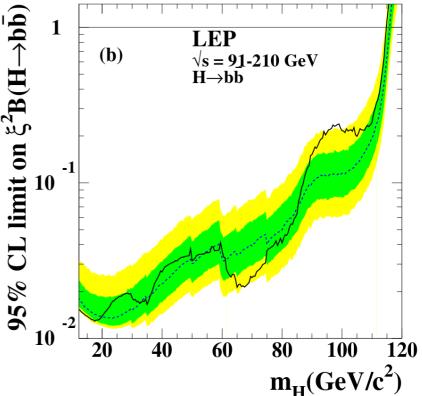
95 GeV scalar and dark matter *in the MRSSM*

Wojciech Kotlarski, Jan Kalinowski


based on JHEP 07 (2024) 037 [arXiv:2403.08720] work supported by the National Science Centre (Poland) grant 2022/47/D/ST2/03087

LEP hints of a 95 GeV scalar

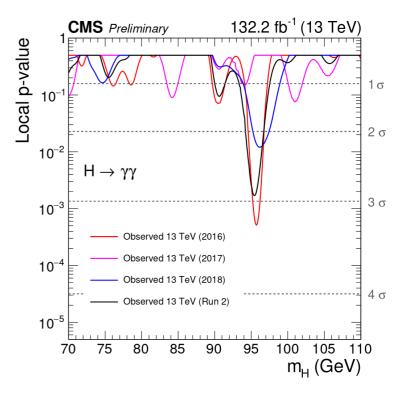
Higgsstrahlung excess in the $b\overline{b}$ channel [arXiv:0306033]

Can be accommodate by a intermediate state ϕ [arXiv:1612.08522]

$$\mu_{b\bar{b}}^{\rm LEP} = \frac{\sigma^{exp}(e^+e^- \to Z\phi \to Zb\bar{b})}{\sigma^{\rm SM}(e^+e^- \to ZH \to Zb\bar{b})} = 0.117 \pm 0.057$$

LHC hints of a 95 GeV scalar

Recent ATLAS result based on the full Run 2 data set


$$\mu_{\gamma\gamma}^{\rm ATLAS} = \frac{\sigma^{\rm exp}(pp \to \phi \to \gamma\gamma)}{\sigma^{\rm SM}(pp \to H \to \gamma\gamma)} = 0.18^{+0.10}_{-0.10}$$

Consistent with the already existing CMS excess

$$\mu_{\gamma\gamma}^{\rm CMS} = \frac{\sigma^{\rm epx}(pp \to \phi \to \gamma\gamma)}{\sigma^{\rm SM}(pp \to H \to \gamma\gamma)} = 0.33^{+0.19}_{-0.12}$$

Combined (Biekotter, Heinemeyer, Weiglein [arXiv:2306.03889])

$$\mu_{\gamma\gamma}^{\rm ATLAS + CMS} = 0.24^{+0.09}_{-0.08}$$

Generic setup

Mostly gauge singlet state

$$h_1 = \frac{1}{\sqrt{10}}h_{\rm SM} + \dots$$

with mass 95.4 GeV. Such composition solves this

$$\mu_{b\bar{b}}^{\rm LEP} = \frac{\sigma^{\rm BMS}(e^+e^- \to Zh_1 \to Zb\bar{b})}{\sigma^{\rm SM}(e^+e^- \to ZH \to Zb\bar{b})} \approx 0.1$$

But it equally (by a factor 1/10) suppreses

$$\mu_{\gamma\gamma} = \frac{\sigma^{\rm BSM}(pp \to h_1 \to \gamma\gamma)}{\sigma^{\rm SM}(pp \to H \to \gamma\gamma)} \approx 0.1$$

You need a way to enhance

$$BR(\phi \to \gamma \gamma) \approx (2 - 2.5)BR(H \to \gamma \gamma)$$

This can be achieved in models where the singlet mixes differently with 2 components making up a SM-like Higgs, like H_u and H_d in models with two Higgs doublets

