Extended scalar sectors from all angles - Mostly at lepton colliders -

Tania Robens

Rudjer Boskovic Institute

Workshop on Standard Model and Beyond Mon Repos, Corfu, Greece 27.8.2024

Tania Robens

Extended scalar sectors

SM and beyond, Mon Repos, 27.8.24

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

After Higgs discovery: Open questions

Higgs discovery in $2012 \Rightarrow$ last building block discovered

? Any remaining questions ?

- Why is the SM the way it is ??
 - \Rightarrow search for underlying principles/ symmetries
- find explanations for observations not described by the SM
 - \Rightarrow e.g. dark matter, flavour structure, ...
- ad hoc approach: Test which other models still comply with experimental and theoretical precision

for all: Search for Physics beyond the SM (BSM)

 \Rightarrow main test ground for this: particle colliders \Leftarrow

(日) (同) (三) (三)

Special role of the scalar sector

• Higgs potential in the SM

$$\mathbf{V} = -\mu^2 \, \mathbf{\Phi}^{\dagger} \, \mathbf{\Phi} + \lambda \, \left(\mathbf{\Phi}^{\dagger} \, \mathbf{\Phi} \right)^2, \quad \mathbf{\Phi} = \frac{1}{\sqrt{2}} \begin{pmatrix} \mathbf{0} \\ \mathbf{v} + \mathbf{h}(\mathbf{x}) \end{pmatrix}$$

 \Rightarrow mass for Higgs Boson and Gauge Bosons

$$m_h^2 \,=\, 2\,\lambda\,v^2,\,m_W\,=\,g\,rac{v}{2},\,m_Z\,=\,\sqrt{g^2+(g')^2}\,rac{v}{2}$$

where v: Vacuum expectation value of the Higgs field, g, g'': couplings in SU(2) \times U(1)

 $\Rightarrow\,$ everything determined in terms of gauge couplings, v, and λ

form of potential determines minimum, electroweak vacuum structure

- \Rightarrow stability of the Universe, electroweak phase transition, etc
- full test requires checks of hhh, hhhh couplings
- ⇒ so far: only limits; possible only at future machines [HL-LHC:

constraints on hhhh]

Tania Robens

Extended scalar sectors

How can we see new physics ?

Different ways to see new physics effects

- Option 1: see a direct deviation, in best of all cases a bump, and/ or something similar ⇒ clear enhanced rates for certain final states, mediated by new physics
- Option 2: observe signatures that do not exist in SM, e.g. events with large missing energy (hint of model containting DM)
- Option 3: observe deviations in SM-like quantities which are small(ish): ⇒ loop-induced deviations, requiring precision measurements
- NB: these can in principle also be large $!! \Rightarrow$ all models floating around to explain $m_W^{\rm CDF}$

Tania Robens

Extended scalar sectors

SM and beyond, Mon Repos, 27.8.24

In the following...

Discussion of

- recasts of IDM using THDMa search [w. J. Lahiri/ K. Rolbiecki] final state ! = topology
- new scalars at lepton colliders [ECFA effort/ w. A.F. Zarnecki ea] next machine: Higgs factory
- searches for IDM at muon colliders [w J. Braathen/ M. Gabelmann/ P.

Stylianou]

VBF-type enhancements at high energies

Recasting example: Inert Doublet Model

2 Higgs Doublet Model: 4 new scalars H, A, H^{\pm} Z_2 symmetry \rightarrow DM candidate(s) (here: choose H) free parameters: masses, λ_2 , λ_{345} (couplings in V) signatures: EW gauge boson(s) + MET \Rightarrow so far: no LHC analysis \Leftarrow

Tania Robens

Extended scalar sectors

Number of free parameters and constraints

Model has 7 free parameters

• choose e.g.

