Recent Higgs results from the LHC

Sandra Kortner on behalf of the ATLAS and CMS Collaborations

Corfu Summer Institute: Workshop on Standard Model and Beyond / Corfu, Greece / Aug 25 - Sep 04, 2024

VOLUME 13, NUMBER 16

PHYSICAL REVIEW LETTERS

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs

Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland (Received 31 August 1964)

In Memoriam

Peter Ware Higgs (1929 - 2024)

19 October 1964

It is worth noting that an essential feature of the type of theory which has been described in this note is the prediction of incomplete multiplets of scalar and vector bosons.⁸

Higgs boson physics

Discovery of a unique scalar particle at the LHC in 2012

$$\mathscr{L}_{\text{Higgs}} = |D_{\mu}\phi|^2 + \psi_i y_{ij} \psi_j \phi + h.c. - V(\phi)$$

Why is the electroweak interaction so much stronger than gravity? Why is there a large range of fermion masses? <u>Higgs production and decay rates; coupling strengths to vector bosons and fermions.</u>

What is the origin of dark matter? Are there new particles interacting with the Higgs boson? Higgs portal to dark sector or to other new particles, probed via total Higgs decay width or exotic decays.

What is the exact structure of the Higgs potential? Is there a connection to the evolution of the Universe? Higgs mass, Higgs self-interaction in Higgs pair production or via loop effects in single-Higgs production.

What is the origin of matter-antimatter asymmetry? Are there any extensions of the Higgs sector? Anomalous Higgs couplings (e.g. CP violation), affecting also differential distributions.

Complementary to Higgs boson property measurements: <u>direct searches</u> for new (Higgs) particles.

opened a new path to resolving some of the key open questions in the Standard Model.

+ $\sum_{i} C_{i}^{(d)} \mathcal{O}_{i}^{(d)} / \Lambda^{d-4} + \dots$

Current state-of-the-art results

Higgs boson mass

 $(ATLAS 4\ell + \gamma\gamma)$:

 $m_H = 125.11 \pm 0.09 \text{ (stat)} \pm 0.06 \text{ (syst)} \text{ GeV}$

Mass measurement precision: < 1%.

 $m_H = 125.08 \pm 0.10 \text{ (stat)} \pm 0.05 \text{ (syst)} \text{ GeV}$

Higgs boson production and decays

Main production and decay processes observed, measured with 10% - 20% precision.

ATLAS: Nature 607 (2022) 52 , CMS: Nature 607 (2022) 60

Higgs boson production and decays

ATLAS: Nature 607 (2022) 52, CMS: Nature 607 (2022) 60

Main production and decay processes observed, measured with 10% - 20% precision.

Higgs boson coupling strengths

ATLAS: Nature 607 (2022) 52, CMS: Nature 607 (2022) 60

Spotlight on Higgs interactions with fermions

ATLAS final Run 2 ttH(bb) production measurement

ATLAS re-analysis of the full Run 2 dataset:

- Improved b-tagging (many developments over past years).
- Increased signal acceptance due to looser b-tagging.
- Improved *tt* + *jets* background modeling.
- Neural-network-based event categorization.

Observed (expected) signal significance: 4.6 σ (5.4 σ) Measurement precision strongly improved (previously $0.35^{+0.36}_{-0.34}$)

CMS results with similar sensitivity: $\mu_{ttH} = 0.33 \pm 0.26$ (arXiv:2407.10896, submitted to JHEP)

ATLAS: arXiv:2407.10904, submitted to EPJC

NEV

First search for the bbH production (CMS)

Observed (expected) upper limit on the signal strength at 95% CL: 3.7 (6.1) times the SM.

