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Introduction
▶ Matrix quantum mechanics models have interesting

thermodynamics which have been interpreted in the
context of gauge-string duality, e.g. the AdS/CFT
correspondence.

▶ We find that the counting of polynomial functions of
matrices or tensors invariant under appropriate symmetry
groups for appropriate choices of matrix/tensor content
and invariance group lead to negative specific heat
capacities. Some of these examples are of interest in the
context of small black holes in AdS/CFT.



AdS/CFT conjecture and Matrix combinatorics

N = 4 SYM in 4D with U(N) gauge group.

String theory in 10 dimensions on AdS5 × S5 background.

The SYM theory contains six hermitian matrices X1,X2, · · · ,X6.
Transform as a vector of so(6) ⊂ psu(2,2|4) super-algebra.

The so(6) is the isometry group of the S5 in the space-time.

The counting and correlators of gauge-invariant functions of
multi-matrices is important in the study of the emergence of
ten dimensions.



Half-BPS states - Distinguished by supersymmetry

Maximally supersymmetric (half-BPS) operators are
holomorphic gauge invariant functions of a complex matrix
Z = (X + iY ).

Half-BPS representations contain single graviton and
multi-graviton states.

CFT gives an inner product on the space of states. The free
field inner product is exact because of the BPS condition. As a
result this simple inner product contains a lot of physical
information about the duality.



BPS states → Complex matrix quantum mechanics

The inner product is the same as in the quantum mechanics of
a complex matrix harmonic oscillator.

Very simple action

S =

∫
dt

∑
i,j

(∂tZ i
j )(∂t(Z i

j )
∗) + Z i

j (Z
i
j )

∗

Two sets of N2 matrix creation operators (A†)i
j , (B

†)i
j



BPS states = holomorphic = traces of one matrix oscillator
The U(N) invariant states are traces, e.g. at Energy k = 3,
assuming N large :

tr(A†)3|0⟩
tr(A†)2tr(A†)|0⟩

trA†)3|0⟩

are the linearly independent states.

Number of invariants states at k = 3 is the same as the
partitions of 3.

3 = 3
3 = 2 + 1

3 = 1 + 1 + 1

If N = 1 all the states are the same : (A†)3|0⟩



Counting, stable region, finite N exclusions

Z (N, k) = number of young diagrams with k boxes
and no more than N rows

Z (N, k) = p(k) for k ≤ N
Z (N, k) < p(k) for k > N

Stable range - counting independent of N :

Zstab(k) = p(k)

Zstab(k) = p(k) ∼ e
√

k

Asymptotics of partition numbers – Hardy, Ramanujan ...
Sub-exponential ...



Stable limits generic

This is a very general fact about counting the dimensions of
state spaces of one-matrix, multi-matrix, tensor U(N)
invariants.

There is a stable counting for k < N given in terms of Young
diagram data ; And finite N effects come from simple cut-offs
on number of rows of Young diagrams ( more on the
multi-matrix and tensor cases later ... )

The different kinds of large k asymptotics in the stable range,
arising from choices of matrix/tensor content and choice of
symmetry, lead to different phase structures for the
corresponding quantum thermodynamics.



Free 2-matrix models

Invariants of two-matrix quantum mechanics - include A† and
B† – Now we have different orderings of the two matrices within
a trace

tr(A†)2(B†)2

tr(A†B†A†B†)



The stable limit has a generating function, giving the number of
operators with k1 copies of A† and k2 copies of B†

∞∏
i=1

1
(1 − x i

1 − x i
2)

=
∑
k1,k2

Z (k1, k2)x
k1
1 xk2

2

Z (k) =
k∑

k1=0

Z (k1, k − k1) ∼ 2k for k → ∞

This means that the canonical partition function, in the N = ∞
limit ∑

k=0

Z (k)e−βk =
∞∑

k=0

ek log 2−βk

diverges at β < log 2, i.e. T > 1
log 2

O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas, M. Van Raamsdonk, “The Hagedorn/Deconfinement Phase
Transition in Weakly Coupled Large N Gauge Theories” 2003



One matrix model - Wigner + subsequent :
nuclei, condensed matter physics, finance

Beyond AdS/CFT and gauge-string duality, matrix models have
a life in the statistics of real world matrix data.

∫
dMe−trM2

Probability distribution over matrices,e.g. above, which can be
compared with real world large matrices

Energy levels of nuclei in original works of Dyson, Wigner

Over the years, a very wide range of applications : condensed
matter physics, statistical finance etc.



Matrix data applications motivate : U(N) → SN

Instead of Gaussian models with simple measures etrM2
which

are invariant under U(N) or O(N) for real matrices, we can
consider more general actions invariant under a reduced
symmetry of SN .

2 invariants at linear order :

N∑
i=1

Mii ,

N∑
i,j=1

Mij

At any degree k , there is a graph-theory interpretation -
directed graphs with k edges and any number of nodes.
Quadratic order : 11 invariants.



Quadratic invariants

∑
i

M2
ii

∑
i,j

M2
ij

∑
i,j

MijMji
∑
i,j

MiiMjj
∑
i,j

MiiMij
∑
i,j

MijMjj

∑
i,j,k

MijMjk
∑
i,j,k

MijMik
∑
i,j,k

MijMkj
∑
i,j,k

MijMkk

∑
i,j,k ,l

MijMkl

Figure: SD invariant functions and corresponding graphs illustrated for
the 11 quadratic invariants



SN invariant matrix models : useful tool for matrix data analysis

The general Gaussian models have been developed and used
to characterise the Gaussianity and small departures from
Gaussianity in matrix data in computational linguistics and
finance ...
Kartsaklis, Ramgoolam, Sadrzadeh, “Linguistic matrix theory,” 2017 ;
Ramgoolam “Permutation invariant Gaussian matrix models,” 2018
Ramgoolam, Sadrzadeh, Sword, “Gaussianity and typicality in matrix distributional semantics,” 2019

Barnes, Ramgoolam, Stephanou, “Permutation invariant Gaussian matrix models for financial correlation

matrices,”Physica A, 2024



Rapid growth with degree k of SN invariant matrix polynomials

Useful point we will use :

1,2,11,52,296, ...

grows a lot faster than

1,2,3,5,7, ...

