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Motivation, hypothesis

Serre–Swan theorem

Fundamental relation of geometry and algebra:
Vector bundles over M correspond (almost one-to-one) to finitely
generated projective modules over the algebra of functions on M.

Serre (1955) - for algebraic vector bundles over affine varieties;

Swan (1962) - (continuous) vector bundles over Hausdorff
topological spaces;

Nestruev (2003) - The category of smooth vector bundles over
a smooth manifold M and the category of finitely generated
projective modules over C∞(M) are equivalent.

Theorem (Graded Serre–Swan)

The category of Z-graded vector bundles over a Z-graded manifold M
and the category of finitely generated projective graded modules over
C∞
M(M) are equivalent.

Graded always means Z-graded.
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Projective graded modules

Definition (Graded A-module)

Let A be a graded commutative associative algebra. By a graded
A-module P (over R), we mean a graded real vector space P together
with a degree zero linear map ▷ : A⊗R P → P, such that

(a · b) ▷ p = a ▷ (b ▷ p), 1 ▷ p = p,

where we write simply a ▷ p = ▷(a⊗ p).

Example

Let K be graded vector space. Let A[K ] := A⊗R K and set

a ▷ (b ⊗ k) := (a · b)⊗ k , ∀a, b ∈ A, ∀k ∈ K .

Definition (Free graded A-modules)

We say that a graded A-module P is free, if it is isomorphic to A[K ].
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Definition (Projective graded A-modules)

We say that a graded A-module P is projective, if there is a free graded
A-module F and some graded A-module Q, such that

F = P ⊕ Q.

Definition (Finitely generated A-modules)

We say that P is a finitely generated A-module, if there is a finite
collection {pi}ki=1 ⊆ P, such that every p ∈ P can be written as
p = ai ▷ pi for some (not necessarily unique) ai ∈ A.

Remark

Every free graded A-module is projective;

We say that A has an invariant graded rank property, if
A[K ] ∼= A[K ′] implies K ∼= K ′. We suppose this is the case.

A free graded A-module P is finitely generated, iff P ∼= A[K ] for a
finite dimensional K ;

A projective graded A-module is finitely generated, iff F can be
chosen to be finitely generated.
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Sheaves

Definition

Let M be a given topological space. By a presheaf of graded algebras,
we mean a functor A : Op(M)op → gcAs, where

1 Op(M) is the category of open subsets of M, there is an arrow
iUV : V → U if V ⊆ U;

2 gcAs is a category of graded commutative associative unital graded
algebras.

Remark

Explicitly, presheaf A consists of the following data:

1 For each U ∈ Op(M), one has A(U) ∈ gcAs;

2 For each V ⊆ U, one has a restriction algebra morphism
AU

V : A(U) → A(V ). One writes a|V := AU
V (a) for a ∈ A(U).

3 For any W ⊆ V ⊆ U, one has

AV
W ◦ AU

V = AU
W , AU

U = 1A(U).
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Example (Constant presheaf)

Let A ∈ gcAs be fixed. For each U ∈ Op(M), let A(U) := A. For each
V ⊆ U, let AU

V := 1A.

Definition

Let A be a presheaf of graded algebras. We say that A is a sheaf of
graded algebras, if for any U ∈ Op(M) and any its open cover
{Uα}α∈I , one has

1 The locality property: if a, b ∈ A(U) satisfy a|Uα
= b|Uα

for all
α ∈ I , then a = b.

2 The gluing poperty: for any collection {aα}α∈I of the same degree,
such that aα|Uα∩Uβ

= aβ |Uα∩Uβ
for all α, β ∈ I , there exists

a ∈ A(U) with a|Uα = aα for all α ∈ I .

Remark

Not every presheaf is a sheaf, e.g. constant presheaf. There is a universal
sheafification procedure, making each presheaf A into a sheaf Asff .
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Example (Constant sheaf)

Let A ∈ gcAs be fixed. For each k ∈ Z and U ∈ Op(M), let

A(U)k := {f : M → Ak | f locally constant}
Graded algebra structure by “pointwise multiplication” and restrictions
are restrictions.

Definition

A a given sheaf of graded algebras.

F : Op(M)op → gVect a sheaf of graded vector spaces.

We say that F is a sheaf of graded A-modules, if

1 For each U ∈ Op(M), F(U) is a graded A(U)-module;

2 Restrictions are compatible with the structure, that is
(a ▷ f )|V = a|V ▷ f |V .

Example

Let K ∈ gVect be finite-dimensional. For each U ∈ Op(M), define
F(U) := A(U)[K ] ≡ A(U)⊗R K with obvious restrictions. This makes
F into a sheaf of graded A-modules.
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Graded manifolds and vector bundles

Definition (Graded manifold)

A graded manifold M consists of the following data:

1 second countable Hausdorff topological space M;

2 (certain) sheaf C∞
M of graded commutative associative algebras;

3 atlas A making C∞
M locally isomorphic to a certain “model sheaf”.

It also makes M into a smooth manifold.

Example (The model space)

Let M = Rn with coordinates (x1, . . . , xn)

Suppose we have “purely graded coordinate functions” (ξ1, . . . , ξm),
each of them assigned a degree |ξµ| ∈ Z− {0}, such that

ξµξν = (−1)|ξµ||ξν |ξνξµ.

For each U ∈ Op(M), we declare C∞
M(U) to be the graded algebra

of formal power series in ξ’s with coefficients in C∞
Rn (U).
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Definition (Graded vector bundles)

A graded vector bundle E over a graded manifold M is a locally
freely and finitely generated sheaf ΓE (on M) of graded C∞

M-modules of a
constant graded rank.

