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Introduction

Elusive superconformal theories in 6d

What this talk is not about:

• (2, 0) superconformal field theory [Witten, 1995; Dine & Strominger, 1995],
based on a supermultiplet

⊕ (. . . ) ,

containing a chiral, or self-dual 2-form;

• (4, 0) ‘exotic’ conformal supergravity [Hull 2000], whose spectrum is

⊕ (. . . ) ,

containing a self-dual mixed-symmetric tensor, argued to play the
role of a graviton;
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Introduction

Higher spin singletons

These particular mixed-symmetry fields, labelled by a two-row rectangular
diagram,

φµ1...µs ,ν1...νs ←→ s

are called higher spin singletons,

whose curvature tensors are three-row
diagrams

Fµ1...µs ,ν1...νs ,ρ1...ρs = ∂ρ1 . . . ∂ρsφµ1...µs ,ν1...νs + (. . . ) ←→
s

±
,

and can therefore be either self-dual or anti-self-dual, meaning

εµνρ
αβγF···α··· ,···β··· ,···γ··· ∝ F···µ··· ,···ν··· ,···ρ··· ,

i.e. their Hodge dual in any column are proportional to themselves.
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Introduction

Lessons from 4d

In d = 4 dimensions, massless fields of arbitrary spin, say s ∈ N, can be
self-dual or anti-self-dual.

The gauge fields are totally symmetric
spacetime tensors, subject to gauge transformations

δξφµ1...µs = ∂(µ1ξµ2...µs ) ,

and curvature

Rµ1...µs ,ν1...νs = ∂µ1 . . . ∂µsφν1...νs + (. . . ) ←→ s

±

Less indices, but still a mess to deal with.
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Introduction

Lessons from 4d

Fortunately, we can use two-component spinors to simplify things:

Rµ1...µs ,ν1...νs ←→ ψα1...α2s or ψα̇1...α̇2s , α, α̇ = 1, 2

They propagate two degrees of freedom—two helicities ±s. Twistor
theory treats these two helicities differently: For instance, negative
helicities can be described by a ‘gauge potential’ φα(2s−1)

β̇ , subject to

∂αβ̇φα(2s−1)
β̇ ≈ 0 , δξφα(2s−1)

β̇ = ∂α
β̇ξα(2s−2) ,

while positive helicities can be described by a symmetric tensor ψα(2s)

which verifies
∂ββ̇ψ

α(2s−1)β ≈ 0 .
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Introduction

Lessons from 4d

This formulation was used to propose a higher spin extension of self-dual
Yang–Mills [Krasnov, Skvortsov & Tran, 2021].

• First embed the potential in a 1-form

ωα(2s−2) = eββ̇φα(2s−2)β
β̇ + (. . . ) ,

and remove additional components by adding an algebraic piece to the
gauge symmetry,

δξ,ηωα(2s−2) = ∇ξα(2s−2) + eαα̇ ηα(2s−3)
α̇ ;

• The free action,

S [ψ, ω] =

∫
M

ψα(2s) Hαα ∧∇ωα(2s−2) , Hαα = eαβ̇ ∧ eα
β̇ ,

is gauge-invariant thanks to Hαα ∧ eαα̇ = 0 , and produces equivalent
equations of motions.
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Introduction

Lessons from 4d

• Promote ωα(2s−2) and ψα(2s) to be g-valued, with g a quadratic Lie
algebra, i.e. endowed with a bilinear symmetric invariant form

〈〈〈
−,−

〉〉〉
,

and replace ∇ω with the ‘field strength’

Fα(2s−2) = ∇ωα(2s−2) +
1
2

∑
k+l=s−1

[ωα(2k), ωα(2l)]g .

• Then, the action

S [Ψ, ω] =

∫
M

∑
s≥1

〈〈〈
ψα(2s),Hαα ∧ Fα(2s−2)

〉〉〉
,

is invariant under

δξ,ηωα(2s−2) = ∇ξα(2s−2) +
∑

k+l=s−1

[ωα(2k), ξα(2l)]g + eαα̇ ηα(2s−3)
α̇ ,

δξΨ
α(2s) =

∑
k+l=s

[Ψα(2k), ξα(2l)]g .
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Introduction

Synopsis

There exists a counterpart of this higher spin extension of self-dual
Yang–Mills in 6d , for higher spin singletons.

In fact, this extends to arbitrary even dimensions.
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Six dimensions

Exceptional isomorphisms

In d = 6 dimensions, the same equations—in a superficial sense—also describe
chiral fields of spin s ∈ N.