Light singlet setup

Two lightest Higgses are a mixture of H_u and S

$$\mathcal{M}_{u,S}^{\phi} = \begin{pmatrix} m_Z^2 + \Delta m_{rad}^2 & v_u \left(\sqrt{2}\lambda_u \mu_u^{\text{eff},-} + g_1 M_B^D\right) \\ v_u \left(\sqrt{2}\lambda_u \mu_u^{\text{eff},-} + g_1 M_B^D\right) & 4(M_B^D)^2 + m_S^2 + \frac{\lambda_u^2 v_u^2}{2} \end{pmatrix}$$

Obvious constraints:

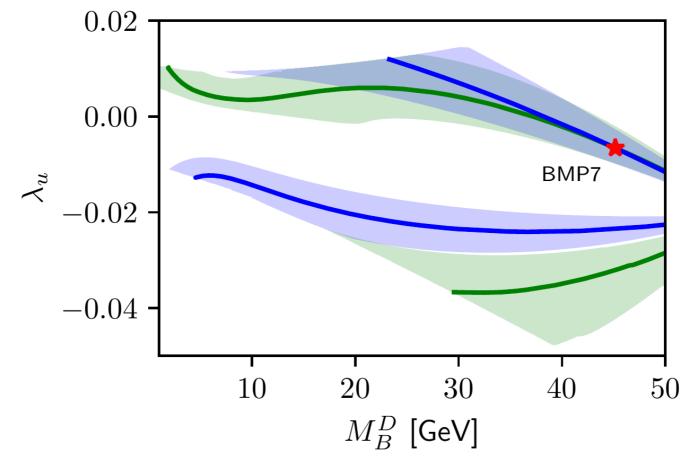
- mixing has to be small
- $4(M_B^D)^2 + m_S^2 \approx (95 {\rm GeV})^2 \Rightarrow$ this setup enforces light DM candidate
- $\left|\lambda\right|_u \ll 1$

How to accommodate LEP and LHC excesses?

- Required pattern of partial widths is generated exclusively via mixing
- Two categories of processes (assuming we are in the limit of large $\tan \beta$):
 - occuring mostly via the H_u admixture like $\Gamma(h_1 \to \gamma \gamma) / \Gamma(h_{95.4}^{\text{SM}} \to \gamma \gamma)$ $\Gamma(h_1 \to gg) / \Gamma(h_{95.4}^{\text{SM}} \to gg), \Gamma(h_1 \to ZZ) / \Gamma(h_{95.4}^{\text{SM}} \to ZZ) \approx 0.13$
 - occuring via the H_d admixture like the $\Gamma(h_1 \to b\bar{b}) \approx 0.074 \cdot \Gamma(h_{95.4}^{SM} \to b\bar{b})$
- Despite the suppression of $\Gamma(h_1 \to b\bar{b})/\Gamma(h_{95.4}^{\text{SM}} \to b\bar{b})$ we still have BR $(h_1 \to b\bar{b}) \approx 0.9 \cdot \text{BR}(h_{95.4}^{\text{SM}} \to b\bar{b})$
- The value of LEP excess can be read of from the combination of $BR(h_1 \rightarrow b\bar{b})/BR(h_{95.4}^{SM} \rightarrow b\bar{b})$ and $\Gamma(h_1 \rightarrow ZZ)/\Gamma(h_{95.4}^{SM} \rightarrow ZZ)$ giving $\mu_{b\bar{b}}^{LEP} = 0.13 \cdot 0.9 = 0.117$
- In the case where $BR(h_1 \to \gamma \gamma) \approx BR(h_{95.4}^{SM} \to \gamma \gamma)$, $\mu_{\gamma\gamma} \approx 0.13$ and not the 0.24 we are targeting. However, $BR(h_1 \to \gamma \gamma)/BR(h_{95.4}^{SM} \to \gamma \gamma)$ is enhanced to around 2 because total width of h_1 is suppressed by a factor 2 less than a partial width $\Gamma(h_1 \to \gamma \gamma)$ compared to their SM values.

