dark matter neutralinos at the gravitino decay temperature T
dec
3/2 . The

neutralinos are generally found to be overabundant when supersymmetry breaks at energies beyond

the TeV scale and dilution is required. Hence we assume the presence of a diluter field X that

decreases the LSP relic density via late entropy production. We mention that according to the

general constraint (46) the neutralinos with mass m�̃0 > 107 GeV are impossible to get diluted by

the oscillations of the X scalar and thermal inflation is required.

Let us now consider benchmark mass patterns for the supersymmetry breaking sector plus the

MSSM, characterized mainly by split and quasi-natural sparticle mass spectrum.

1. m�̃0 . 103 GeV, m3/2 ⇠ mf̃ ' 106 GeV,mZ ' 107 GeV. Here we assume the annihila-

tion scenario where the neutralino has an annihilation cross section few orders of magnitude

higher that the conventional value. The universe is generally dominated by the Z scalar that

decays to gravitinos at the temperature T dec
Z ⇠ 12 GeV. In turn, the gravitinos produced from
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# mZ mg̃ mf̃ m3/2 (LSP) DX N⇤ ns r Origin

1 104 104 104 102 104|min 51|max 0.963|max 0.0038|min Th
2 104 104 105 103 1010|min 46|max 0.960|max 0.0044|min Th
3 106 105 106 104 106|min 49|max 0.962|max 0.0041|min Non-th
4 103 103 104 10 1 54 0.965 0.0034 Th

Table 1: The ns and r prediction for gravitino LSP and a gauge mediation scheme for the R
2

supergravity model. In the cases # 1, 2 and 4 the gravitinos are produced from thermal scatterings of
messengers and MSSM fields while in the case # 3 from the non-thermal decay of the supersymmetry
breaking Z field. In cases # 1, 2 and 3 dilution is required to decrease the LSP abundance below
the observational bound. In the case # 4 non-minimal hidden sector features have been assumed.
The masses are in GeV units.

dominates the energy density of the universe shortly after the reheating in order such a dilution

size to be realized. The shift in the spectral index and tensor-to-scalar ratio are respectively

|�ns| & 5⇥ 10�3 and �r & 10⇥ 10�4.

3. m3/2 ' 104 GeV, mg̃ ' 105 GeV ,mf̃ ⇠ mZ ' 106 GeV andMmess > Trh. The Z field

does not receive thermal corrections because the messengers are not thermalized. The Z scalar

oscillations generally have a large enough amplitude and Z does dominate the energy density

of the universe. Equations (73) and (74) say that the spurion Z decays at T
dec
Z ' 1 GeV

and produces non-thermally gravitinos that exceed about 106.5 times the observational bound.

In order the Z condensate to get diluted the X field has to be a flaton and cause thermal

inflation. In this case, the shift in the spectral index and tensor-to-scalar ratio are respectively

|�ns| & 3⇥ 10�3 and �r & 7⇥ 10�4.

4. m3/2 = fewGeV, mg̃ ⇠ mf̃ ⇠ mZ = fewTeV. There are scenarios in the literature that

reconcile gravitino cosmology with high reheating temperatures [53, 56, 26, 54] and generally

assume non-minimal features for the hidden sector. For example when the messengers masses

lay in the range Mmess . 106 GeV and the goldstino does not reside in a single chiral superfield

[56], or when the messenger coupling is controlled by the VEV of another field [26] it is possible

that gravitinos have the right abundance. These supersymmetry breaking schemes do not

require dilution and predict �ns = 0 and �r = 0. We mention that these scenarios, in their

original versions, work better when supersymmetry is broken about the TeV scale. Features of

these scenarios are currently tested by the LHC experiments.

The above benchmark examples for the gravitino dark matter scenario are synopsized in the the

table 1 and Fig. 8.
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5.2 The R +R
2 supergravity inflation

The embedding of the Starobinsky model of inflation in old-minimal supergravity in a superspace

approach consists of reproducing the Lagrangian (47). This is achieved by the action [92, 93, 94, 95,

96]

L = �3M2
P

Z
d
4
✓E


1� 4

m2
RR̄+

⇣

3m4
R

2
R̄

2

�
. (59)

Modifications and further properties can be found in [97, 98, 99, 101, 102, 103, 104, 100, 105, 106,

107, 108, 109, 110]. We mention that attention should be paid to the full couplings of the inflaton

field that may yield a di↵erent reheating temeprature in each of these models since not all of them

are pure supergravitational.