 $\underbrace{v, M_h,}_{\text{246 GeV}, \text{125 GeV}} \mathbf{M}_{\mathbf{H}}, \mathbf{M}_{\mathbf{A}}, \mathbf{M}_{\mathbf{H}^{\pm}}, \lambda_2, \lambda_{345} [= \lambda_3 + \lambda_4 + \lambda_5]$

Constraints

- **Theory constraints:** vacuum stability, positivity, constraints to be in inert vacuum, perturbative unitarity, perturbativity of couplings, choosing M_H as dark matter: $M_H \leq M_A$, $M_{H^{\pm}}$
- Experimental constraints: total width of hW, Z; collider constraints from signal strength/ direct searches; electroweak precision through S, T, U; unstable H[±]; reinterpreted/ recastet LEP/ LHC SUSY searches (Lundstrom ea 2009; Belanger ea, 2015); dark matter relic density (upper bound); dark matter direct search limits (LUX-ZEPLIN)

Tania Robens

Extended scalar sectors

Updated constraints [LUX-ZEPLIN] [arXiv:2207.03764]

LUX

LUX-ZEPLIN

Recast of LHC Run II results

(in collaboration w D. Dercks, Eur.Phys.J.C 79 (2019) 11, 924))

so far:

no dedicated searches at the LHC (yet)

- however, dominant final states: jet(s) + MET, EW gauge boson(s) + MET
 - \Rightarrow same final states appear in other BSM searches \Leftarrow
- idea: **use recasting methods** to give (preliminary) exclusion limits if feasible
- many tools around; here: CheckMATE [Drees ea '13, Dercks ea '16]

Tania Robens

Extended scalar sectors

SM and beyond, Mon Repos, 27.8.24

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

IDM recast

- considered a long list of processes at 13 TeV
- most sensitive:

VBF + invisible Higgs decay (by far), Monojet

- \Rightarrow implemented in CheckMATE [currently: private version]
- \Rightarrow applied to IDM

VBF: Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$, CMS, Phys.Lett.B 793 (2019) 520-551, [35.9fb⁻¹] Monojet: Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector, ATLAS, JHEP 01 (2018) 126, [36.1fb⁻¹]

Tania Robens

Extended scalar sectors

Brief comments on null-results for dilepton final states

• high $\not{\!\! E}_{\perp} \Rightarrow \text{low } \sigma$ and vice versa

experiments need to venture into low $\not \in$ region

(first discussions: The 15th Workshop of the LHC Higgs Cross Section Working Group, CERN, 12/18; cf

e.g. summary talk by D. Sperka)

Tania Robens

Extended scalar sectors

SM and beyond. Mon Repos. 27.8.24

Image: Image:

Recasting $\ell \ell + \not\!\!\!E_{\perp}$ using full Run 2 results (w. J. Lahiri/ K. Rolbiecki)

• recently: a lot of interest has gone into the THDMa [THDM+ additional pseudoscalar + fermionic dm candidate]

[see Ipek ea, Phys. Rev., D90(5):055021, 2014; No, Phys. Rev., D93(3):031701, 2016; Goncalves ea, Phys. Rev. D95(5):055027, 2017; Bauer ea, JHEP, 05:138, 2017; Tunney ea, Phys. Rev., D96(9):095020, 2017; also TR, Symmetry 13 (2021) 12, 2341]

shares $Z + \not\!\!\!\!/ \!\!\!\!/ _\perp$ as a dominant channel

• what about a recast there ??

tool of choice: CheckMATE

[Drees ea, Comput.Phys.Commun. 187 (2015) 227-265; Dercks ea, Comput.Phys.Commun. 221 (2017) 383-418]

Tania Robens

Extended scalar sectors

SM and beyond, Mon Repos, 27.8.24

< ロト < 同ト < ヨト < ヨト

Search for associated production of a Z boson with an invisibly decaying Higgs boson or dark matter candidates at $\sqrt{s} = 13$ TeV with the ATLAS detector, Phys. Lett. B 829 (2022) 137066

- used in TR, Symmetry 13 (2021) 12, 2341 to constrain $Z + \not{\!\!\!E}_{\perp}$ channel
- cut out 9% of the THDMa parameter space¹
- maybe also useful for IDM ?

