

LHC and HL-LHC Status

Y. Papaphilippou, CERN

On behalf of the HL-LHC project

Particular thanks to O. Brunning and R. Tomas for the material

Corfu2024 Workshop on the Standard Model and Beyond – 03/09/2024

Reminder of the HL-LHC Goals

Baseline: Baseline 6.7

01-Sep-2023 10:07

HiLumi LHC landmarks: a project for Physics and Technology leap

LHC upgrade goals: Performance optimisation

Luminosity recipe (round beams):

$$L = \frac{n_b \times N_1 \times N_2 \times g \times f_{rev}}{4\rho \times b^* \times e_n} \times F(f, b^*, e, S_s)$$

→1) maximize bunch intensities
→ Injector complex
→2) minimize the beam emittance
→3) minimize beam size (constant beam power); → triplet aperture
→4) maximize number of bunches (beam power); → 25ns
→5) compensate for 'F'; → Crab Cavities
→6) Improve machine 'Efficiency' → minimize number of unscheduled beam

aborts

International Collaboration

The MS region with in-kind contributions

Run3 started with excellent performance in July 2022 Second Year of Run3 cut short due to leak in Pt8 Triplet magnet bellow 2024 run has started with new partial RP optics (triplet irradiation mitigation) E-cloud still major limitation for allowing maximum number of bunches (cryo capacity)

Electron Cloud: Persisting into HL-LHC period Dealing with electron cloud Sector 7-8 emerged degraded from LS2, determining heat load limitation of LHC Fill #6675 (2018) Fill #8471 (2022) ARC BS half-cell Heat Load average 150 +12% Scrubbing saturates at elevated heat load levels [e.g. S78]! [M] 100 vpical e⁻ densities ~10¹² e-/m⁻³ The key question is if this level of electron cloud remains stable or if it will 50 degrade further over coming shutdown period?! 13-2015) 0 ARC12 ARC2 degradation of Airborne Cu Hydroxide [Cu(OH)₂] and venting of the apertures during Long QBS Norm [W/1e14 p+] S23 & S78 & S81 -8% Shutdowns have been identified as the root cause for this degradation 19-2022) Provoked significant degradation of heat loads in S56 & S67 & S78 ARC12 ARC23 ARC81 ARC34 ARC45 ARC56 ARC67 ARC78

Heat load reduction in LHC with hybrid scheme

 Hybrid filling scheme for e-cloud suppression for proton physics in 2023 (first time!). Reduced number of 25 ns bunches in 2024

• Total intensity vs heat load optimised with trains mixing 8b4e and 25 ns (5x36b)

~20% reduction in heat load per bunch allowed smooth operation with up to 1.6e11 p/b

o Sufficient margin in heat load for increasing intensity to 1.8e11 p/b (limited by other devices)

10

e-cloud: Mitigation Options for HL-LHC

Beam stability is also degraded

- \rightarrow one needs to address the root cause and not only the heat load with e.g. cryogenics upgrade.
- Ideal cure: in situ surface treatment (see V. Petit, LHC Chamonix workshop, 23/01/2023)
 - Plasma-assisted CuO reduction and carbon recovery (PE-CVD)
 - Carbon coating (10-20 nm) by sputtering (PVD)

In-situ treatment tool testing and personnel training on mockup

Consolidation Project proposed (see *M. Lamont*, <u>LHC "Chamonix" workshop</u> <u>summary</u>, 25/03/2023)

LHC optics corrections for incoherent e-cloud effects

LHC 2023 Injection optics modified to suppress **synchro-betatron resonances** excited by arc octupoles and e-cloud in quadrupoles – improving beam lifetime!

LHC proton Run 2023: collimation performance

- LHC stored beam energy in 2023 exceed **400MJ** at 6.8 TeV new **record!** Excellent performance of collimation cleaning systems
- Ensured safe operation and high availability in all operational phases
- In particular, during complex 2023 β* levelling scheme!
- Cleaning inefficiencies often below the 10⁻⁴ level
- **New HL-LHC collimators** fully deployed in operation: low-impedance collimators, TCLD dispersion suppressor collimators (ions), crystal collimation scheme for high- β^* run, ...
- **Big effort** to ensure system commissioning, including all special runs, and to validate/monitor performance.