Remark (Local frames)

Conditions on ΓE are equivalent to the following: For each m ∈ M, there
exists U ∈ Opm(M) and {Φλ}rλ=1 ⊆ ΓE(U), such that

|Φλ| = |ϑλ|, where (ϑλ)
r
λ=1 is some fixed total basis of some fixed

graded vector space K ;

For each V ∈ Op(U), {Φλ|V }rλ=1 freely generates ΓE(V ).

{Φλ}rλ=1 is called the local frame for E over U.

Example (Tangent bundle)

By declaring ΓTM = XM, XM is a sheaf of vector fields (graded
derivations of C∞

M), we define the tangent bundle TM of M. Local
frame = cordinate vector fields.
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ΓE(M) is finitely generated projective

Statement 1: ΓE(M) is a finitely generated graded C∞
M(M)-module.

Proof (sketch): There is finite open cover {Ui}ki=1 of M with a local

frame {Φ(i)
λ }rλ=1 for E over Ui . Let {ρi}ki=1 ⊆ C∞

M(M) be a partition of
unity. Then the following collection generates ΓE(M):

{{ρi · Φ(i)
λ }rλ=1}ki=1 ⊆ ΓE(M)

Statement 2: ΓE(M) is a projective graded C∞
M(M)-module.

Proof (sketch): Let {Φi}ki=1 ⊆ ΓE(M) be the finite generating set. Let
E ′ = M× K be the trivial vector bundle, where K = R{Φi}ki=1.
ΓE′(M) is free and one constructs an epimorphism F : ΓE′(M) → ΓE(M).
Short exact sequences of graded vector bundles split, so
ΓE′(M) ∼= ΓE(M)⊕ ker(F ).
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The converse statement

The issue: Graded vector bundles are not determined by their fibers.

Step 1: For any sheaf F of graded C∞
M(M)-modules and any finitely

generated graded submodule P ⊆ F(M), there is a unique sheaf P of
C∞
M-submodules, such that P(M) = P.

Proof (sketch): For each U ∈ Op(M), the submodule P(U) ⊆ F(U) is
defined by the property:

ψ ∈ P(U) ⇔ (∀m ∈ U)(∃V ∈ Opm(U))(∃ψ′ ∈ P)(ψ|V = ψ′|V ).

P always forms a sheaf of C∞
M-submodules, such that P ⊆ P(M).

The converse inclusion requires P to be closed under “locally finite
sums”, i.e. sums of possibly infinite collections of elements of P, whose
supports form a locally finite set (and hence the sums are well-defined).
Finitely generated P have this property.
One can also show that P(U) is finitely generated for any U ∈ Op(M).
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Step 2: If P is a finitely generated projective C∞
M(M)-module, there

exists a trivial vector bundle E = M× K and its sheaves P,Q of graded
C∞
M-submodules, such that ΓE = P ⊕Q, and P ∼= P(M).

Proof (sketch): We have F = P ⊕ Q for F free and finitely generated.
But F ∼= C∞

M(M)[K ] ≡ ΓE(M) for E = M× K . Hence we can assume

ΓE(M) = P ⊕ Q.

Q ∼= ΓE(M)/P is also finitely generated. By Step 1, there are P,Q ⊆ ΓE
with P = P(M) and Q = Q(M). Using partitions uf unity, one shows

ΓE(U) = P(U) +Q(U).

Since P ∩Q is a sheaf of submodules having the property
(P ∩Q)(M) = P ∩ Q = 0, we have P ∩Q = 0, so the sum is direct.
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Step 3: Let E be any graded vector bundle. Suppose M is connected.
Let P,Q ⊆ ΓE be two sheaves of C∞

M-submodules, such that

ΓE = P ⊕Q.

Then both P and Q are sheaves of sections of subbundles of E , hence
sheaves of sections of graded vector bundles.

Proof (sketch): For each m ∈ M, there is a finite-dimensional graded
vector space Em called the fiber of E at m, defined as a quotient

Em = ΓE(M)/(J m
M(M) ▷ ΓE(M)),

where J m
M(M) = {f ∈ C∞

M(M) | f (m) = 0}. By ψ 7→ ψ|m we denote the
quotient map. One can then define the subspace

P(m) := {ψ|m | ψ ∈ P(M)} ⊆ Em.

Q(m) is defined analogously. The assumptions ensure that

Em = P(m) ⊕Q(m).
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Now comes the hard bit. One has to show the following two facts:

The graded dimension of P(m) is constant in m ∈ M.

The total basis of Em adapted to the decomposition can be extended
to a local frame for E over U adapted to the decomposition P ⊕Q.

This can be used to construct local frames for P and Q.

Theorem

To any finitely generated projective graded C∞
M(M)-module P, there

exists a graded vector bundle F over M, such that P ∼= ΓF (M).

Proof: By Step 2, we can construct a trivial vector bundle E and a sheaf
of submodules P ⊆ ΓE satisfying P(M) ∼= P.
By Step 3, we have P = ΓF for a graded vector bundle F . Rather
tautologically, one has P ∼= ΓF (M).

Theorem (graded Serre-Swan theorem)

The functor E 7→ ΓE(M) is fully faithful and essentially surjective functor
from the category of graded vector bundles over M to the category of
finitely generated projective graded C∞

M(M)-modules.
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We assume that M is connected. Otherwise we have to allow locally
constant graded ranks.

The proof works flawlessly for ordinary manifolds, supermanifolds,
Zn
2-manifolds, etc.

Morye (2009) proved Serre–Swan for a huge class of locally ringed
spaces (X ,OX ), where “vector bundles” are locally free sheaves of
OX -modules of a bounded rank.

I claimed for two years that Serre–Swan does not work.
Counterexample involves carefully constructed complicated
arguments starting from τ : TM → TM having the property
τ 2 = 1, which is “easy to see”. Except τ has no such property.

Thank you for your attention!
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