

Probing hidden sectors at *e*⁺*e*⁻ colliders via two-particle angular correlations

Vasiliki A. Mitsou

In collaboration with E. Musumeci, A. Irles, R. Pérez-Ramos, I. Corredoira, E. Sarkisyan-Grinbaum, M.A. Sanchis-Lozano

arXiv:2312.06526 [hep-ph]

24th HELLENIC SCHOOL AND WORKSHOPS ON ELEMENTARY PARTICLE PHYSICS AND GRAVITY **Workshop on the Standard Model and Beyond** August 25 – September 4, 2024, Corfu, Greece

Angular correlations

- Powerful method to study the underlying mechanisms of particle production
- Uncover possible collective effects resulting from high particle densities
- Two-particle correlation function C₂

 $C_2(\Delta y, \Delta \phi) = \frac{S(\Delta y, \Delta \phi)}{B(\Delta y, \Delta \phi)}$ "background = SM processes". Expresses completely *uncorrelated* pairs (different events) Density of particle pairs produced Density of particle pairs produced within the same event: in the **different** events: $S(\Delta y, \Delta \phi) = \frac{1}{N_{pairs}} \frac{d^2 N^{same}}{d\Delta y \Delta \phi}$ $B(\Delta y, \Delta \phi) = \frac{1}{N_{mix}} \frac{d^2 N^{mix}}{d\Delta y \Delta \phi}$ $N_{pairs} = \left[\int \frac{d^2 N^{same}}{d\Delta y d\Delta \phi} d\Delta y d\Delta \phi \right]$ $N_{mix} = \iint \frac{d^2 N^{mix}}{d\Delta y d\Delta \phi} d\Delta y d\Delta \phi$ y: rapidity φ : azimuthal angle

"B" does not stand for

Two-particle angular correlations in collisions

- Interesting features depending on colliding particles and track multiplicities
- Heavy-ion collisions: ridge structure associated with fluctuating ion initial state

Sanchis-Lozano, <u>Int.J.Mod.Phys.A 24</u>, <u>4529 (2009)</u> Sanchis-Lozano & Sarkisyan-Grinbaum, <u>Phys.Lett.B 781, 505 (2018)</u> Pérez-Ramos, Sanchis-Lozano, Sarkisyan-Grinbaum, <u>Phys.Rev.D 105</u>, <u>053001 (2022)</u>

Phys.Lett.B 724 (2013) 213

Chen et al, <u>Phys. Lett. B </u> (2024) 138957

Two-particle angular correlations in collisions

- Interesting features depending on colliding particles and track multiplicities
- Heavy-ion collisions: ridge structure associated with fluctuating ion initial state

Sanchis-Lozano, Int.J.Mod.Phys.A 24, 4529 (2009) Sanchis-Lozano & Sarkisyan-Grinbaum, Phys.Lett.B 781, 505 (2018) Pérez-Ramos, Sanchis-Lozano, Sarkisyan-Grinbaum, Phys.Rev.D 105, 053001 (2022)

Corfu 2024 V.A. Mitsou

Hidden Valley (HV)

"Meta-model": large class of theoretical scenarios

Why HV? How to probe them?

- Why Hidden Valley scenarios?
 - extra sectors common in string theory, SUSY breaking, extra dimensions, etc.
 - incredibly exciting if found: new particles, forces, dynamics
 - can drastically change phenomenology of SUSY/extra dims/etc.
 - implications for dark matter, early universe cosmology, astrophysics, ...
- Experimental probes
 - relatively weak experimental constraints!
 - vast array of possibilities
 - phenomenology challenging for hadron colliders

QCD-like HV scenario

- Communicator: *F_V*
- Charged under G_{SM} and G_V
- Pair-produced in collisions
- v-quarks, q_V , and v-gluons, g_V
- Prompt decays
 - $F_V \rightarrow f q_V \rightarrow$ hadrons
 - $E_V \rightarrow e q_V$
 - $Q_V \rightarrow q q_V$

Perturbation in conventional QCD cascade and final hadronisation anomalies in angular correlations e.g. *ridge*-like structures