First results

specific sample, concentrates on low $m_H \le 100 \,\text{GeV}$ dominant production: $p \ p \to Z^* \to H A, A \to H \ell^+ \ell^-$ In principle: only m_A, m_H should matter

allowed and excluded points, (m_H, m_A) plane

allowed and excluded points $\left(m_{H}+m_{A},\,\sigma_{HA}^{ ext{cuts}}
ight)$ plane

in practise: contamination from $p p \rightarrow H^{\pm} A$ with hadronic W decays

Tania Robens

Extended scalar sectors

Kinematic distributions

nota bene: cross sections for THDMa typically much smaller, still excluded !

reason: differences in kinematic distributions; here: missing p_{\perp}

Tania Robens

Extended scalar sectors

After LHC: Higgs factory next (?)

various production modes possible

- 1) easiest example: $e^+ e^- \rightarrow Z h_1$, onshell production interesting up to $m_1 \sim 160 \,\mathrm{GeV}$
- 2) in models with various scalars: e.g. also $e^+ e^- \rightarrow h_1 h_2$ (e.g. from 2HDMs); example processes and bounds from LEP in Eur.Phys.J.C 47 (2006) 547-587

again: for onshell production, $\sum_i\,m_i\,\leq\,250\,{\rm GeV}$

3) another (final) option: look at $e^+e^- \rightarrow h_i Z$, $h_i \rightarrow h_j h_k$

already quite a few studies for 1), 3) available

Image: A matching of the second se

Possible production modes and rates [TR, Universe 2022, 8(5), 286, updated]

$e^+ e^- \rightarrow Z^* \rightarrow Zh, e^+ e^- \rightarrow \nu \bar{\nu} h$ (VBF)

LO analytic expressions e.g. in Kilian ea, Phys.Lett.B 373 (1996) 135-140]

• rule of thumb: rescaling ≤ 0.1

• \Rightarrow maximal production cross sections around 50 fb • $\sim 10^5$ events using full luminosity

Tania Robens

Extended scalar sectors

ECFA effort: novel final states

- already mentioned by Filip: what about hZ with $h \rightarrow WW$?
- \Rightarrow define points that are still allowed (singlet extension)
- \Rightarrow convolute w decay rate and branching ratios

"Best" points for masses $\geq 130 \,\mathrm{GeV}$

Tania Robens

Extended scalar sectors

simulation study ongoing... stay tuned

$\overline{S \to W^+ W^-}$

Simulation study

with Tania Robens, Yang Ma, Mohamed Ouchemhou

Image: A mathematical states and a mathem

Correlation of reconstructed boson masses on generator level TRSM model with additional 140 GeV scalar at \sqrt{s} =250 GeV

Extended scalar sectors

Nextⁿ colliders: muons

"Sensitivity study" for IDM: production cross sections for BPs at 13, 27, 100 TeV for ppcollisions, 10, 30 TeV for $\mu\mu$

- simple counting criterium: 1000 events with design luminosity, comparison of mass reach
- **! processes differ:** pair-production for all but *AA* final states from electroweak processes (Drell-Yan)
- AA: mediated via coupling λ
 ₃₄₅ = λ₃₄₅ − 2 M_H²−M_A² ⇒ strong constraints from direct detection and electroweak precision observables

 \Rightarrow include VBF-type topologies: VBF starts playing role, especially at $\mu\mu$ colliders

Tania Robens

Extended scalar sectors

Sensitivity in figures [Symmetry 13 (2021) 6, 991]

lines: 1000 events for design luminosity

Tania Robens

Extended scalar sectors

Investigate VBF-type production of AA at muon collider (10 TeV) (w. J. Braathen, M. Gabelmann, P. Stylianou)

• sensitivity study last slide: based on cross sections only

How does it look in real life ??

main target

$$\mu^+ \mu^- \rightarrow A A \nu_\mu \bar{\nu}_\mu$$

with $A \rightarrow HZ$ and semileptonic decay modes for Zs.

• typical cross sections [after some basic cuts] $\lesssim 0.05\,{\rm fb}$ at 10 TeV center of mass energy

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Why muon collider ?

