Serre–Swan Theorem for Graded Vector Bundles

Jan Vysoký

Workshop on Noncommutative and Generalized Geometry in String theory, Gauge theory and Related Physical Models Corfu, 17-24 September 2024 Joint work with R. Šmolka Supported by GAČR grant no. 24-10031K

イロト イヨト イヨト イヨト

Motivation, hypothesis

Serre–Swan theorem

Fundamental relation of geometry and algebra:

Vector bundles over M correspond (almost one-to-one) to finitely generated projective modules over the algebra of functions on M.

- Serre (1955) for algebraic vector bundles over affine varieties;
- Swan (1962) (continuous) vector bundles over Hausdorff topological spaces;
- Nestruev (2003) The category of smooth vector bundles over a smooth manifold M and the category of finitely generated projective modules over $C^{\infty}(M)$ are equivalent.

Theorem (Graded Serre–Swan)

The category of \mathbb{Z} -graded vector bundles over a \mathbb{Z} -graded manifold \mathcal{M} and the category of finitely generated projective graded modules over $\mathcal{C}^{\infty}_{\mathcal{M}}(\mathcal{M})$ are equivalent.

Graded always means \mathbb{Z} -graded.

・ロト ・ 一下・ ・ ヨト・

-

Projective graded modules

Definition (Graded A-module)

Let A be a graded commutative associative algebra. By a **graded** A-module P (over \mathbb{R}), we mean a graded real vector space P together with a degree zero linear map $\triangleright : A \otimes_{\mathbb{R}} P \to P$, such that

$$(a \cdot b) \triangleright p = a \triangleright (b \triangleright p), \ 1 \triangleright p = p,$$

where we write simply $a \triangleright p = \triangleright (a \otimes p)$.

Example

Let K be graded vector space. Let $A[K] := A \otimes_{\mathbb{R}} K$ and set

$$a \triangleright (b \otimes k) := (a \cdot b) \otimes k, \ \forall a, b \in A, \ \forall k \in K.$$

Definition (Free graded A-modules)

We say that a graded A-module P is **free**, if it is isomorphic to A[K].

★ ∃ > _ ∃

Definition (**Projective graded** *A*-modules)

We say that a graded A-module P is **projective**, if there is a free graded A-module F and some graded A-module Q, such that

 $F = P \oplus Q.$

Definition (Finitely generated A-modules)

We say that *P* is a **finitely generated** *A*-**module**, if there is a finite collection $\{p_i\}_{i=1}^k \subseteq P$, such that every $p \in P$ can be written as $p = a^i \triangleright p_i$ for some (not necessarily unique) $a^i \in A$.

Remark

- Every free graded A-module is projective;
- We say that A has an **invariant graded rank property**, if $A[K] \cong A[K']$ implies $K \cong K'$. We suppose this is the case.
- A free graded A-module P is finitely generated, iff P ≅ A[K] for a finite dimensional K;
- A projective graded A-module is finitely generated, iff F can be chosen to be finitely generated.

Sheaves

Definition

Let M be a given topological space. By a **presheaf of graded algebras**, we mean a functor $\mathcal{A} : \mathbf{Op}(M)^{\mathrm{op}} \to \mathbf{gcAs}$, where

Op(M) is the category of open subsets of M, there is an arrow i^U_V : V → U if V ⊆ U;

gcAs is a category of graded commutative associative unital graded algebras.

Remark

Explicitly, presheaf A consists of the following data:

- **9** For each $U \in \mathbf{Op}(M)$, one has $\mathcal{A}(U) \in \mathbf{gcAs}$;
- Sor each V ⊆ U, one has a restriction algebra morphism A^U_V : A(U) → A(V). One writes a|_V := A^U_V(a) for a ∈ A(U).
- For any $W \subseteq V \subseteq U$, one has

$$\mathcal{A}_W^V \circ \mathcal{A}_V^U = \mathcal{A}_W^U, \ \mathcal{A}_U^U = \mathbb{1}_{\mathcal{A}(U)}$$

Example (Constant presheaf)

Let $A \in \mathbf{gcAs}$ be fixed. For each $U \in \mathbf{Op}(M)$, let $\mathcal{A}(U) := A$. For each $V \subseteq U$, let $\mathcal{A}_V^U := \mathbb{1}_A$.