Carloni & Sjöstrand, JHEP 09 (2010) 105

Corfu 2024 V	/.A. Mitsou						
Signal and background processes e^{-}							
• Signal • $e^+e^- \rightarrow \gamma^*/Z \rightarrow \overline{D}_V D_V \rightarrow \text{hadrons}$	<i>m(</i> no lo	$(D_V) = 125 \text{ GeV}$ $\alpha_V = 0.1$ ng-lived particles	γ^*	D_v/T_v	q_v		
• Background • $q\overline{q}$ production with ISR		$egin{array}{c} g \ \cdot q' \ ar q' \end{array} egin{array}{c} \mathbf{Nc} \end{array}$	e^+ Vs = 250 polarise) GeV ed beam	ଞ ୁ		
• $W^+W^- \rightarrow q\bar{q}q\bar{q}$ / e^+	g g	Process	$\sigma_{ ext{Pythia8}} \ [ext{pb}]$	Efficiency [%]	$< N_{ m ch} >$		
		$e^+e^- \rightarrow D_v D_v$	0.10	0.0	10.4 + 0.7		
e^+ W^+ e^+ W^+ e^+ W^-	+	$m_{q_v} = 0.1 \text{ GeV}$ $m_{-} = 10 \text{ GeV}$	0.13	36 36	12.4 ± 3.7 12.4 ± 3.7		
		$m_{q_v} = 10 \text{ GeV}$ $m_{q_v} = 50 \text{ GeV}$	0.12 0.12	$\frac{30}{42}$	12.4 ± 3.7 11.4 ± 3.5		
		$m_{q_v} = 100 \text{ GeV}$	0.12	42	6.5 ± 2.1		
	-	$e^+e^- \rightarrow q\bar{q}$ with ISR	48	$\lesssim 0.01$	9.9 ± 3.4		
$e^ W^ e^ W^ e^ W$	_	$WW \rightarrow 4q$	7.4	$\lesssim 0.001$	-		

Correlation-related variables

- Angular correlations → event shape
- y, φ coordinates defined w.r.t. thrust axis

√s = 250 GeV

 $f = 2 \text{ ab}^{-1}$

Analysis with detector effects

Event selection

- no secondary vertices
- neutral PFOs* \leq 22 and charged PFOs \leq 15
- reconstructed ISR photons
 - $|\cos \vartheta_{\gamma ISR}| < 0.5$
 - $E_{\gamma ISR} < 40 \text{ GeV}$
- Di-jet invariant mass: m_{ii} < 130 GeV
- Leading jet invariant mass: E_{jet} < 80 GeV

Process	$\sigma_{ ext{Pythia8}} \ [ext{pb}]$	Efficiency [%]	$< N_{\rm ch} >$
$e^+e^- ightarrow D_v \bar{D}_v$			
$m_{q_v} = 0.1 \; { m GeV}$	0.13	36	12.4 ± 3.7
$m_{q_v}=10~{\rm GeV}$	0.12	36	12.4 ± 3.7
$m_{q_v} = 50 { m ~GeV}$	0.12	42	11.4 ± 3.5
$m_{q_v} = 100 { m ~GeV}$	0.12	42	6.5 ± 2.1
$e^+e^- \to q\bar{q}$ with ISR	48	$\lesssim 0.01$	9.9 ± 3.4
$WW \rightarrow 4q$	7.4	$\lesssim 0.001$	-

Simulation tools

- Monte Carlo event generator: Pythia8
- Fast detector simulation
 - SGV 3.0 with ILD geometry
- Analysis: ILCSoft

*PFOs: Particle Flow Objects. Detector level particle candidates in ILD

Angular correlations

- Decay $D_{\nu} \rightarrow d q_{\nu}$ initiates a partonic (visible + invisible) shower
- Near-side peak at ($\Delta y \simeq 0$, $\Delta \varphi \simeq 0$) mainly from track pairs within same jet
- Near-side ridge with two pronounced bumps at 1.6 < |Δy| < 3, Δφ ≃ 0, in HV scenario
 - absent in background
- Away-side correlation ridge around Δφ ≃ π
 → back-to-back momentum balance

Effect of event selection

- SM reduced while keeping HV
- Yield becomes observable for HV discovery
- Long-range, near-side ridge in SM due to ISR effect (resonant Z production)
- Different behaviour between signal and background → hint of New Physics

$$Y(\Delta \phi) = \frac{\int_{1.6 \le |\Delta y| \le 3} S(\Delta y, \Delta \phi) \mathrm{d}y}{\int_{1.6 \le |\Delta y| \le 3} B(\Delta y, \Delta \phi) \mathrm{d}y}$$