This is due to the exceptional isomorphisms between
(the double cover of) the Lorentz group in d-dimensions and the special linear
group SL(2,K) with K the ‘classical’ division algebra of real dimension d − 2.

d K SL(2,K)-tensors S̃O(1, d − 1)-irrep

3 R α = 1, 2
φα(2s)

s

4 C α, α̇ = 1, 2
ψα(2s) or ψα̇(2s)

s

±

6 H A = 1, 2, 3, 4
ΨA(2s) or ΨA(2s)

s

±
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Singletons in 6d

SL(2,H) ∼= SU∗(4) formulation in 6d

Singletons of spin s and positive chirality can be described either by a gauge
potential

∂A,BφA(2s−1)
B ≈ 0 , δξφA(2s−1)

B = ∂B,CξA(2s−1),C ,

or by a curvature tensor
∂B,CΨ

A(2s−1)C ≈ 0 ,

both of which stem from the variation of the action

S [Φ,Ψ] =

∫
M

volM ΨA(2s) ∂A,BΦA(2s−1)
B .

One subtlety with respect to the 4d case: the gauge symmetry is reducible,
since

ξ̊A(2s−1),B = ∂A,BζA(2s−2) =⇒ δξ̊φA(2s−1)
B = 0 ,

for any ζA(2s−2).
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Singletons in 6d

Free theory

Remark that one can embed the gauge potential into a 2-form

ϖA(2s−2) = HB
C ΦA(2s−2)C

B , HA
B = eA,C ∧ eC ,B ,

and its gauge transformation as

δξϖA(2s−2) = ∇ξA(2s−2) , with ξA(2s−2) = eB,C ξA(2s−2)B,C ,

where ∇ is torsion-free and has constant curvature. Concretely,

∇2φ···A···
···B··· =

∑
−HA

C φ···C ···
···B··· + HC

B φ···A···
···C ··· ,

upon normalising the curvature. The self-dual 3-forms HAA = HA
B ∧ eB,A

satisfy the identities

HAA ∧ eA,B = 0 =⇒ HAA ∧ HA
B = 0 ,

ensures that the action

S [Ψ,Φ] =

∫
M

ΨA(2s)HAA ∧∇ϖA(2s−2) ,

is gauge invariant.
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Singletons in 6d

Free theory

Idea: Promote ϖ to a generic 2-form, renamed ω.

= HB
C ΦA(2s−2)C

B

+ . . . ,

which contains more than the potential ΦA(2s−1)
B , but can be removed

by adding an algebraic piece to the gauge transformations

δξ,ηωA(2s−2) = ∇ξA(2s−2) + eA,B ∧ ηA(2s−3)
B ,

where both ξA(2s−2) and ηA(2s−3)
B are 1-forms. The previous action,

with ϖ replaced by ωA(2s−2),

S [Ψ, ω] =

∫
M

ΨA(2s)HAA ∧∇ωA(2s−2) .

is gauge-invariant thanks to the identity

HAA ∧ eA,B = 0 .

7/12



Singletons in 6d

Free theory

Idea: Promote ϖ to a generic 2-form, renamed ω.

ϖA(2s−2) = HB
C ΦA(2s−2)C

B

+ . . . ,

which contains more than the potential ΦA(2s−1)
B , but can be removed

by adding an algebraic piece to the gauge transformations

δξ,ηωA(2s−2) = ∇ξA(2s−2) + eA,B ∧ ηA(2s−3)
B ,

where both ξA(2s−2) and ηA(2s−3)
B are 1-forms. The previous action,

with ϖ replaced by ωA(2s−2),

S [Ψ, ω] =

∫
M

ΨA(2s)HAA ∧∇ωA(2s−2) .

is gauge-invariant thanks to the identity

HAA ∧ eA,B = 0 .

7/12



Singletons in 6d

Free theory

Idea: Promote ϖ to a generic 2-form, renamed ω.

ωA(2s−2) = HB
C ΦA(2s−2)C

B + . . . ,

which contains more than the potential ΦA(2s−1)
B ,

but can be removed
by adding an algebraic piece to the gauge transformations

δξ,ηωA(2s−2) = ∇ξA(2s−2) + eA,B ∧ ηA(2s−3)
B ,

where both ξA(2s−2) and ηA(2s−3)
B are 1-forms. The previous action,

with ϖ replaced by ωA(2s−2),

S [Ψ, ω] =

∫
M

ΨA(2s)HAA ∧∇ωA(2s−2) .

is gauge-invariant thanks to the identity

HAA ∧ eA,B = 0 .

7/12



Singletons in 6d

Free theory

Idea: Promote ϖ to a generic 2-form, renamed ω.

ωA(2s−2) = HB
C ΦA(2s−2)C

B + . . . ,

which contains more than the potential ΦA(2s−1)
B , but can be removed

by adding an algebraic piece to the gauge transformations

δξ,ηωA(2s−2) = ∇ξA(2s−2) + eA,B ∧ ηA(2s−3)
B ,

where both ξA(2s−2) and ηA(2s−3)
B are 1-forms.