Example: B2H cleaning performance along the cycle

Studies on LHC RF fingers

Identification of the possible mechanism of failure: beam impedance induced heating due to field leakage from RF fingers

RP optics

The IT lifetime does not only depend on integrated performance, but also on

(i) X-angle plane and polarity (& magnitude)
 →peak dose at 0°, 90°, 180° or 270°

(ii) Beam-screen orientation
 →H & V planes "shielded" differently

(iii) IT polarity since most debris positively charged →exported onto H or V plane

Optics with Reversed Polarity (RP) of the triplet do exist, e.g. with Q4 switched off, and nominal quad polarity restored as of Q5

 \rightarrow Enabling an increase of triplet longevity by 25%

Peak dose after 300 fb⁻¹ (ATLAS X-angle polarity reversal not included).

B. (m)

HL-LHC flat optics

L_{lev.}= 5×10³⁴cm⁻²/s

# of bunches	β* x <u>,y</u> [cm]	L _{int} [fb ⁻¹] (Δ[%])	ppb _{end Leveling} ppb _{end} [10 ¹¹]	Pile-up	Fill length [h]
2748	15, 15	250	1.30-1.10	131	7.9
2748	18, 7.5	259 (+3.6)	1.10-0.96	131	8.7
2748	18, 9	257 (+2.8)	1.15-1.0	131	8.4

L_{lev.}= 7.5×10³⁴cm⁻²/s

# of bunches	β *x,y [cm]	L _{int} [fb⁻¹] (∆ [%])	ppb _{end Leveling} ppb _{end} [10 ^{⊥1}]	Pile-up	Fill length [h]
2748	15, 15	303	1.60-1.2	197	5.2
2748	18,7.5	323 (+6.6)	1.40-1.11	197	5.5
2748	18, 9	318 (+4.9)	1.40-1.13	197	5.4

Beam-beam studies for LHC and HL

More on HL-LHC Satellite Meeting, Vancouver, 2023

Gain of flexibility helps to optimize involved configurations:

e.g. comparing round/flat optics DA octupoles vs. tune in HL-LHC in ADJUST with 8b4e filling scheme

ROUND OPTICS

HL-LHC v1.6. E = 7.0 TeV. $N_b \simeq 2.3 \times 10^{11}$ ppb, $L_{1/5} = 2.63 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}, L_2 = 1.56 \times 10^{30} \text{ cm}^{-2} \text{ s}^{-1}, L_8 = 1.51 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ $\beta_{x,1}^* = 1 \text{ m}, \beta_{y,1}^* = 1 \text{ m}, \text{ polarity IP}_{2/8} = 1/1$ $\Phi/2_{1(H)} = 250 \mu rad, \Phi/2_{5(V)} = 250 \mu rad, \Phi/2_{2, V} = -170 \mu rad, \Phi/2_{8, V} = 170 \mu rad$ $\sigma_z = 7.61 \text{ cm}, \epsilon_n = 2.0 \text{ } \mu\text{m}, \text{ } \text{Q}^{'} = 15, \text{ } \text{C}^{-} = 0.001$ 8b4e_1972b_1960_1178_1886_224bpi_12inj. Bunch 89.

FLAT OPTICS

HL-LHC v1.6. E = 7.0 TeV. $N_b \simeq 2.3 \times 10^{11}$ ppb $L_{1/5} = 2.43 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}, L_2 = 1.55 \times 10^{30} \text{ cm}^{-2} \text{s}^{-1}, L_8 = 1.55 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ $\beta_{v,1}^* = 0.7 \text{ m}, \beta_{x,1}^* = 2.8 \text{ m}, \text{ polarity IP}_{2/8} = 1/1$ $\Phi/2_{1(H)} = 250 \mu rad, \Phi/2_{5(V)} = 250 \mu rad, \Phi/2_{2, V} = -170 \mu rad, \Phi/2_{8, V} = 170 \mu rad$ $\sigma_z = 7.61$ cm, $\varepsilon_n = 2.0$ µm, Q' = 15, C⁻ = 0.001 8b4e_1972b_1960_1178_1886_224bpi_12inj. Bunch 89

Octupoles Current [A]

Improving toolbox with more advanced predictions:

e.g. studies of bunch-by-bunch DA \rightarrow important for hybrid filling schemes

Beam-beam compensation using DC wires

Advanced beam dynamics studies: halos in LHC

- Continued effort to understand potential halo limitations to LHC and HL-LHC performance
 - In 2023, severely jeopardized by MD available time with proton beam.
- Characterization bunch-by-bunch could be achieved
- Improved understanding of the effect from long-range wires
- Investigation on novel chaos indicators tools for accelerator physics
 - Initial GPU studies for Xsuite $_{\Xi}$

Spread of halo content across bunches

First deployment of crystal collimation

Crystal collimation scheme (illustrative)

Built as a part of the HL-LHC upgrade (WP5) and installed in LS2 + YETS2022

- First operational deployment of crystal collimation scheme
 - Completed upgrade of IR7 system, 4 new crystals (after some hiccups)
 - Special run at high- β^* also profited for low backgrounds at $\beta^* = 3$ km / 6km!
- Excellent cleaning performance achieved with lead beams at 6.8 Z TeV !
 - Standard collimation improved by more than a factor 5
- Some issues with stability of the optimal angular position to be addressed for future lead

ion runs

4mm-long LHC crystal

First ion beams with crystals on Sep. 23rd.