The old-minimal supergravity multiplet contains the graviton (eam), the gravitino (G̃ =  
↵
m), and a

pair of auxiliary fields: the complex scalarM and the real vector bm. Lagrangian (59) when expanded

to components yields R2 terms and kinematic terms for the “auxiliary” fields M and bm. One may

work directly with (59) but it is more convenient to turn to the dual description in terms of two

chiral superfields: T and S and standard supergravity [92]. During inflation the universe undergoes

a quasi de Sitter phase which implies that supersymmetry is broken, the the mass of the sgoldstino

S becomes large and it can be integrated out [111, 112]. In this stage a non-linear realization of

supersymmetry during inflation is possible [113, 114, 115, 116]. The real component of T is not

integrated out due to the non-linear realization and it is the only dynamic degree of freedom during

inflation [93, 94, 96]. Eventually one finds the e↵ective model (48).

The inflationary predictions for the supergravity R
2 model are found to be identical to the non-

supersymmetric Starobinsky R
2 predictions (49). In addition, the reheating phase is much similar

and the inflaton decay rate roughly the same. Indeed, in the work of [117] the inflaton decay

channels were identified and the branching ratios calculated. The total decay rate was parametrized

as �sugra-inf = c
0
m

3
�/M

2
Pl, where m� ⌘ minf and the reheating temperature was estimated to be

Trh|sugraR2 =

✓
90

⇡2g⇤(Trh)

◆1/4 p
�sugra-infMPl ⇠ 109 GeV . (60)

The fact that the reheating temperature is found to be about the same with that predicted in

the non-supersymmetric R2 model (52) means the supergravity and non-supergravity versions of the

R
2 inflation models are completely degenerate in terms of the inflationary predictions. However,

the details of the expansion history of the universe after the decay of the inflaton should break the

degeneracy between the supergravity-R2 and gravity R
2. We can directly apply the analysis and the

results of the previous sections by minimally completing the supergravity R
2 sector with the MSSM

and a basic supersymmetry breaking sector. Let us first examine the implications of the supergravity

R
2 inflation to the abundances of superparticles.

The R
2 supergravity scenario can be distinguished in two basic cases: the ultra high scale su-

persymmetry breaking m3/2 > m� and the sub-inflation supersymmetry breaking scale m� > m3/2
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Gravitino DM (in GeV units)

[Dalianis & YW 1801.05736] 

Neutralino (WIMP) DM

+ MSSM, Z, X, 
(messengers)

 Alternative history after reheating

 Alternative history after reheating
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while in case # 2 neutralinos acquire a thermal abundance. In the case # 3 the neutralinos from the
gravitino decay are overabundant and a diluter X is required. The case # 4 is the standard thermal
WIMP scenario. The masses are in GeV units.

Example II: Neutralino Dark Matter. For gravity or anomaly mediation of supersymmetry

breaking the gravitino mass is naturally heavier than the neutralinos. The gravitino decay populates

the universe with neutralinos. Here we assume the gravitino mass to be above 105 GeV not to spoil

BBN predictions at the time of decay. The gravitinos are produced non-thermally by the decay of

the inflaton, see Eq. (63), which generally accounts for a subleading contribution in the framework of

R
2 supergravity inflation, and by the decay of the supersymmetry breaking scalar field Z. Contrary

to the GMSB case the Z scalar oscillations are not thermally damped and generally the Z produces

late entropy if displaced from the zero temperature minimum. The temperature that the Z field

decays is estimated by considering the various partial decay rates. The dominant decay channel is

into a pair of gravitinos, when mZ � m3/2, and the total decay rate yields the decay temperature

T
dec
Z ' 4⇥ 109GeV

⇣
mZ

108GeV

⌘5/2
✓
GeV

m3/2

◆
. (75)