The previous action,
with ϖ replaced by ωA(2s−2),

S [Ψ, ω] =

∫
M

ΨA(2s)HAA ∧∇ωA(2s−2) .

is gauge-invariant thanks to the identity

HAA ∧ eA,B = 0 .

7/12



Singletons in 6d

Free theory

Idea: Promote ϖ to a generic 2-form, renamed ω.

ωA(2s−2) = HB
C ΦA(2s−2)C

B + . . . ,

which contains more than the potential ΦA(2s−1)
B , but can be removed

by adding an algebraic piece to the gauge transformations

δξ,ηωA(2s−2) = ∇ξA(2s−2) + eA,B ∧ ηA(2s−3)
B ,

where both ξA(2s−2) and ηA(2s−3)
B are 1-forms. The previous action,

with ϖ replaced by ωA(2s−2),

S [Ψ, ω] =

∫
M

ΨA(2s)HAA ∧∇ωA(2s−2) .

is gauge-invariant thanks to the identity

HAA ∧ eA,B = 0 .

7/12



Finding interactions in 6d

‘Yang–Mills-type’ interaction

For convenience, let us introduce generating fields

Ω2
M ⊗ g⊗ C[y ]Z2 ∋ ω :=

∑
s≥1

1
(2s−2)! ωA(2s−2)y

A(2s−2) ,

Ω0
M ⊗ g⊗ C[ȳ ]Z2 ∋ Ψ :=

∑
s≥1

1
(2s)! Ψ

A(2s)ȳA(2s) ,

and the pairing
p : C[ȳ ]⊗ C[y ] −→ C

f (ȳ)⊗ g(y) 7−→
∞∑
n=1

1
n!
f A(n)gA(n) ,

so that the sum of the previous free action for s ≥ 1 reads

S [Ψ, ω] =

∫
M

p
(
Ψ,H ∧ ω

)
, H := 1

2 HAA y
AyA .
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Finding interactions in 6d

‘Yang–Mills-type’ interaction

Now we can introduce a Yang–Mills gauge field A ∈ Ω1
M ⊗ g which is a 1-form

valued in a Lie algebra g, equipped with a symmetric bilinear invariant form
denoted

〈〈〈
−,−

〉〉〉
: g⊗ g −→ C.

As it turns out, minimal coupling is almost
enough, i.e.

Smin[Ψ, ω;A] =

∫
M

p ◦
〈〈〈
Ψ,H ∧ Dω

〉〉〉
, D := ∇+ [A,−]g ,

is almost gauge-invariant under

δϵ,ξ,ηω = Dξ + σ+η − [F , σ†
−Dη]g + [ω, ϵ]g , δϵA = Dϵ , δϵΨ = [Ψ, ϵ]g ,

where

• F ≡ dA+ 1
2 [A,A]g and ϵ ∈ Ω0

M ⊗ g is the gauge parameter of A;

• σ+ := eA,B yA∂̄B implements the previous gauge transfo. generated by η;

• σ†
− := − 2

Ny (Nȳ+3) y
A∂̄B eµA,B

∂
∂(dxµ)

with Ny and Nȳ the number operators
for the variables y ad ȳ .
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Finding interactions in 6d

‘Yang–Mills-type’ interaction

• δϵS = 0 follows from the invariance of
〈〈〈
−,−

〉〉〉
;

• The transformations generated by ξ and η lead to

δξ,ηSmin. =

∫
M

p◦
〈〈〈
Ψ,H∧[F , ξ−Dσ†

−η]g
〉〉〉
=

∫
M

p◦
〈〈〈
[Ψ, ξ−Dσ†

−η]g∧H,F
〉〉〉
,

which, being proportional to the field strength F , suggests to add a
BF-term

SBF[A,B] = g
∫
M

〈〈〈
B,F

〉〉〉
, δϵ,ξB = [B, ϵ]g − 1

g p
(
[Ψ, ξ − Dσ†

−η]g ∧ H
)
,

where the gauge transformations of the field B ∈ Ω4
M ⊗ g are adjusted so

as to compensate the previous variation.
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Finding interactions in 6d

Pause: why the weird modification?

Retrospectively, one may ask: do we need the term −[F , σ†
−η]g ?

The purpose of the ‘non-trivial’ modification of the gauge transformations
is to ensure that they remain reducible with the same reducibility
parameters, so as to preserve the number of degrees of freedom.

