Signed eigenvalue distributions of complex random tensors and geometric measure of entanglement of multipartite states

Naoki Sasakura

Yukawa Institute for Theoretical Physics, Kyoto University

Mainly based on

S. Majumdar, NS, to appear in PTEP, arXiv:2408.01030 [hep-th] NS, PTEP 2024 (2024) 5, 053A04, arXiv:2404.03385 [hep-th] M.R. Kloos, NS, Lett.Math.Phys. 114 (2024) 3, 80, arXiv:2403.12427 [hep-th]

Presented on Sep 18th, 2024 at

Workshop on Noncommutative and Generalized Geometry in String theory, Gauge theory and Related Physical Models, Corfu2024, Sep 17-24, 2024, Corfu, Greece

§Introduction

Eigenvalue distributions are important in random matrix models

• Approximate Hamiltonian of atoms (Wigner 1958)

H: Random matrix *ρ E* Semi-circle law

- Method of computing matrix models Brezin-Itzykson-Parisi-Zuber 1978
- Topological transition Dynamics of QCD

Gross-Witten, Wadia, 1980

How about tensor eigenvalue distributions ?

Most tensor problems are NP-hard for a tensor. Hillar-Lim 2009

On the other hand, a distribution of tensor eigenvalues/vectors for random tensors can exactly/approximately be computed, as we will do by using quantum field theories.

In $N \to \infty$, the distribution will not depend on a randomly chosen tensor (Thermodynamic limit)

In $N \to \infty$ a sharp edge of the distribution exists, which is important, since it determines the "best" value in applications.

- Ground state energy of spin glass
- Largest eigenvalue
- Best rank-one decomposition of tensor
- Geometric measure of entanglement of random multipartite states

§Geometric measure of entanglement of multipartite states

 \bullet **Bipartite state** $|\psi\rangle = M_{ab} |a\rangle_A |b\rangle_B$ $|a\rangle_A \in H_A |b\rangle_B \in H_B$

Entanglement entropy

$$
S = -\operatorname{Tr}_A(\Omega_A \log \Omega_A) = -\operatorname{Tr}_B(\Omega_B \log \Omega_B) \qquad \frac{\Omega_A}{\Omega_B} = \operatorname{Tr}_A(|\psi\rangle\langle\psi|)
$$

• Tripartite state

 $|\psi\rangle = C_{abc} |a\rangle_{A} |b\rangle_{B} |c\rangle_{C}$ $|a\rangle_{A} \in H_{A}$ $|b\rangle_{B} \in H_{B}$ $|c\rangle_{C} \in H_{C}$ Generally, $-\text{Tr}_{A}(\Omega_{A} \log \Omega_{A}) \neq -\text{Tr}_{B}(\Omega_{B} \log \Omega_{B})$ $\Omega_A = \text{Tr}_{BC}(|\psi\rangle\langle\psi|)$ $\Omega_B = \text{Tr}_{AC}(|\psi\rangle\langle\psi|)$

How can we measure entanglement of multipartite states ?

Define entanglement by minimum distance from separable states Shimony 1995, Barnum-Linden 2001, Wei-Goldbart 2003

$$
ed(|\psi\rangle) = \min_{\psi_{A,B,C}} ||\psi\rangle - |\psi_A\rangle_A \otimes |\psi_B\rangle_B \otimes |\psi_C\rangle_C|
$$

Representation in tensor $|\psi\rangle = C_{abc} |a\rangle_A \otimes |b\rangle_B \otimes |c\rangle_C$

$$
|\psi_A\rangle_A = v_a^{(A)} |a\rangle_A
$$

\n
$$
|\psi_B\rangle_B = v_b^{(B)} |b\rangle_B
$$

\n
$$
|\psi_C\rangle_C = v_c^{(C)} |c\rangle_C
$$

\n
$$
|\psi_C\rangle_C = v_c^{(C)} |c\rangle_C
$$

\n
$$
\frac{\partial \text{ed}(|\psi\rangle)}{\partial v_{a,b,c}^{(A,B,C)}} = 0
$$

A system of eigenvector equations

Eigenvector of smallest $|v| = |v_i|$ determines ed($|\psi\rangle$) \rightarrow The edge

§Tensor eigenvalues/vectors

Qi, Lim, 2005 Cartwright-Sturmfels 2013

• **Tensor eigenpair equation**

Ex. Symmetric order-three tensor

 $C_{abc} w_b w_c = \zeta w_a$ $|w| = \sqrt{w_a w_a} = 1$

ζ : eigenvalue, *w* : eigenvector

Because of non-linearity one can absorb ζ into w , unless $\zeta = 0$. • **Tensor eigenvector equation**

$$
C_{abc}v_b v_c = v_a \qquad (\zeta = |v|^{-1})
$$

This talk uses tensor eigenvector equation, since it is simpler to handle and equivalent, as $|v| = \infty$ is ignorable in most applications.