LHC Page1	Fill: 9	192		E: 679	9 Z GeV	t(SB)	: 00:11:	12 2	26-09-23	3 19:58:10
ION PHYSICS: STABLE BEAMS										
Energy:	6799	GeV	I E	31:	1.63	e+12	1	B2:	1.6	0e+12
Beta* IP1:	0.50 m	Beta	* IP2:	0.50 n	n Beta	* IP5:	0.50 m	Beta	a* IP8:	1.50 m

LIU beams arrived in 2023!!!! (almost)

See H. Bartosik's slides in 216th HL WP2 meeting

year	Intensity at FT [p/b]	# of bunches	Batch spacing [ns]	Bunch length [ns]	Beam type	Date
2023	2.2e11	4 x 72	200	1.6	Standard	13.06.
2023	2.0e11	2 x 56	250	1.6	8b4e	05.04.
2023	1.8e11	56 + 5 x 36	200	1.6	hybrid	19.05.

LHC Integrated Luminosity 2024

[Generated at: 2024-09-02 06:27:21]

On Sunday 1 September, the LHC's integrated luminosity for Run 3, that started in 2022, so far equalled that of Run 2 (2015 – 2018).

Year	Average Integrated Luminosity ATLAS-CMS [fb-1]
Run 1 total:	29.2
Run 2 total:	159.8
Run 3 total (so far):	160.1
Total:	349.1

Latest Run 4 baseline

CERN-ACC-2022-0001

Run length of 3.5 years, $\beta^*=20$ cm, with HEL, no MS10, primary coll. at 8.5 σ , integrated luminosity: 550 fb⁻¹ = **21 + 85 + 205 + 242 fb**⁻¹ (3% below HL target: 250) Scenarios to be refined according to new possible schedule (LS3 shift/extension, Run4 start

Towards an update of Run 4 scenario (protons)

e-cloud is likely to limit the number of bunches in Run 4 \rightarrow 8b+4e or hybrid scheme needed, plus flat optics (~ +5% luminosity, and help with crab cavity impedance):

# of PU		Integrated		Feasibilit	$\beta^{*}_{x,y} = 18, 9 \text{ cm}$	
	Lumi [1/fb]	(Δ[%])	e-cloud	Beam Dynamics	Experiments	Half crossing angle = 250 µrad 160 davs.
132	257	(0%)	No	Yes	Yes	eff.=50%
200	318	(+23%)	No	To be studied	Yes	
140	217	(-16%)	Maybe	Yes	Yes	
200	257	(0%)	Maybe	Studies ongoing	Yes	Preliminary input
140	194	(-24%)	Yes	Yes	Yes	teams rather
200	230	(-10%)	Yes	Yes for DA	Yes	positive, but
200	253	(-1%)	Exceedi investig	ng LIU and HL-LHC ating if possible	goals, but worth	many studies sti needed.
-	132 200 140 200 140 200 200	Lumi [1/fb]132257200318140217200257140194200230200253	Lumi [1/fb](Δ [%])132257(0%)200318(+23%)140217(-16%)200257(0%)140194(-24%)200230(-10%)200253(-1%)	Lumi [1/fb](Δ[%])e-cloud132257(0%)No200318(+23%)No140217(-16%)Maybe200257(0%)Maybe140194(-24%)Yes200230(-10%)Yes200253(-1%)Exceedi investig	Lumi [1/fb] (Δ[%]) e-cloud Beam Dynamics 132 257 (0%) No Yes 200 318 (+23%) No To be studied 140 217 (-16%) Maybe Yes 200 257 (0%) Maybe Yes 200 257 (0%) Maybe Studies ongoing 140 194 (-24%) Yes Yes 200 230 (-10%) Yes Yes for DA 200 253 (-1%) Exceeding LIU and HL-LHC investigating if possible	Lumi [1/fb]e-cloudBeam DynamicsExperiments132257(0%)NoYesYes200318(+23%)NoTo be studiedYes140217(-16%)MaybeYesYes200257(0%)MaybeStudies ongoingYes140194(-24%)YesYesYes200230(-10%)YesYes for DAYes200253(-1%)Exceeding LIU and HL-LHC goals, but worth investigating if possibleYes

Accumptional

Filling schemes for Run 4 under consideration

- 2760 bunches: Nominal, but not fully guaranteed even by fixing 100 half cells
- 2X00 bunches: Alternative in case of further degradation of SEY (under study).
- 3. 1972 bunches: Pure 8b4e, very robust.