		•		
o F	٦C	В		

ATLAS final Run 2 VH(bb, cc) measurement

ATLAS re-analysis of previous VH(bb) and VH(cc) measurements:

- better reconstruction and calibration of leptons and jets
- improved flavor tagging, combining b- and c-jet identification
- optimized multivariate discriminants; used for the first time also for $H \rightarrow cc$ searches

ATLAS-CONF-2024-010

VH is the most sensitive production mode to access the $H \rightarrow bb$ and $H \rightarrow cc$ decays. Final states with 0, 1 or 2 charged leptons from vector boson decays; considering both the resolved and merged Higgs decay topologies. resolved merged

ATLAS Final Run 2 VH(bb) measurement

Results compatible with the SM.

Most precise VH(bb) measurement to date, uncertainties reduced by up to 20%.

CMS results with similar sensitivity: PRD 109 (2024) 092011

 $\mu_{VH} = 1.15^{+0.22}_{-0.20}$, observed VH signal significance: 6.3 σ

ATLAS & CMS VH(cc) measurements

Including both the resolved and the merged $H \rightarrow cc$ decay topologies.

CMS: Best measurement sensitivity.

 $\mu_{\rm VH(cc)} < 14 @ 95\%$ CL (7.6 expected) $1.1 < |\kappa_c| < 5.5 @ 95\%$ CL

Validation via V CMS: First ATLAS: $Z \rightarrow$ ATLAS: <u>ATLAS-CONF-2024-010</u>, CMS: <u>PRL 131 (2023) 041801</u>, <u>PRL 131 (2023) 061801</u> cc decay topologies.

NEW ATLAS: Best limit to date. Factor 2.5 improvement w.r.t. previous ATLAS limit. $\mu_{VH(cc)} < 11.3 @ 95\%$ CL (10.4 expected) $|\kappa_c| < 4.2 @ 95\%$ CL

Validation via VZ, $Z \rightarrow cc$ diboson processes.

CMS: First observation of $Z \rightarrow cc$ decays in hadron collisions. ATLAS: $Z \rightarrow cc$ observation confirmed. ATLASPreliminary vz, $Z \rightarrow b\overline{b}/c\overline{c}$, $\sqrt{s}=13$ TeV, 140.0 fb⁻¹

Going differential in search for anomalies

Effective Field Theory interpretations of STXS measurements

ATLAS final Run 2 H $\rightarrow \tau \tau$ measurement

ATLAS re-analysis of full Run 2 H $\rightarrow \tau \tau$ data:

ATLAS: arXiv.2407.16320, submitted to JHEP

• Most precise single measurement of VBF: $\mu_{VBF} = 0.93^{+0.17}_{-0.15}$

More granular STXS measurements for *VBF* and *ttH* production modes.

First VBF $H \rightarrow \tau \tau$ differential measurements by ATLAS.

Constraints on individual **CP-even and CP-odd** SMEFT parameters.

Observables have only a small dependence on quadratic SMEFT terms.

CMS combination of Run 2 differential measurements

Combining differential distributions measured in four decay channels: $\gamma\gamma$, ZZ, WW, $\tau\tau$. Observables: p_T^H , $|y_H|$, N_{jets} , p_T^{j1} , m_{jj} , $|\Delta \eta_{jj}|$, $\Delta \phi_{jj}$, τ_C^j . Interpretation within the **kappa** and **SMEFT** frameworks.

E.g. powerful constraints on linear combinations of CP-even SMEFT Wilson coefficients.

CMS-PAS-HIG-23-013

CMS Run 3 differential cross-section measurements

Comparable precision to the corresponding total and fiducial ATLAS Run 3 measurements:

- $\sigma_{4\ell}^{\text{fiducial}} = 2.94 \begin{array}{c} +0.53 \\ -0.49 \end{array} \text{ (stat)} \begin{array}{c} +0.29 \\ -0.22 \end{array} \text{ (syst) fb}$

All measurements in good agreement with SM predictions.

Higgs self-interaction

Higgs self-interactions

Processes with Higgs self-interactions can probe the structure/stability of the Higgs potential.