§ Complex eigenvector problems

S. Majumdar, NS, to appear in PTEP, arXiv:2408.01030 [hep-th] NS, PTEP 2024 (2024) 5, 053A04, arXiv:2404.03385 [hep-th]

We compute the distributions of eigenvectors of complex orderthree random tensors with symmetric or independent indices.

• Symmetric indices case

 $C_{abc} = C_{\sigma_a \sigma_b \sigma_c}, v_a \in \mathbb{C}$ (σ : arbitrary perms. of a, b, c) Corresponds to $|\psi\rangle = C_{abc} |a\rangle |b\rangle |c\rangle$ C^*_{ab} $v^*_{abc}v_bv_c=v^*_a$: Eigenvector equation

• Independent indices case

 C^*_{ab} *abc* $v_b^{(B)}v_c^{(C)} = v_a^{(A)*}$ C^*_{ab} *abc* $v_a^{(A)}v_c^{(C)} = v_b^{(B)*}$ *b* C^*_{ab} *abc* $v_a^{(A)}v_b^{(B)}$ $= v_c^{(C)*}$

- C_{abc} , $v_a^{(A)}$, $v_b^{(b)}$, $v_c^{(C)} \in \mathbb{C}$
- : A system of eigenvector eqs.

Corresponds to $|\psi\rangle = C_{abc} |a\rangle_A |b\rangle_B |c\rangle_C$

§ Field theoretical method

cf. A. Crisanti, L. Leuzzi, and T. Rizzo, Eur. Phys. J. B 36, 129-136 (2003)

General form of the problem

Number of d.o.f. of *v*

$$
f_i(v, C) = 0
$$
: linear in C $i = 1, 2, \dots, \#v$

Distribution of solutions v^{α} ($\alpha = 1, 2, \cdots, \text{\#sol}$) for a C

$$
\rho(v, C) = \sum_{\alpha=1}^{\text{#sol}} \delta^{\text{#}v}(v - v^{\alpha}) = |\det M(v, C)| \prod_{i=1}^{\text{#}v} \delta^{\text{#}v}(f_i(v, C))
$$

 Jacobian $M_{ij}(v, C) = \frac{\partial f_i(v, C)}{\partial v_j}$

Distribution of *v* **for a Gaussian ensemble of** *C*

$$
\rho(v) = \frac{1}{\mathcal{N}} \int_{\mathbb{C}^{\#C}} dCe^{-\alpha C_{abc}^* C_{abc}} \rho(v, C) \qquad \alpha \in \mathbb{R}^+
$$

 : Computable

Rewrite
$$
\rho(v) = \int dCe^{-\alpha C_{abc}^* C_{abc}} |\det M(v, C)| \prod_{i=1}^{\#v} \delta(f_i(v, C))
$$

$$
\prod_{i=1}^{\#v} \delta(f_i(v, C)) = \frac{1}{(2\pi)^{\#v}} \int d^{\#v} \lambda e^{i\lambda_j f_j(v, C)} \longrightarrow \int d\lambda e^{i\lambda x} = 2\pi \delta(x)
$$

The determinant factor can be treated in two different ways:

• Genuine distribution Harder to compute

$$
|\det M| = \lim_{\epsilon \to +0} \frac{\det(M^2 + \epsilon I)}{\sqrt{\det(M^2 + \epsilon I)}} \longrightarrow \text{Bosons}
$$

• Signed distribution Exactly computable, closed-forms sometimes

$$
|\det M| \longrightarrow \det M = \int d\bar{\psi} d\psi e^{\bar{\psi} M \psi} : \text{Fermions only}
$$

Ignoring the positivity

The location of the edge can be derived from the signed distribution M.R. Kloos, NS, Lett.Math.Phys. 114 (2024) 3, 80, arXiv:2403.12427 [hep-th]

Ex. Real eigenvector distribution of real symmetric random tensor

The genuine and signed distributions are intimately related and have a common edge in the large N limit.

$$
h(|v|) < 0 \text{ for } |v| < |v|_{\text{edge}}
$$
\n
$$
\rho(|v|) \sim e^{N \text{Re}[h(|v|)]} \qquad h(|v|_{\text{edge}}) = 0
$$
\n
$$
\rho_{\text{signed}}(|v|) \sim \text{Re}[e^{Nh(|v|)}] \qquad h(|v|) > 0 \text{ for } |v|_{\text{edge}} < |v| \le |v|_{\text{edge}}
$$
\n
$$
h(|v|) : \text{complex for } |v|_{\text{edge}} < |v|
$$

$$
\rho_{\text{signed}}(v) = \frac{1}{(2\pi)^{\#v} \mathcal{N}} \int dC d\lambda d\bar{\psi} d\psi e^{S}
$$

$$
S = -\alpha C_{abc}^* C_{abc} + i\lambda_j f_j(v, C) + \bar{\psi}_i \frac{\partial f_i(v, C)}{\partial v_j} \psi_j
$$

 $Sine f_i(v, C)$ is linear in C_{abc} , integration over C, λ is a Gaussian integration and can explicitly be performed.