If the Z field oscillations dilute the thermal plasma then the gravitinos coming from the Z decay

are the leading source of dark matter neutralinos at the gravitino decay temperature T
dec
3/2 . The

neutralinos are generally found to be overabundant when supersymmetry breaks at energies beyond

the TeV scale and dilution is required. Hence we assume the presence of a diluter field X that

decreases the LSP relic density via late entropy production. We mention that according to the

general constraint (46) the neutralinos with mass m�̃0 > 107 GeV are impossible to get diluted by

the oscillations of the X scalar and thermal inflation is required.

Let us now consider benchmark mass patterns for the supersymmetry breaking sector plus the

MSSM, characterized mainly by split and quasi-natural sparticle mass spectrum.

1. m�̃0 . 103 GeV, m3/2 ⇠ mf̃ ' 106 GeV,mZ ' 107 GeV. Here we assume the annihila-

tion scenario where the neutralino has an annihilation cross section few orders of magnitude

higher that the conventional value. The universe is generally dominated by the Z scalar that

decays to gravitinos at the temperature T dec
Z ⇠ 12 GeV. In turn, the gravitinos produced from
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# mZ mg̃ mf̃ m3/2 (LSP) DX N⇤ ns r Origin

1 104 104 104 102 104|min 51|max 0.963|max 0.0038|min Th
2 104 104 105 103 1010|min 46|max 0.960|max 0.0044|min Th
3 106 105 106 104 106|min 49|max 0.962|max 0.0041|min Non-th
4 103 103 104 10 1 54 0.965 0.0034 Th

Table 1: The ns and r prediction for gravitino LSP and a gauge mediation scheme for the R
2

supergravity model. In the cases # 1, 2 and 4 the gravitinos are produced from thermal scatterings of
messengers and MSSM fields while in the case # 3 from the non-thermal decay of the supersymmetry
breaking Z field. In cases # 1, 2 and 3 dilution is required to decrease the LSP abundance below
the observational bound. In the case # 4 non-minimal hidden sector features have been assumed.
The masses are in GeV units.

dominates the energy density of the universe shortly after the reheating in order such a dilution

size to be realized. The shift in the spectral index and tensor-to-scalar ratio are respectively

|�ns| & 5⇥ 10�3 and �r & 10⇥ 10�4.

3. m3/2 ' 104 GeV, mg̃ ' 105 GeV ,mf̃ ⇠ mZ ' 106 GeV andMmess > Trh. The Z field

does not receive thermal corrections because the messengers are not thermalized. The Z scalar

oscillations generally have a large enough amplitude and Z does dominate the energy density

of the universe. Equations (73) and (74) say that the spurion Z decays at T
dec
Z ' 1 GeV

and produces non-thermally gravitinos that exceed about 106.5 times the observational bound.

In order the Z condensate to get diluted the X field has to be a flaton and cause thermal

inflation. In this case, the shift in the spectral index and tensor-to-scalar ratio are respectively

|�ns| & 3⇥ 10�3 and �r & 7⇥ 10�4.

4. m3/2 = fewGeV, mg̃ ⇠ mf̃ ⇠ mZ = fewTeV. There are scenarios in the literature that

reconcile gravitino cosmology with high reheating temperatures [53, 56, 26, 54] and generally

assume non-minimal features for the hidden sector. For example when the messengers masses

lay in the range Mmess . 106 GeV and the goldstino does not reside in a single chiral superfield

[56], or when the messenger coupling is controlled by the VEV of another field [26] it is possible

that gravitinos have the right abundance. These supersymmetry breaking schemes do not

require dilution and predict �ns = 0 and �r = 0. We mention that these scenarios, in their

original versions, work better when supersymmetry is broken about the TeV scale. Features of

these scenarios are currently tested by the LHC experiments.