Combination of HH and single-Higgs analyses

With free-floating single-Higgs couplings $(\kappa_V, \kappa_t, \kappa_b, \kappa_{\tau})$:

 $-1.4 < \kappa_{\lambda} < 6.1 @ 95 \%$ CL observed $(-2.2 < \kappa_{\lambda} < 7.7 @ 95\% CL expected)$

 $-1.4 < \kappa_{\lambda} < 7.8 @ 95\%$ CL observed $(-2.3 < \kappa_{\lambda} < 7.7 @ 95 \% CL expected)$

ATLAS combined Run 2 HH search

Combination of results from bbbb, $bb\gamma\gamma$, $bb\tau\tau$, $bb\ell\ell$ + E_T^{miss} & multilepton decay channels.

 $-1.2 < \kappa_{\lambda} < 7.2$ @ 95 % CL observed $(-1.6 < \kappa_{\lambda} < 7.2 @ 95\% CL expected)$ Currently best expected sensitivity from HH. ATLAS: arXiv.2406.09971, submitted to PRL

 $(0.4 < \kappa_{2V} < 1.6 @ 95 \% CL expected)$

Boosted VBF HH \rightarrow bbbb channel most sensitive.

Comparable CMS results: <u>Nature 607 (2022) 60</u>, <u>arXiv:2407.13554</u> Current best constraint on κ_{2V} , $0.67 < \kappa_{2V} < 1.38 @ 95 \%$ CL observed

CMS: Additional measurements constraining κ_{2V}

Boosted VBF HH → bbVV channel

VBS WWH(bb) channel

Direct searches for Higgs sector extensions

Just a selection of recent summary plots...

	Reference	Energy rar
	arXiv:2407.01335	<i>m</i> _a : 12 - 60 G
	arXiv:2407.10096	<i>т</i> _{<i>H±</i>} : 60 - 160 С
d Higgs search	arXiv:2407.10798	<i>т</i> _{<i>H±(GM)</i>} : 200 - 1000 С
	<u>CMS-PAS-HIG-24-002</u>	<i>т</i> _н : 130-3000 С
	<u>CMS-PAS-HIG-22-004</u>	$m_A: 225 - 800 G$
	CMS-PAS-SUS-24-001	$m_{arphi}: 125 - 1800 G$

Summary

Extensive Higgs physics program performed by ATLAS and CMS.

Many legacy results with the Run 2 data, with improved analysis techniques.

Mass measurement precision: better than 1%.
 Coupling strengths to vector bosons: 5-10% precision.
 Coupling strengths to third-generation fermions: 10-20% precision.
 Searches for anomalous couplings probing energy scales of up to 10 TeV.
 Higgs pair production measurement approaching the SM sensitivity.

Run 2 analyses finishing. ATLAS+CMS combinations for the final Run 2 legacy. Focus is now shifting to Run 3 data.

. . .

Backup: Current state-of-the-art results

Higgs boson mass measurement by ATLAS

ATLAS: PRL 131 (2023) 251802

Higgs boson mass measurement by CMS

Combination $4\ell + \gamma\gamma$ with partial Run 2 data

4^e channel only, with full Run 2 data

<u>5 (2020) 135425</u>	CMS Preliminary		<u>CMS-PAS-HIG-21-019</u> (Sep	
t. Only	Run 2 : 138 fb ⁻¹ (13 TeV) Run 1 : 5.1 fb ⁻¹ (7 TeV) + 19.7 fb ⁻¹ (8 T	ēV)	Total Stat. Only	
t. Only)	4 μ		124.90 ^{+0.15} (^{+0.14}) GeV	
0.31) GeV	4e •		124.70 ^{+0.53} _{-0.51} (^{+0.49} _{-0.47}) GeV	
0.42) GeV	2e2 μ		125.50 ^{+0.27} _{-0.26} (^{+0.25} _{-0.24}) GeV	
0.26) GeV	2μ2e	_	125.20 ^{+0.29} _{-0.27} (^{+0.27} _{-0.26}) GeV	
	Run 2	4	125.04 ^{+0.12} (^{+0.11} _{-0.11}) GeV	
0.18) GeV	Run 1		125.60 ^{+0.46} _{-0.45} (^{+0.43} _{-0.41}) GeV	
0.19) GeV	Run 1 + Run 2	+	125.08 ^{+0.12} (^{+0.10} _{-0.10}) GeV	-
0.13) GeV	122 124	 126	128 m _H (1
0.11) GeV				
 129 m _H (GeV)				