Then we see that the signed distribution is given by a partition function of a four-fermi theory:

$$
\rho_{\text{signed}}(v) = \mathcal{N}' \int d\bar{\psi} d\psi \, e^{S_{ff}}
$$

S^{*f*} : A fermionic action with four-fermi interactions

The four-fermi actions

• Symmetric indices case

$$
S_{ff} = \bar{\psi} \cdot \psi + \bar{\varphi} \cdot \varphi + \frac{2|v|^2}{3\alpha} \left(\bar{\psi} \cdot \varphi \, \bar{\varphi} \cdot \psi - \bar{\psi} \cdot \psi \, \bar{\varphi} \cdot \varphi \right) + \text{parallel to } v, v^*
$$

• Independent indices case

$$
S_{ff} = \sum_{i=1}^{3} \left(\bar{\psi}_i \cdot \psi_i + \bar{\varphi}_i \cdot \varphi_i \right) + \frac{|v|^2}{\alpha} \sum_{i < j}^{3} \left(\bar{\psi}_i \varphi_j + \bar{\psi}_j \varphi_i \right) \cdot \left(\bar{\varphi}_i \psi_j + \bar{\varphi}_j \psi_i \right) + \text{parallel to } v, v^* \quad \text{for all } v \in \mathbb{R}^n
$$

The partition function of these four-fermi theories can exactly be computed by using the following type of manipulations:

$$
e^{g\bar{\psi}\cdot\psi\bar{\varphi}\cdot\varphi} = e^{g\frac{\partial}{\partial k_1}\frac{\partial}{\partial k_2}}e^{k_1\bar{\psi}\cdot\psi + k_2\bar{\varphi}\cdot\varphi}\Big|_{k_1=k_2=0}
$$

Exact closed-form expressions are given in terms of generating functions.

• Symmetric indices case

$$
\rho_{\text{signed}}(|v|^2) = -3^N \alpha^N |v|^{-2N-2} e^{-\frac{\alpha}{|v|^2}} (1+g l)^{-2} \exp\left(\frac{l}{1+g l}\right) \Big|_{l^{N-1}}
$$

$$
g = 2 |v|^2 / (3\alpha)
$$
 Taking the l^{N-1} -th order

• Independent indices case

$$
\rho_{\text{signed}}(\left| \nu \right|^2) = -\alpha \left| \nu \right|^{-4} e^{-\frac{\alpha}{\left| \nu \right|^2} (1 - t_2 + 2t_3)^{-2} \exp \left(\frac{t_1 - 2t_2 + 3t_3}{g(1 - t_2 + 2t_3)} \right) \Bigg|_{\prod_{i=1}^3 l_i^{N_i - 1}}
$$

 N_i : dimension of *i*-th index

$$
t_1 = l_1 + l_2 + l_3
$$

\n
$$
t_2 = l_1 l_2 + l_2 l_3 + l_3 l_2
$$

\n
$$
t_3 = l_1 l_2 l_3
$$

 $g = |v|^2/\alpha$

§ Checked with Monte Carlo simulations

Symmetric indices case *N* = 5

 $_{\frac{1}{0.20}}|v|^2$

Independent indices case $(N_1, N_2, N_3) = (3,2,2)$

The asymptotic form in the large N limit can be extracted from the exact closed-form expression.

$$
\rho_{\text{signed}}(|v|^2) \sim \text{Re}[e^{N h(|v|)}]
$$

Symmetric indices case

$$
h(|v|) = \log(2) - \frac{\alpha}{|\tilde{v}|^2} - \log \tilde{l} + \frac{\tilde{l}}{\tilde{g}(1+\tilde{l})} \qquad |\tilde{v}| = \sqrt{N}|v|
$$

$$
\tilde{l} = \frac{1 - 2\tilde{g} - \sqrt{1 - 4\tilde{g}}}{2\tilde{g}} \qquad \qquad \tilde{g} = \frac{2|\tilde{v}|^2}{3\alpha}
$$