The above benchmark examples for the gravitino dark matter scenario are synopsized in the the

table 1 and Fig. 8.
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5.2 The R +R
2 supergravity inflation

The embedding of the Starobinsky model of inflation in old-minimal supergravity in a superspace

approach consists of reproducing the Lagrangian (47). This is achieved by the action [92, 93, 94, 95,

96]

L = �3M2
P

Z
d
4
✓E


1� 4

m2
RR̄+

⇣

3m4
R

2
R̄

2

�
. (59)

Modifications and further properties can be found in [97, 98, 99, 101, 102, 103, 104, 100, 105, 106,

107, 108, 109, 110]. We mention that attention should be paid to the full couplings of the inflaton

field that may yield a di↵erent reheating temeprature in each of these models since not all of them

are pure supergravitational.

The old-minimal supergravity multiplet contains the graviton (eam), the gravitino (G̃ =  
↵
m), and a

pair of auxiliary fields: the complex scalarM and the real vector bm. Lagrangian (59) when expanded

to components yields R2 terms and kinematic terms for the “auxiliary” fields M and bm. One may

work directly with (59) but it is more convenient to turn to the dual description in terms of two

chiral superfields: T and S and standard supergravity [92]. During inflation the universe undergoes

a quasi de Sitter phase which implies that supersymmetry is broken, the the mass of the sgoldstino

S becomes large and it can be integrated out [111, 112]. In this stage a non-linear realization of

supersymmetry during inflation is possible [113, 114, 115, 116]. The real component of T is not

integrated out due to the non-linear realization and it is the only dynamic degree of freedom during

inflation [93, 94, 96]. Eventually one finds the e↵ective model (48).

The inflationary predictions for the supergravity R
2 model are found to be identical to the non-

supersymmetric Starobinsky R
2 predictions (49). In addition, the reheating phase is much similar

and the inflaton decay rate roughly the same. Indeed, in the work of [117] the inflaton decay

channels were identified and the branching ratios calculated. The total decay rate was parametrized

as �sugra-inf = c
0
m

3
�/M

2
Pl, where m� ⌘ minf and the reheating temperature was estimated to be

Trh|sugraR2 =

✓
90

⇡2g⇤(Trh)

◆1/4 p
�sugra-infMPl ⇠ 109 GeV . (60)

The fact that the reheating temperature is found to be about the same with that predicted in

the non-supersymmetric R2 model (52) means the supergravity and non-supergravity versions of the

R
2 inflation models are completely degenerate in terms of the inflationary predictions. However,

the details of the expansion history of the universe after the decay of the inflaton should break the

degeneracy between the supergravity-R2 and gravity R
2. We can directly apply the analysis and the

results of the previous sections by minimally completing the supergravity R
2 sector with the MSSM

and a basic supersymmetry breaking sector. Let us first examine the implications of the supergravity

R
2 inflation to the abundances of superparticles.

The R
2 supergravity scenario can be distinguished in two basic cases: the ultra high scale su-

persymmetry breaking m3/2 > m� and the sub-inflation supersymmetry breaking scale m� > m3/2
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Figure 8: Constraints on the (ns, r) contour plane from Planck-2015 in the pink, and the schematic illus-
tration of 2� forecast constraints from a future CMB probe with sensitivity �ns ⇠ 10�3 and �r ⇠ 10�3

depicted with the dotted and dashed ellipsis. The R2 model is targeted with a fiducial value of r ⇠ 4⇥10�3.
The red asterisks correspond to the predictions of the four benchmark models (#1, 2, 3, 4) with gravitino
LSP and the green asterisks to the four benchmark models (#1, 2, 3, 4) with neutralino LSP, as explained in
the text and tables 1 and 2 respectively. If the future CMB experimental probes select the area inside the
dashed ellipsis then either the R2 or the SUGRA-R2 inflation model is selected plus a roughly continuous
thermal phase with reheating temperature, Trh ⇠ 109 GeV. The selection of the dashed ellipsis area will
exclude a large class of supersymmetry models that predict a too large LSP abundance for that reheating
temperature. On the contrary, if the dotted ellipsis area is selected then the duration of the thermal phase
before the BBN is much limited and extra scalar particles should be present above the TeV scale, hence
supporting the SUGRA-R2 model rather than the R2 inflation model plus ”desert”.
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