Evidence for the $H \rightarrow Z\gamma$ decay

Observed (expected) signal significance: 3.4 σ (1.6 σ).

.

Backup: Spotlight on Higgs interactions with fermions

araatiana with farmaian

First search for H + c production (ATLAS, CMS)

ATLAS: arXiv:2407.15550, submitted to JHEP, CMS: CMS-PAS-HIG-23-010

Production sensitive to κ_c ,

but with a large background of other non- κ_c processes.

 $H \rightarrow \gamma \gamma$ decay channel employed to minimize the background.

ATLAS measures the inclusive H + c production: $\sigma_{H+c} < 10.4 \text{ pb} @ 95\% \text{ CL} (8.6 \text{ expected})$; $\sigma_{H+c}^{SM} = 2.9 \text{ pb}$ CMS measures the κ_c -dependent part: $\mu_{cH} < 243 @ 95\%$ CL (355 expected); $|\kappa_c| < 38.1 @ 95\%$ CL (72.5 exp.)

Backup:

Total Higgs decay width

Higgs width constraints from the 4-top-quark production

Experimental Higgs mass resolution is 30 times worse than the SM decay width prediction of 4.1 MeV. Decay width constrained by combining on-shell and off-shell Higgs production measurements:

 $\sigma_{gg \to H \to ZZ}^{\text{on-shell}} \propto \mu_{ggH} / (m_H \Gamma_H)$

 $\sigma_{gg \rightarrow H \rightarrow ZZ}^{\text{off-shell}} \propto \mu_{ggH} / (m_{ZZ}^2)$

Assumption:

Assuming $\mu_{ggH}^{on-shell} = \mu_{ggH}^{off-shell}$ and similar for μ_{VBF}

Recent complementary approach (ATLAS): top-quark-induced on-shell and off-shell Higgs production.

ATLAS: arXiv:2407.10631, submitted to PLB

ATLAS $ZZ^{(*)}$: $\Gamma_{\rm H} < 10.2 \text{ MeV} @ 95\% \text{ CL}$ PLB 846 (2023) 138223 CMS $ZZ^{(*)}$: $\Gamma_{\rm H} < 7.9 \, {\rm MeV} @ 95 \% \, {\rm CL}$ CMS-PAS-HIG-21-019

 $\Gamma_{\rm H}$ < 450 MeV (exp. 75 MeV) @ 95% CL. Larger observed due to observed excess in pp \rightarrow tttt.

Backup: Going differential in search for anomalies

ATLAS: PCA-based SMEFT eigenvector decomposition (STXS)