The edge is numerically determined by $h(|v|_{\text{edge}}) = 0$

$$
|v|_{\text{edge}} = 0.603501 \sqrt{\frac{\alpha}{N}} \qquad \qquad \left(|v|_{c} = \sqrt{\frac{3\alpha}{8N}}\right)
$$

Independent indices case

$$
h = -1 - \log \tilde{g} - \frac{1}{\tilde{g}} - \sum_{i=1}^{3} n_i \log n_i + s_{\text{eff}}
$$

$$
n_{i} = N_{i}/(N_{1} + N_{2} + N_{3}) \qquad \tilde{g} = (N_{1} + N_{2} + N_{3}) |v|^{2}/\alpha
$$

$$
s_{\text{eff}} = 2 \sum_{i=1}^{3} n_{i}Q_{i} - \tilde{g} \sum_{i \neq j}^{3} n_{i}n_{j}Q_{i}Q_{j} - 2 \sum_{i=1}^{3} n_{i} \log Q_{i}
$$

$$
Q_{i} = \frac{\sqrt{1 + 4q^{2}n_{i}\tilde{g} - 1}}{2\pi r \tilde{\sigma}}
$$

where *q* is the solution to
$$
1 + 2q - \sum_{i=1}^{3} \sqrt{1 + 4q^2 n_i \tilde{g}} = 0
$$

For
$$
N_i = N
$$

\n $|v|_{\text{edge}} = 0.348431 \sqrt{\frac{\alpha}{N}}$ $(|v|_c = \sqrt{\frac{\alpha}{8N}})$

§Agreement with a pervious numerical study

K. Fitter, C. Lancien, I. Nechita, "Estimating the entanglement of random multipartite quantum states," [arXiv:2209.11754 [quant-ph]]

Symmetric indices case

\n
$$
||C||_{\text{inj}} = \max_{|w|=1} C_{abc} w_a w_b w_c
$$
\n
$$
||C||_{\text{inj}} = 1/||v||_{\text{edge}} = 2.34335 \quad (\alpha = N/2)
$$
\n**FLN result = 2.356248**

\n
$$
|\text{Error} < 0.5\%
$$
\n**Independent indices case**

\n
$$
||C||_{\text{inj}} = \max_{|w^i|=1} C_{abc} w_a^1 w_b^2 w_c^3
$$
\n
$$
||C||_{\text{inj}} = 1/||v||_{\text{edge}} = 4.0588 \quad (\alpha = N/2)
$$
\n**FLN result = 4.143529**

\n
$$
|\text{Error} < 2\%
$$

The numbers are coincident, since the errors are smaller than 4% , which is of the established case (real case).

Summary

As in matrix models, tensor eigenvalue/vector distributions will become important in various applications.

The quantum field theoretical method is a powerful practical method of computing them.

In particular signed distributions are the easiest but useful, and can be computed by four-fermi theory.

We have computed the signed eigenvalue/vector distributions of complex random tensors, and have derived the asymptote of the geometric measure of quantum entanglement analytically for the first time. (cf. Dartois, McKenna, arXiv:2404.03627)

Future prospects

Studying tensor eigenvalue/vector distributions is rather a new subject. We expect more results to come in the near future.

Thank you!

Σας ευχαριστώ

Random tensor models

• Discretized model of quantum gravity of $\dim \geq 3$ Ambjorn-Durhuus-Jonsson, NS, Godfrey-Gross 1990

Extension of matrix models for discretized 2-dim QG

• Colored tensor model 1/*N* expansion Gurau 2011

There are recent applications to some new subjects:

- **Glasses** Spherical p-spin model of spin glass
- **AdS/CFT correspondence** Gurau-Witten model
- $D_{abc} = C_{abc}^0 + C_{abc}$ Target signal: constant tensor Noise: Random tensor **• Data analysis**

 $C_{abc}w_bw_c = \zeta w_a$: Tensor eigen problem

$$
C_{abc} = \sum_{r=1}^{R} \phi_a^r \phi_b^r \phi_c^r
$$
: Tensor rank decomposition

• Quantum information theory

 $|\Psi\rangle = C_{abc} |a\rangle_1 |b\rangle_2 |c\rangle_3$ Random multipartite states

Most tensor problems are NP-hard for a tensor. Hillar-Lim 2009

On the other hand, the distribution of a quantity (like tensor eigenvalues) for an ensemble of tensors can exactly/approximately computed, as we will do.

Thermodynamic limit is expected in the large-N limit, where the distribution of a quantity (like tensor eigenvalues) does not depend on a tensor in the ensemble.

(Rigorously proven for a particular case. Subag 2017)

So, random tensor models provide an interesting angle to more easily approach these NP-hard problems