- AA production only mediated via *h*₁₂₅
- coupling

$$ar{\lambda}_{345} = \lambda_{345} + rac{2(m_A^2 - m_H^2)}{v^2}$$

- λ_{345} typically small from DM constraints
- mass difference can also not be too large

[although we found counterexamples]

● large com energies ⇒ log-enhanced VBF type production

Tania Robens

Strategy

- generate $\mu^+ \mu^- \rightarrow A A \nu_\mu \bar{\nu}_\mu$ with $A \rightarrow H \ell^+ \ell^-, A \rightarrow H j j$
- 2 approaches: cut based vs machine learning (XGBoost)
- main result: ML supersedes the cut based method, significances ≥ 3/5 possible

A B >
 A
 B >
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Preliminary results

Open points

- analyze more points
- add additional signal contributions

Ο ...

Tania Robens

Extended scalar sectors

SM and beyond, Mon Repos, 27.8.24

Summary

Models with extended scalar sectors provide an interesting setup to introduce new scalar particles, with different CP/ charge quantum numbers

⇒ leads to many new interesting signatures, some of which are not yet covered by current searches

some of these: also interesting connections of electroweak phase transitions/ gravitational waves/ etc

Next steps

• (re) investigate models with extended scalar sectors at e^+e^- colliders [ECFA effort ongoing]

Many things to do

Tania Robens

Extended scalar sectors

SM and beyond, Mon Repos, 27.8.24

Image: A math a math

Do not miss

Extended Scalars from all angles, CERN, 21.-25.10.24

https://indico.cern.ch/e/scalars2024

next HHH workshop in Dubrovnik, 09/25 \Rightarrow stay tuned \Leftarrow

Tania Robens

Extended scalar sectors

1 B SM and beyond, Mon Repos, 27.8.24

Image: A matching of the second se

Appendix

Tania Robens

Extended scalar sectors

SM and beyond, Mon Repos, 27.8.24

3

イロン イヨン イヨン イヨン

Models

- new scalars \Rightarrow models with scalar extensions
- many possibilites: introduce new $SU(2) \times U(1)$ singlets, doublets, triplets, ...
- unitarity \Rightarrow important sum rule*

$$\sum_{i}g_{i}^{2}(h_{i})=g_{SM}^{2}$$

for coupling g to vector bosons

• many scenarios \Rightarrow signal strength poses strong constraints

* modified in presence e.g. of doubly charged scalars, see Gunion, Haber, Wudka, PRD 43 (1991) 904-912.

Image: A matching of the second se

What about extensions ?

• in principle: no limit

can add more singlets/ doublets/ triplets/ ...

⇒ consequence: will enhance particle content

additional (pseudo)scalar neutral, additional charged, doubly charged, etc particles

common feature:

new scalar states, which can now also be produced/ decay into each other/ etc

Image: A match a ma

Particle content

typical content: singlet extensions ⇒ additional CP-even/ odd mass eigenstates 2HDMs, 3HDMs: add additional charged scalars

- e.g. 2 real scalars \Rightarrow **3 CP-even neutral scalars**
- 2HDM \rightarrow 2 CP-even, one CP odd neutral scalar, and charged scalars

• ...

Image: A math a math

Current (large) collider landscape

[https://europeanstrategy.cern/home]

pp colliders: LHC, FCC-hh

LHC: center-of-mass energy: 8/ 13/ 13.6 TeV, since 2009/ ongoing HL-LHC: 14 TeV, high luminosity (2027-2040) FCC-hh: 100 TeV, under discussion

 e^+e^- colliders: ILC/ CLIC/ FCC-ee, CePC

in plan, high priority in Europe, various center-of-mass energies discussed, priority $\sim~240-250\,{\rm GeV}$ "Higgs factories"

 $\mu^+\mu^-$ colliders

under discussion, early stages [EU-funded design study MuCol started 1.3.23]

Tania Robens

Extended scalar sectors

ATLAS-PHYS-PUB-2021-031

SM and beyond, Mon Repos, 27.8.24

Image: A math a math

Other possible extensions

- A priori: no limit to extend scalar sector
- make sure you
 - have a suitable ew breaking mechanism, including a Higgs candidate at $\sim~125\,{\rm GeV}$
 - can explain current measurements
 - are **not excluded by current searches** and precision observables
- nice add ons:
 - can push vacuum breakdown to higher scales
 - can explain additional features, e.g. dark matter, or hierarchies in quark mass sector

• ...