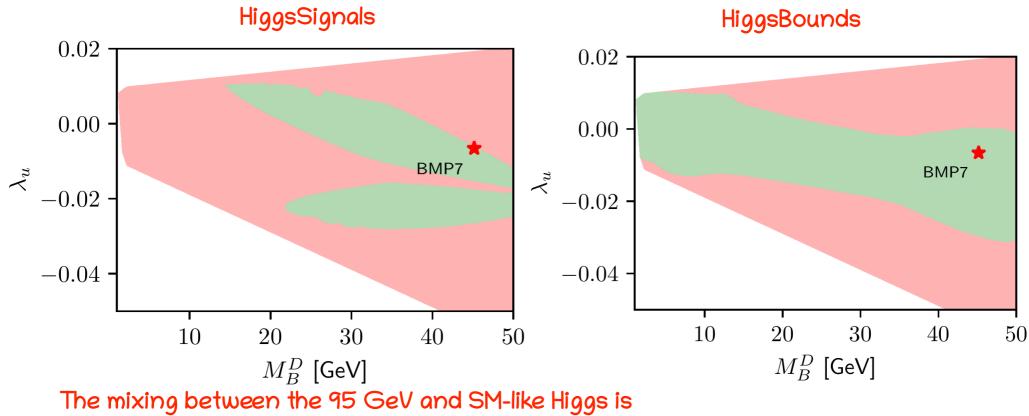
2 classes of solutions

distinguished by how correct relic density is achieved, not by the Higgs sector


	BMP7	BMP8
m_{h_1}	95.4	95.4
m_{h_2}	125.25	124.72
$m_{W^{\pm}}$	80.375	80.371
m_{χ_1}	44.98	42.65
$m_{ ilde{ au}_R}$	1000	124.7
$m_{ ilde{ au}_R} ho_1^{\pm}$	717	1310
m_a	24.85	54.20

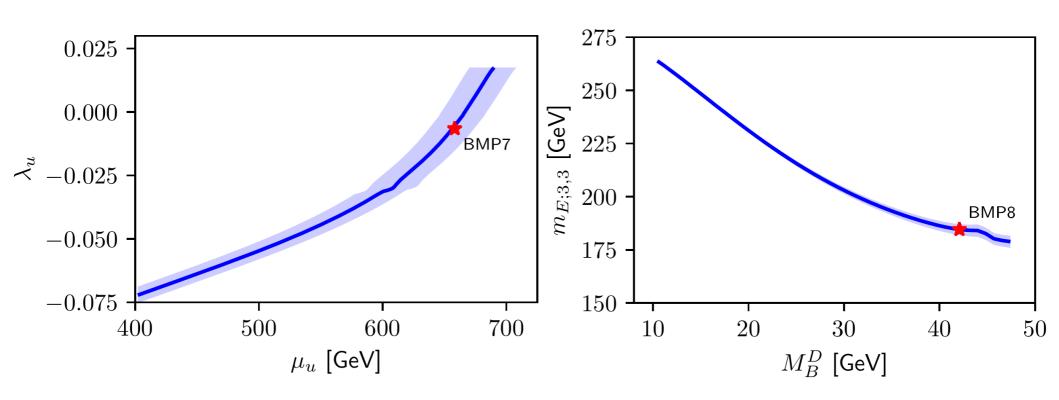
light Higgsino,	heavy Higgsino,
fixed neutralino	light right
mass	handed stau