Δ

Δφ

Δφ

Uncertainties and sensitivity

- Uncertainties
 - statistical from luminosity: 100 fb⁻¹ (first year)
 - parton shower, fragmentation and hadronisation: HERWIG7.3 vs PYTHIA8
 - detector modelling: partially or totally cancelled in two-particle correlation

 conservative uncertainty added: particle- versus detector-level

Sensitivity

• > 5σ in far peak

Sensitivity improvements

- Conservative uncertainty estimation → room for improvement
- Assuming that systematic uncertainties improve by an order of magnitude, much better prospects
- Different hidden-quark (q_v) masses affects the sensitivity

Higher energies

- In the HV sector, $T_v T_v$ channel appears
- tt(bar) production appears in the SM background
- Contribution from SM decreases with the energy

Process	$\sigma_{\sqrt{s}=500{ m GeV}} \ [{ m pb}]$	$\sigma_{\sqrt{s}=1{ m TeV}}$ [pb]
	$m_{D_v} = 250 \text{ GeV}$	$m_{D_v} = 500 \text{ GeV}$
$e^+e^- \to D_v \bar{D}_v$	2.4×10^{-2}	4.4×10^{-3}
	$m_{T_v} = 250 { m ~GeV}$	$m_{T_v} = 500 { m ~GeV}$
$e^+e^- \rightarrow T_v \bar{T}_v$	$9.5 imes 10^{-2}$	$1.8 imes 10^{-2}$
$e^+e^- \to q\bar{q}$ with ISR	11	2.9
$e^+e^- \rightarrow t\bar{t}$	0.59	0.19
$WW \rightarrow 4q$	3.4	1.3

Conclusions

- Two-particle angular correlations in a e⁺e⁻ factory can become a useful tool to discover New Physics
 - e.g. Hidden Valley scenarios
- Such searches are complementary to more conventional searches, thus increasing the discovery potential
- With conservative systematic uncertainties, sensitivity of > 5σ
- Future work
 - longitudinally polarised beams
 - FCC-specific detector
- E. Musumeci *et al*, "Two-particle angular correlations in the search for new physics at future *e+e*-colliders," Proc. LCWS2023, <u>eConf C2305153</u> (2023), <u>arXiv:2307.14734</u> [hep-ph] ← particle level
- E. Musumeci, A. Irles, R. Perez-Ramos, I. Corredoira, E. Sarkisyan-Grinbaum, VAM, M.A. Sanchis Lozano, "Exploring hidden sectors with two-particle angular correlations at future e⁺e⁻ colliders," <u>arXiv:2312.06526</u> [hep-ph]

Corfu 2024 V.A. Mitsou

Thank you for your attention!

Corfu 2024 V.A. Mitsou

PYTHIA HV codes

name	partner	code	name	partner	code
D_v	d	4900001	E_v	e	4900011
U_v	u	4900002	ν_{Ev}	$ u_e $	4900012
S_v	s	4900003	MU_v	μ	4900013
C_v	c	4900004	ν_{MUv}	$ u_{\mu}$	4900014
B_v	b	4900005	TAU_v	τ	4900015
T_v	t	4900006	ν_{TAUv}	$ u_{ au}$	4900016
g_v		4900021			
γ_v		4900022			
q_v		4900101			

Azimuthal yield $Y(\Delta \varphi)$

• Correlation-function projection for $1.6 < |\Delta y| < 3$ (long range)

$$Y(\Delta\phi) = \frac{\int_{1.6 \le |\Delta y| \le 3} S(\Delta y, \Delta\phi) dy}{\int_{1.6 \le |\Delta y| \le 3} B(\Delta y, \Delta\phi) dy}$$

- Two completely different behaviours between signal and background
- $\Delta \varphi \sim 0$
 - bump for the HV case
 - valley in the SM expectation
- $\Delta \varphi \sim \pi$
 - valley (i.e. no contribution) for HV
 - SM contribution remains ~constant

Distribution shapes

- Pre-selection (w.r.t. beam axis)
 - final-state particles with transverse momentum $p_T > 0.5$ GeV
 - $|\cos\vartheta| \le 0.99$ for detector acceptance
- Charged-particle multiplicity and di-jet invariant mass different between signal and background
- q_V -dependent cut