- Multitude of models out there
- adding ew gauge singlets/ doublets/ triplets...

```
\Rightarrow new scalar states \Leftarrow
```


SM and beyond, Mon Repos, 27.8.24

Tania Robens

Extended scalar sectors

Models with extended scalar sectors

Constraints

• Theory

minimization of vacuum (tadpole equations), vacuum stability, positivity, perturbative unitarity, perturbativity of couplings

Experiment

provide viable candidate @ 125 GeV (coupling strength/ width/ ...); agree with null-results from additional searches and ew gauge boson measurements (widths); agree with electroweak precision tests (typically via S,T,U); agree with astrophysical observations (if feasible)

Limited time \Rightarrow next slides highly selective...

[long list of models, see e.g. https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG3]

tools used: HiggsBounds, HiggsSignals, 2HDMC, micrOMEGAs, ...

Tania Robens

Extended scalar sectors

SM and beyond, Mon Repos, 27.8.24

(日) (同) (三) (三)

Examples for current constraints: Singlet extension, Z_2 symmetric: +1 scalar particle [TR, arXiv:2209.15544; updated using HiggsTools]

 $\mathbf{V}(\mathbf{\Phi},\mathbf{S}) = -\mathbf{m}^{2}\mathbf{\Phi}^{\dagger}\mathbf{\Phi} - \mu^{2}\mathbf{S}^{2} + \lambda_{1}(\mathbf{\Phi}^{\dagger}\mathbf{\Phi})^{2} + \lambda_{2}\mathbf{S}^{4} + \lambda_{3}\mathbf{\Phi}^{\dagger}\mathbf{\Phi}\mathbf{S}^{2}$

new parameters: m_2 , $\sin \alpha$ [= 0 for SM], $\tan \beta$ [= ratio of vevs]

[update from Review in Physics (2020) 100045]

[see e.g. Pruna, TR, Phys. Rev. D 90, 114018;

(Bojarski, Chalons,) Lopez-Val, TR, Phys. Rev. D 90, 114018, JHEP 1602 (2016) 147;

(Ilnicka), TR, Stefaniak, EPJC (2015) 75:105, Eur.Phys.J. C76 (2016) no.5, 268, Mod.Phys.Lett. A33 (2018)]

Tania Robens

Extended scalar sectors

New physics at Higgs factories

New physics at muon colliders Summary

Reminder: decays of a SM-like Higgs of mass $M \neq 125 \, { m GeV}$

(using HDecay, courtesy J.Wittbrodt)

(https://twiki.cern.ch/twiki/bin/view/LHCPhysics

/LHCHXSWGCrossSectionsFigures)

Testing the Higgs potential

• remember:

$$\mathbf{V} = -\mu^2 \, \mathbf{\Phi}^{\dagger} \, \mathbf{\Phi} + \lambda \, \left(\mathbf{\Phi}^{\dagger} \, \mathbf{\Phi}
ight)^2, \quad \mathbf{\Phi} = rac{1}{\sqrt{2}} egin{pmatrix} \mathbf{0} \ \mathbf{v} + \mathbf{h}(\mathbf{x}) \end{pmatrix}$$

also predicts hhh and hhhh interactions

• so far: only constraints

 \implies future accessibility ? <=

Start with resonance enhanced BSM scenarios for hhh

< • • • **•**

Inert doublet model: The model

• idea: take two Higgs doublet model, add additional Z₂ symmetry

$$\phi_D \rightarrow -\phi_D, \phi_S \rightarrow \phi_S, SM \rightarrow SM$$

 $(\Rightarrow \text{ implies CP conservation})$

- ⇒ obtain a 2HDM with (a) dark matter candidate(s)
 - potential

$$\begin{split} \mathcal{V} &= -\frac{1}{2} \left[m_{11}^2 (\phi_5^{\dagger} \phi_S) + m_{22}^2 (\phi_D^{\dagger} \phi_D) \right] + \frac{\lambda_1}{2} (\phi_5^{\dagger} \phi_S)^2 + \frac{\lambda_2}{2} (\phi_D^{\dagger} \phi_D)^2 \\ &+ \lambda_3 (\phi_5^{\dagger} \phi_S) (\phi_D^{\dagger} \phi_D) + \lambda_4 (\phi_5^{\dagger} \phi_D) (\phi_D^{\dagger} \phi_S) + \frac{\lambda_5}{2} \left[(\phi_5^{\dagger} \phi_D)^2 + (\phi_D^{\dagger} \phi_S)^2 \right], \end{split}$$

 only one doublet acquires VeV v, as in SM (⇒ implies analogous EWSB)