Definition

Let \mathcal{A} be a presheaf of graded algebras. We say that \mathcal{A} is a **sheaf of graded algebras**, if for any $U \in \mathbf{Op}(M)$ and any its open cover $\{U_{\alpha}\}_{\alpha \in I}$, one has

- The locality property: if a, b ∈ A(U) satisfy a|_{U_α} = b|_{U_α} for all α ∈ I, then a = b.
- O The gluing poperty: for any collection {a_α}_{α∈I} of the same degree, such that a_α|_{U_α∩U_β} = a_β|_{U_α∩U_β} for all α, β ∈ I, there exists a ∈ A(U) with a|_{U_α} = a_α for all α ∈ I.

Remark

Not every presheaf is a sheaf, e.g. constant presheaf. There is a universal **sheafification** procedure, making each presheaf \mathcal{A} into a sheaf \mathcal{A}^{sff} .

b) 4 (E) b

Example (Constant sheaf)

Let $A \in \mathbf{gcAs}$ be fixed. For each $k \in \mathbb{Z}$ and $U \in \mathbf{Op}(M)$, let

 $\mathcal{A}(U)_k := \{f : M \to A_k \mid f \text{ locally constant}\}$

Graded algebra structure by "pointwise multiplication" and restrictions are restrictions.

Definition

- \mathcal{A} a given sheaf of graded algebras.
- *F* : **Op**(*M*)^{op} → **gVect** a sheaf of graded vector spaces.

We say that ${\mathcal F}$ is a sheaf of graded ${\mathcal A}\text{-modules},$ if

- For each $U \in \mathbf{Op}(M)$, $\mathcal{F}(U)$ is a graded $\mathcal{A}(U)$ -module;
- Restrictions are compatible with the structure, that is
 (a ▷ f)|_V = a|_V ▷ f|_V.

Example

Let $K \in \mathbf{gVect}$ be finite-dimensional. For each $U \in \mathbf{Op}(M)$, define $\mathcal{F}(U) := \mathcal{A}(U)[K] \equiv \mathcal{A}(U) \otimes_{\mathbb{R}} K$ with obvious restrictions. This makes \mathcal{F} into a sheaf of graded \mathcal{A} -modules.

Graded manifolds and vector bundles

Definition (Graded manifold)

A graded manifold ${\mathcal M}$ consists of the following data:

- second countable Hausdorff topological space M;
- (certain) sheaf $\mathcal{C}^{\infty}_{\mathcal{M}}$ of graded commutative associative algebras;
- atlas A making C[∞]_M locally isomorphic to a certain "model sheaf". It also makes M into a smooth manifold.

Example (The model space)

- Let $M = \mathbb{R}^n$ with coordinates (x^1, \ldots, x^n)
- Suppose we have "purely graded coordinate functions" (ξ_1, \ldots, ξ_m) , each of them assigned a **degree** $|\xi_{\mu}| \in \mathbb{Z} \{0\}$, such that

$$\xi_{\mu}\xi_{\nu} = (-1)^{|\xi_{\mu}||\xi_{\nu}|}\xi_{\nu}\xi_{\mu}.$$

For each U ∈ Op(M), we declare C[∞]_M(U) to be the graded algebra of formal power series in ξ's with coefficients in C[∞]_{Rⁿ}(U).

Definition (Graded vector bundles)

A graded vector bundle \mathcal{E} over a graded manifold \mathcal{M} is a locally freely and finitely generated sheaf $\Gamma_{\mathcal{E}}$ (on M) of graded $\mathcal{C}_{\mathcal{M}}^{\infty}$ -modules of a constant graded rank.

Remark (Local frames)

Conditions on $\Gamma_{\mathcal{E}}$ are equivalent to the following: For each $m \in M$, there exists $U \in \mathbf{Op}_m(M)$ and $\{\Phi_{\lambda}\}_{\lambda=1}^r \subseteq \Gamma_{\mathcal{E}}(U)$, such that

- |Φ_λ| = |ϑ_λ|, where (ϑ_λ)^r_{λ=1} is some fixed total basis of some fixed graded vector space K;
- For each $V \in \mathbf{Op}(U)$, $\{\Phi_{\lambda}|_{V}\}_{\lambda=1}^{r}$ freely generates $\Gamma_{\mathcal{E}}(V)$.

 $\{\Phi_{\lambda}\}_{\lambda=1}^{r}$ is called the **local frame for** \mathcal{E} over U.