Writing the reducibility parameters as

ξ̊ = Dζ , η = σ−ζ ,

the operator σ†
− verifies

{σ−, σ†
−} = 1 + (. . . ) ,

where the dots vanish on 0-forms, so that one can easily verify that
δξ̊,η̊ω = 0, even in presence of F ̸= 0.
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Finding interactions in 6d

Short summary

Free formulation

S [Ψ, ω

;A,B

] =

∫
M

p
(
Ψ,H ∧∇ω

)
,

+g
〈〈〈
B,F

〉〉〉
,

with gauge symmetries

δξ,ηω = ∇ξ + σ+η ,

−[F , σ†
−]g + [ω, ϵ]g ,

δϵΨ = [Ψ, ϵ]g , δϵ,ξ,ηB = [B, ϵ]g − 1
g p

(
[Ψ, ξ − Dσ†

−η]g ∧ H
)
,

reducible for
ξ̊ = ∇ζ , η̊ = σ−ζ .
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Finding interactions in 6d

Short summary

Interacting formulation

S [Ψ, ω;A,B] =

∫
M

p ◦
〈〈〈
Ψ,H ∧ Dω

〉〉〉
+g

〈〈〈
B,F

〉〉〉
,

with gauge symmetries

δξ,ηω = Dξ + σ+η−[F , σ†
−]g + [ω, ϵ]g ,

δϵΨ = [Ψ, ϵ]g , δϵ,ξ,ηB = [B, ϵ]g − 1
g p

(
[Ψ, ξ − Dσ†

−η]g ∧ H
)
,

reducible for
ξ̊ = Dζ , η̊ = σ−ζ .
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Finding interactions in 6d

Higher spin version

(i) Extend A and B to

Ω1
M ⊗ g⊗ C[y ] ∋ A =

∑
s≥1

1
(2s−2)! AA(2s−2) y

A(2s−2) ,

Ω4
M ⊗ g⊗ C[y ] ∋ B =

∑
s≥1

1
(2s−2)! B

A(2s−2) ȳA(2s−2) .

(ii) Define • : C[ȳ ]⊗ C[y ] via

p(ψ, f · g) = p(ψ • f , g) ,

for ψ ∈ C[ȳ ] and f , g ∈ C[y ], and

[f ⊗ X •, g ⊗ Y ]g := f • g ⊗ [X ,Y ]g ,

for f ∈ C[ȳ ], g ∈ C[y ] and X ,Y ∈ g .

(iii) Now we have
p ◦

〈〈〈
ψ, [f , g ]g

〉〉〉
= p ◦

〈〈〈
[ψ •, f ]g, g

〉〉〉
,

for ψ ∈ C[ȳ ]⊗ g and f , g ∈ C[y ]⊗ g.
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Finding interactions in 6d

Higher spin version

The same properties / mechanisms as before ensure that

S [Ψ, ω;A,B] =
∫
M

p ◦
〈〈〈
Ψ,H ∧ Dω

〉〉〉
+ g p ◦

〈〈〈
B,F

〉〉〉
,

is invariant under the gauge symmetries

δξ,ηω = Dξ + σ+η − [F , σ†
−]g + [ω, ϵ]g ,

δϵΨ = [Ψ •, ϵ]g , δϵ,ξ,ηB = [B •, ϵ]g − 1
g [Ψ •, (ξ − Dσ†

−η) ∧ H]g ,

which are reducible for

ξ̊ = Dζ , η̊ = σ−ζ .
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Finding interactions in 6d

Taking a step back

There seems to be two important ingredients that make it work:

(i) The fact that the gauge transformations of ∇ω lie in the kernel of

p
(
Ψ,H ∧ −) : Ω3

M ⊗ C[y ] −→ Ω6
M ,

which reflects the fact that these formulations are of presymplectic AKSZ
type [Alkalaev & Grigoriev, 2013; Grigoriev & Kotov, 2020; see Maxim’s talk]. In
particular, replacing Ψ with any polynomial in Ψ valued in C[ȳ ] will define
a consistent deformation of the free action.

(ii) The addition of the BF term to compensate for the fact that
δξDω ∝ [F , ξ].

This is a generic feature of models with higher-forms
transforming under a non-Abelian Lie algebra [Kotov & Strobl, 2010].

(iii) The existence of a commutative algebra whose decomposition under the
Lorentz algebra corresponds to tower of singletons of all integer spin.
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Outlook

• In 4d , there also exists an higher spin extension of self-dual
gravity [Krasnov, Skvortsov & Tran, 2021]—what about 6d?

• The higher spin extension of self-dual Yang–Mills in 4d appears as a
contraction of chiral higher spin gravity [Ponomarev & Skvortsov, 2016;

Sharapov, Skvortsov & Van Dongen, ≥ 2022]—what about 6d?

• Self-dual Yang–Mills and its higher spin extension in 4d have strong
ties to twistor theory [Tran, 2021; Adamo & Tran, 2022; Herfray, Krasnov &

Skvortsov, 2022]—what about 6d?

• Higher dimensions via pure spinors? Octonions in 10d?

Thanks for your attention!
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