Tania Robens

Extended scalar sectors

Parameters tested at colliders: mainly masses

- side remark: all couplings involving gauge bosons determined by electroweak SM parameters
- relevant couplings follow from ew parameters (+ derivative couplings)
- hXX couplings: determined by λ_{345} (constrained from direct detection), and mass differences $M_X^2 M_H^2$ ($x \in [A, H^{\pm}]$)

important interplay between astroparticle physics and collider searches

in the end kinematic test

(holds for $M_H \geq \frac{M_h}{2}$)

Tania Robens

Extended scalar sectors

SM and beyond, Mon Repos, 27.8.24

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

IDM at LHC

Recast of 13 TeV VBF $h \rightarrow$ invisible search important constraints in offshell regime !

high rates \iff low $\not \in_{\perp}$ cuts

・ロト ・回ト ・ヨト ・

current searches at LHC need to be modified

Different production topologies...

[slide from J. Lahiri, Talk at "Roadmap of Dark Matter models at LHC Run 3", 05/24]

2HDMa:

Inert Doublet Model:

Other ongoing work: also reinvestigate VBF with Higgs to invisible

- take full run 2 result from ATLAS [JHEP 08 (2022) 104]
- \Rightarrow should extend full search range of previous paper
 - important parameters now: m_H , λ_{345}
 - main emphasis:

off-shell range not covered by $BR(h \rightarrow inv)$

Tania Robens

Extended scalar sectors

Collider parameters

collider	cm energy [TeV]	$\int \mathcal{L}$	1000 events [fb]
HL-LHC	13/ 14	$3 \mathrm{ab}^{-1}$	0.33
HE-LHC	27	$15{ m ab}^{-1}$	0.07
FCC-hh	100	$20{ m ab}^{-1}$	0.05
ee	3	$5 \mathrm{ab}^{-1}$	0.2
$\mu\mu$	10	$10{ m ab}^{-1}$	0.1
$\mu\mu$	30	$90 \mathrm{ab}^{-1}$	0.01

3

(ロ) (部) (目) (日) (日)

Sensitivity in numbers

after HL-LHC: in general mass scales ($\sum M_i$ for pair-production) up to 1 TeV, in AA channel 200-600 GeV (500-600 including VBF)

collider	all others	AA	AA +VBF
HE-LHC	2 TeV	400-1400 GeV	800-1400 GeV
FCC-hh	2 TeV	600-2000 GeV	1600-2000 GeV
CLIC, 3 TeV	2 TeV ^{1),2)}	_ 3)	300-600 GeV
$\mu\mu$, 10 TeV	2 TeV ¹⁾	-	400-1400 GeV
$\mu\mu$, 30 TeV	2 TeV ¹⁾	-	1800-2000 GeV

1) only HA, H^+H^- ;

2) detailed investigation including background, beam strahlung, etc [JHEP 07 (2019) 053, CERN Yellow Rep. Monogr. Vol. 3 (2018)]
3) also including *Zh* mediation

Tania Robens

Extended scalar sectors

Why muon collider

- at muon colliders at higher com energies: *WW* fusion processes enhanced
- \Rightarrow can become dominant
 - supersedes this process at hadron colliders
 - crucial: high center of mass energy

Singlet extensions [TR, arXiv:2203.08210 and Symmetry 2023, 15(1), 27]

TRSM: 2 real singlets [TR, T. Stefaniak, J. Wittbrodt, Eur.Phys.J.C 80 (2020) 2, 151]

• **low-low:** both additional scalars below 125 GeV; **high-low:** one new scalar above 125 GeV

Tania Robens

Extended scalar sectors