Example (Tangent bundle)

By declaring $\Gamma_{TM} = \mathfrak{X}_{\mathcal{M}}, \mathfrak{X}_{\mathcal{M}}$ is a sheaf of vector fields (graded derivations of $\mathcal{C}_{\mathcal{M}}^{\infty}$), we define the **tangent bundle** $T\mathcal{M}$ of \mathcal{M} . Local frame = cordinate vector fields.

Statement 1: $\Gamma_{\mathcal{E}}(M)$ is a finitely generated graded $\mathcal{C}^{\infty}_{\mathcal{M}}(M)$ -module.

Proof (sketch): There is *finite* open cover $\{U_i\}_{i=1}^k$ of M with a local frame $\{\Phi_{\lambda}^{(i)}\}_{\lambda=1}^r$ for \mathcal{E} over U_i . Let $\{\rho_i\}_{i=1}^k \subseteq C_{\mathcal{M}}^{\infty}(M)$ be a partition of unity. Then the following collection generates $\Gamma_{\mathcal{E}}(M)$:

$$\{\{\rho_i \cdot \Phi_{\lambda}^{(i)}\}_{\lambda=1}^r\}_{i=1}^k \subseteq \Gamma_{\mathcal{E}}(M)$$

Statement 2: $\Gamma_{\mathcal{E}}(M)$ is a projective graded $\mathcal{C}^{\infty}_{\mathcal{M}}(M)$ -module.

Proof (sketch): Let $\{\Phi_i\}_{i=1}^k \subseteq \Gamma_{\mathcal{E}}(M)$ be the finite generating set. Let $\mathcal{E}' = \mathcal{M} \times K$ be the trivial vector bundle, where $K = \mathbb{R}\{\Phi_i\}_{i=1}^k$. $\Gamma_{\mathcal{E}'}(M)$ is free and one constructs an epimorphism $F : \Gamma_{\mathcal{E}'}(M) \to \Gamma_{\mathcal{E}}(M)$. Short exact sequences of *graded vector bundles* split, so $\Gamma_{\mathcal{E}'}(M) \cong \Gamma_{\mathcal{E}}(M) \oplus \ker(F)$.

The issue: Graded vector bundles are not determined by their fibers.

Step 1: For any sheaf \mathcal{F} of graded $\mathcal{C}^{\infty}_{\mathcal{M}}(M)$ -modules and any finitely generated graded submodule $P \subseteq \mathcal{F}(M)$, there is a unique sheaf \mathcal{P} of $\mathcal{C}^{\infty}_{\mathcal{M}}$ -submodules, such that $\mathcal{P}(M) = P$.

Proof (sketch): For each $U \in \mathbf{Op}(M)$, the submodule $\mathcal{P}(U) \subseteq \mathcal{F}(U)$ is defined by the property:

$$\psi \in \mathcal{P}(U) \Leftrightarrow (\forall m \in U)(\exists V \in \mathbf{Op}_m(U))(\exists \psi' \in P)(\psi|_V = \psi'|_V).$$

 \mathcal{P} always forms a sheaf of $\mathcal{C}_{\mathcal{M}}^{\infty}$ -submodules, such that $P \subseteq \mathcal{P}(M)$. The converse inclusion requires P to be closed under "locally finite sums", i.e. sums of possibly infinite collections of elements of P, whose supports form a locally finite set (and hence the sums are well-defined). Finitely generated P have this property.

One can also show that $\mathcal{P}(U)$ is finitely generated for any $U \in \mathbf{Op}(M)$.

A 3 - 1

Step 2: If *P* is a finitely generated projective $C^{\infty}_{\mathcal{M}}(M)$ -module, there exists a trivial vector bundle $\mathcal{E} = \mathcal{M} \times K$ and its sheaves \mathcal{P}, \mathcal{Q} of graded $C^{\infty}_{\mathcal{M}}$ -submodules, such that $\Gamma_{\mathcal{E}} = \mathcal{P} \oplus \mathcal{Q}$, and $P \cong \mathcal{P}(M)$.

Proof (sketch): We have $F = P \oplus Q$ for F free and finitely generated. But $F \cong C^{\infty}_{\mathcal{M}}(\mathcal{M})[\mathcal{K}] \equiv \Gamma_{\mathcal{E}}(\mathcal{M})$ for $\mathcal{E} = \mathcal{M} \times \mathcal{K}$. Hence we can assume

 $\Gamma_{\mathcal{E}}(M) = P \oplus Q.$

 $Q \cong \Gamma_{\mathcal{E}}(M)/P$ is also finitely generated. By Step 1, there are $\mathcal{P}, \mathcal{Q} \subseteq \Gamma_{\mathcal{E}}$ with $P = \mathcal{P}(M)$ and $Q = \mathcal{Q}(M)$. Using partitions uf unity, one shows

$$\Gamma_{\mathcal{E}}(U) = \mathcal{P}(U) + \mathcal{Q}(U).$$

Since $\mathcal{P} \cap \mathcal{Q}$ is a sheaf of submodules having the property $(\mathcal{P} \cap \mathcal{Q})(M) = P \cap Q = 0$, we have $\mathcal{P} \cap \mathcal{Q} = 0$, so the sum is direct.