ATLAS: arXiv:2402.05742, submitted to JHEP

0.2 -0.1 -0.2-0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9

- 0.9 0.8
- 0.7
- 0.6
- 0.5
- 0.4
- 0.3
- 0.1
- 0

	CMS <i>Preliminary</i>					138 fb ⁻¹ (13 TeV)	
EV0	-0.09	0.80	-0.30		0.26 <mark>-0.44</mark> 0.04	4 0.02 0.02 0.02	$\lambda = 499589.0$
EV1	0.14	0.26	0.94		<mark>0.08-0.15</mark> 0.0	1 -0.03	$\lambda = 118374.2$
EV2	- <mark>0.97</mark>	0.04 -0.01 -0.03	-0.01 <mark>0.04</mark> 0.16 0.0	<mark>4 -0.06 0.03</mark>	-0.07 <mark>0.02</mark>	0.14 0.03	$\lambda = 106.874$
EV3	0.10	0.09 0.04	0.01 -0.01 0.03 0.01 0.04 -0.6	0-0.03-0.08	-0.05-0.14-0.01 <mark>0.10</mark>	0.76 0.01	λ = 8.133
EV4	0.07	-0.41 0.12	-0.01 <mark>-0.18</mark> 0.41 0.0	4 <mark>-0.52</mark> 0.37	-0.10 <mark>0.16</mark> -0.40-0.0	2 <mark>0.10</mark> 0.01 -0.01	λ = 2.133
EV5	-0.12	-0.17-0.07 0.01	0.01 0.04 -0.14 0.10 -0.7	<mark>1</mark> 0.18 <mark>0.28</mark>	-0.09 <mark>0.04</mark> -0.10-0.24	- <mark>0.45</mark> -0.10 <mark>0.03</mark>	$\lambda = 0.535$
EV6		-0.14-0.08 0.01	-0.06 <mark>0.05</mark> -0.15 <mark>-0.87</mark> 0.0	<mark>5 0.19 0.18</mark> -0.02-0.01	-0.14 <mark>0.17</mark> -0.04-0.17	<mark>0.18</mark> -0.05-0.02	$\lambda = 0.096$
EV7	-0.02	-0.20-0.18-0.02	<mark>-0.28</mark> 0.07 -0.10 0.02 <mark>0.33</mark> 0.0	7 0.11 0.05	0.10 <mark>0.76</mark> 0.12 -0.14	0.26 0.09 -0.04	$\lambda = 0.039$
EV8	0.03	-0.18-0.03 <mark>0.05</mark>	0.39 0.08 <mark>-0.27</mark> 0.31 0.3	2 0.36 0.32 0.04	-0.12-0.25-0.18-0.23 0.02	2 <mark>0.28 -0.15</mark> 0.18	λ = 0.021
EV9	-0.01 <mark>0.02</mark> -0.02	<mark>0.03</mark> -0.05-0.02	0.80 -0.01 0.06 -0.12-0.1	1-0.08-0.03 <mark>0.02</mark> -0.03	<mark>0.45</mark> 0.30 0.09 0.03 -0.0	1-0.02 <mark>0.04</mark> -0.09	$\lambda = 0.006$
	Re(c _{bB}) Im(c _{bH}) Re(c _{bH}) Im(c _{bW}) Re(c _{bW}) Im(c _{eH})	Re(c _{eH}) CHB CHbox CHb	단(3) 분(1) 분 년 년 년 년 년 년 년 년 년 년 년 년 년 년 년 년 년 년		CHu CHW CHWB CHWB CHWB	Re(c _{tG}) Re(c _{tH}) Re(c _{tW}) CW CW	

CMS: PCA-based SMEFT eigenvector decomposition (differential)

CMS-PAS-HIG-23-013

Backup: Higgs self-interaction

n

Searches for Higgs pair production

→ Data VH, H → bb (µ=1.17)

m_{rt} (GeV)

Summary compiled by N.Berger, ICHEP 2024

40 ATLAS

35 0+1+2 leptons

vs = 13 TeV, 139 fb

H→bb

HH→bbbb (34%)

HH→bbττ (7.3%)

μ < 3.9 (<u>CMS</u>)

H→bb (58%) Η→ττ (6.3%) Н→үү (0.23%)

 $H \rightarrow WW | ZZ$

(24%)

μ < 3.3 (<u>CMS</u>) HH→bbγγ (0.26%)

μ < 4.0 (<u>ATLAS</u>)

HH→bbVV (25%) μ < 14 (<u>CMS</u>)

shown Best current 95% CL observed upper limits on μ are

Backup:

Direct searches for Higgs sector extensions

ATLAS: Recent summary plots

ATL-PHYS-PUB-2024-008