Integrated and leveled luminosity versus # of bunches & PU

LHCb upgrade II (in Run 5)

LHCb upgrade II, L lev = 1.5×10^{34} cm⁻² s⁻¹ would reduce ATLAS/CMS integrated luminosity by 2% for both Nominal and Ultimate.

Reduced lifetime from increased beambeam not included here \rightarrow **Need to develop a fully new operational scenario with LHCb II.**

Increased burn-off in IP8 casues bunchbybunch variations, under study.

R. Tomas in LHC performance workshop, January 2022

Collaborations: MQXFA - CA01

- First cold mass reaching performance no retraining after thermal cycle (not shown in the plot)
- Welded before Welding Parameter Specification approval derogation with CERN Safety Unit
- Issues (2) with QH and V-tap acceptable for IT-string (EDMS 2769128) (EDMS 2883868) → will require repair later
- Issue with leaks tightness test Instrumentation (EDMS 2905753)

LQXFA/B-01 Quench Performance

Quench performance of LQXFA01 (Test eng. B. Yahia, WPE: G. Ambrosio, S. Feher, et al.)

Recent Milestones

MQXFB02 reached nominal + 300A @ 1.9K but limited @ 4.5K

Status MQXFB – Q2: Cryo-Module Assembly at CERN - 03

5

10

Event number

- MQXFBP3 test at CERN
 - Nominal +300A @ 1.9K and TC ✓
- MQXFB02 test at CERN
 - nominal +300A @ 1.9K and
- Limitation @ 4.5K, but temp margins compatible with ulti operation energy @ 1.9K
- Both P3 and B02 went throu thermal cycles without degra

Current [kA]

0

- MQXFB03 reached nominal 4.5K!
- On Track for Series Product Nb₃Sn HL-LHC Triplet Quac Magnets

MQXFB03 natural quench history 18 17 Ultimate current Target current 16 Ν E Nominal current QA:8 7 QA QA:12 15 1.9 K, 20 A/s O No quench 1.9 K 14 P2, QA:1 cycle 4.5 K, 20 A/s QA:2 4.5 K, 50 A/s 13 Therma 4.5 K, VI \diamond 12 No guench 4.5 K

15

20

D1 Series Production Validation @ KEK

Successful upgrade of the KEK test station \checkmark

Production of MQXF5 Ongoing @ Hitachi

Half of the coil production Is completed

THE STRING INGREDIENTS ARE GETTING READY

Dates given in schedule change request, EDMS 2898265

- Q1: magnet cold mass being welded \rightarrow Available in September 2024
- Q2a: MQXFBP2b completed \rightarrow On SM18 Testbench \rightarrow Available April 2024
- Q2b: MQXFBP3b completed \rightarrow Available for Testbench Jan. \rightarrow April 2024
- Q3: magnet being prepared for shipment to CERN \rightarrow Available July 2024
- CP cryostating Phase II ongoing \rightarrow Available August 2024
- D1 cryostating completed \rightarrow Available for Testbench \rightarrow Available March 2024

Recent Milestones

February 2023: He Vessel welding for 1st Series DQW Crab Cavity

Industrial DQW Series (RI)

- 1st pre-series jacketed cavity with excellent results, metrology to be finalized before acceptance
- 2nd cavity in metrology and cold tests soon

SC-Link-DFHX assembly in pictures

FRAS Test Stand and Validation

IR Collimators and String Assembly

IR1/5 underground civil engineering completed in 2022

Construction Finished End 2022

work was conducted during LS2 \rightarrow vibration impact

Completion of Surface buildings in 2023

Available beginning of 2024 Open Access Publication https://doi.org/10.1142/13487 ISBN: 978-981-127-894-5

ISSN 1793-1339

Advanced Series on Directions in High Energy Physics --- Vol. 31

THE HIGH LUMINOSITY LARGE HADRON COLLIDER

New Machine for Illuminating the Mysteries of the Universe

Second Edition

Editors Oliver Brüning and Lucio Rossi

World Scientific

Civil Engineering Work Completed

All magnet productions on good track!

1st Part of Collimation Upgrade completed

The project is on Track for installation during LS3 starting in 2026

Stay Tuned for completion of the IT-String installation in 2024 and operation as of 2025!

Thank you for your attention