通 とう きょう うちょう しょう

Step 3: Let \mathcal{E} be any graded vector bundle. Suppose M is connected. Let $\mathcal{P}, \mathcal{Q} \subseteq \Gamma_{\mathcal{E}}$ be two sheaves of $\mathcal{C}^{\infty}_{\mathcal{M}}$ -submodules, such that

$$\Gamma_{\mathcal{E}} = \mathcal{P} \oplus \mathcal{Q}.$$

Then both \mathcal{P} and \mathcal{Q} are sheaves of sections of subbundles of \mathcal{E} , hence sheaves of sections of graded vector bundles.

Proof (sketch): For each $m \in M$, there is a finite-dimensional graded vector space \mathcal{E}_m called the **fiber of** \mathcal{E} **at** m, defined as a quotient

$$\mathcal{E}_m = \Gamma_{\mathcal{E}}(M)/(\mathcal{J}_{\mathcal{M}}^m(M) \triangleright \Gamma_{\mathcal{E}}(M)),$$

where $\mathcal{J}_{\mathcal{M}}^{m}(M) = \{ f \in \mathcal{C}_{\mathcal{M}}^{\infty}(M) \mid f(m) = 0 \}$. By $\psi \mapsto \psi|_{m}$ we denote the quotient map. One can then define the subspace

$$\mathcal{P}_{(m)} := \{ \psi |_m \mid \psi \in \mathcal{P}(M) \} \subseteq \mathcal{E}_m.$$

 $\mathcal{Q}_{(m)}$ is defined analogously. The assumptions ensure that

$$\mathcal{E}_m = \mathcal{P}_{(m)} \oplus \mathcal{Q}_{(m)}.$$

Now comes the hard bit. One has to show the following two facts:

- The graded dimension of $\mathcal{P}_{(m)}$ is constant in $m \in M$.
- The total basis of *E_m* adapted to the decomposition can be extended to a local frame for *E* over *U* adapted to the decomposition *P* ⊕ *Q*.

This can be used to construct local frames for \mathcal{P} and \mathcal{Q} .

Theorem

To any finitely generated projective graded $C^{\infty}_{\mathcal{M}}(M)$ -module P, there exists a graded vector bundle \mathcal{F} over \mathcal{M} , such that $P \cong \Gamma_{\mathcal{F}}(M)$.

Proof: By Step 2, we can construct a trivial vector bundle \mathcal{E} and a sheaf of submodules $\mathcal{P} \subseteq \Gamma_{\mathcal{E}}$ satisfying $\mathcal{P}(M) \cong P$. By Step 3, we have $\mathcal{P} = \Gamma_{\mathcal{F}}$ for a graded vector bundle \mathcal{F} . Rather tautologically, one has $P \cong \Gamma_{\mathcal{F}}(M)$.

Theorem (graded Serre-Swan theorem)

The functor $\mathcal{E} \mapsto \Gamma_{\mathcal{E}}(M)$ is fully faithful and essentially surjective functor from the category of graded vector bundles over \mathcal{M} to the category of finitely generated projective graded $\mathcal{C}^{\infty}_{\mathcal{M}}(M)$ -modules.

ヘロマ 人間マ ヘヨマ ヘヨマ

э

- We assume that *M* is connected. Otherwise we have to allow *locally* constant graded ranks.
- The proof works flawlessly for ordinary manifolds, supermanifolds, \mathbb{Z}_2^n -manifolds, etc.
- Morye (2009) proved Serre–Swan for a huge class of locally ringed spaces (X, \mathcal{O}_X) , where "vector bundles" are locally free sheaves of \mathcal{O}_X -modules of a bounded rank.
- I claimed for two years that Serre–Swan does not work. Counterexample involves carefully constructed complicated arguments starting from τ : TM → TM having the property τ² = 1, which is "easy to see". Except τ has no such property.

Thank you for your attention!