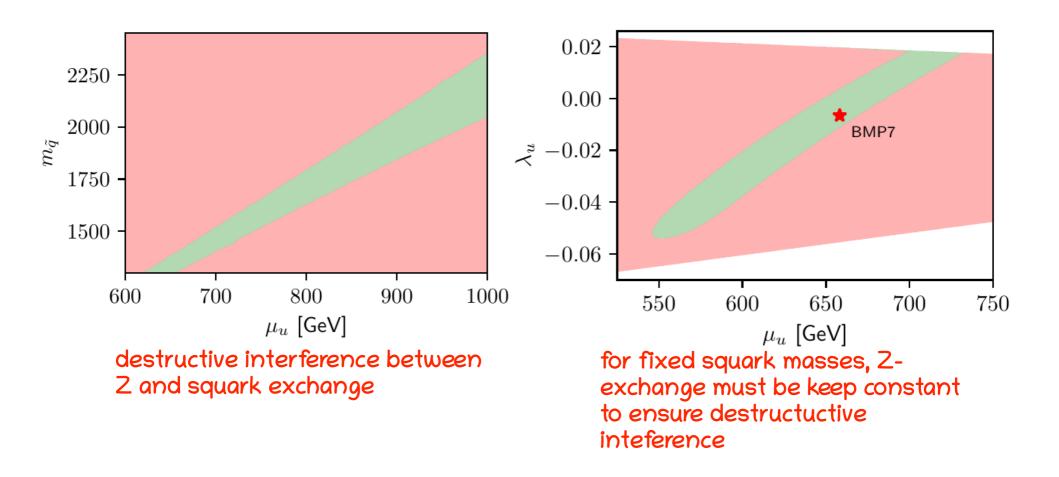
LEP and LHC excesses


 $\mu_{Zb\bar{b}} = 0.117 \pm 0.057$ (blue)

 $\mu_{\gamma\gamma} = 0.24^{+0.09}_{-0.08} \text{ (green)}$

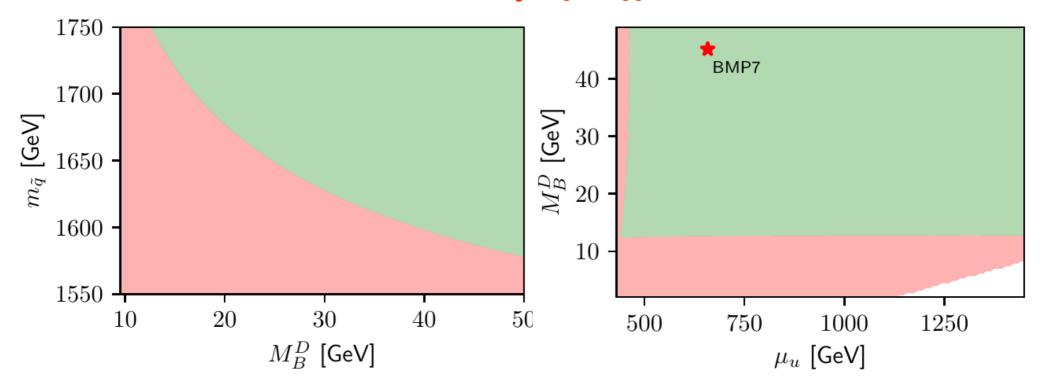
the scaling of partial widths required by the setup in some regions of parameter space, but no throughout all of it


Higgs constraints


necessary to generate LEP and LHC excesses. But too much of the mixing destabilizes the SM-like Higgs properties and would make 95 GeV one discoverable already at LEP.

Dark matter relic density

two classes of solutions: DM anihilation via s-channel Zexchange or t-channel right handed stau exchange



Dark matter direct detection

Collidear constraints

in general we have 4 possibly light states: light scalar, light neutralino, ~1 TeV squarks and possibly a light Higgsino

Conclusions and outlook

Scenario with a light singlet is very predictive:

- it can explain LEP and LHC excesses
- is consistent with experimental contraints
- predicts existance of light dark matter candidate, which can have correct relic density while being allowed by current direct detection experiments
- predicts some light states and could be seen at the LHC