Number of directed graphs ( SN invariant polynomial functions
of a matrix ) grow a lot faster than partitions ( U(N) invariant
poly fns of a matrix ) ....



Perm Invt matrix quantum mechanics model - Path Integral

S[X ] =

∫ β

0
dτ tr

(
1
2
(DτX )2 +

1
2

m2X 2
)

DτX →
gn,n+1Xn+1gn+1,n − Xn

a
=

eaDτ − 1
a2 Xn

Discretize the Euclidean time direction. Group-valued parallel
transport operators.

Λ lattice sites. In the exponent, variables Xn and a quadratic
form described by a matrix of size Λ× Λ.
D. O’ Connor, S. Ramgoolam “Gauged Permutation invariant matrix quantum mechanics : path integrals, e-Print:
2312.12397 [hep-th], JHEP 04(2024)



Continuum result : Molien-Weyl determinant formula for
counting invariants :

ZN,∞ =

∫
µ(g)

e−
N2βm

2

det[1 − e−βmg ⊗ g−1]
.



Outline

Thermodynamic partition functions for SN gaussian matrix
quantum mechanics.

Thermodynamics in the canonical ensemble.

Negative specific heat capacity in the micro-canonical
ensemble and Ensemble in-equivalence.

Asymptotic forms of degeneracies in stable range and negative
SHC : 2-matrix models and tensor-models.

Gravitational systems, small black holes .. AdS/CFT.
Denjoe O’Connor, Sanjaye Ramgoolam, Gauged permutation invariant matrix quantum mechanics: Partition
functions, arXiv:2312.12398 [hep-th]
Denjoe O’Connor, Sanjaye Ramgoolam, Permutation invariant matrix quantum thermodynamics and negative
specific heat capacities in large N systems, arXiv:2405.13150v1 [hep-th]



Part 1 : PIMQM - Degeneracies and Partition functions

System of N2 matrix harmonic oscillators

A†
i1j1

A†
i2j2

· · ·A†
ik jk

|0⟩

Commutation relations derived from Lagrangian

[Aij ,A
†
kl ] = δikδjl

Hamiltonian is the number operator

H =
∑
i,j

A†
ijAij



The β = 1
T is the inverse temperature.

Zungauged(N,T ) =
∞∑

k=0

Zungauged(N, k)e−βk

The Zungauged(N, k) are the degeneracies. Starting from k = 0
they are :

1,N2,
N2(N2 + 1)

2
, · · ·



The sum can be done. x = e−β

Zungauged(N, x) =
1

(1 − x)N2

This can be written as trace in the Hilbert space

Zungauged(N, x) = TrHe−βH

The SN gauged theory partition function :

Zgauged;SN(N, x) = TrHe−βHP(SN)
0

PSN
0 = 1

N!

∑
σ∈SN

σ



Expanding in powers of x = e−β

Zgauged;SN(N, x) = TrHe−βHP(SN)
0

Zgauged;SN(N, x) =
∞∑

k=0

TrH(k)P(SN)
0 e−βk

At fixed oscillator number, i.e. fixed energy, the degeneracy is
the micro-canonical partition function as a trace :

TrH(k)P(SN)
0 = Z(N, k)



The k -oscillator space is

P(Sk )
0 (VN ⊗ VN)

⊗k

Z(N, k) can then be computed as

Z(N, k) = Tr(VN⊗VN)⊗k P(SN)
0 P(Sk )

0



Micro-canonical partition function:

Z(N, k) =
∑
p⊢N

∑
q⊢k

1
Sym p

1
Sym q

k∏
i=1

(
∑
l|i

lpl)
qi

p = [{[lpl ]} l ∈ {1, · · · ,N}
q = [{ipi} i ∈ {1, · · · , k}

▶ Sum over conjugacy classes of SN ,Sk , labelled by cycle
structures p,q.

▶ l is a cycle length for p. pl is a multiplicity of cycle length l ,
▶ i is a cycle length for q.
▶ Number-theoretic characteristics : l is a divisor of i .

"Linguistic Matrix Theory" 2017, Kartsaklis, Ramgoolam, Sadrzadedh



Stability property :

Z(2k , k) = Z(N, k) for N ≥ 2k



Canonical partition function:

Z(N, x) =
∑
p⊢N

1
Symp

N∏
i=1

1

(1 − x i)ip2
i

∏
i<j

1
(1 − xLCM(i,j))2GCD(i,j)pi pj

"Gauged permutation invariant matrix quantum mechanics : Partition functions " 2023, D. O’ Connor, S. Ramgoolam

Extracting the coefficients also gives an efficient way to get Z(N, k).



Part 2 : PIMQM - Thermodynamics in the canonical ensemble.

Energy per particle :

U = −
∂
∂βTr(e−βH)

N2Tre−βH
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Figure: Energy versus temperature, parameterised by x = e−β = e
−1
T

for N = 20 : showing a cross-over
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Figure: Energy versus temperature : Cross-over sharpens and
approaches zero temperature as N increases. Blue, Green and Red
curves are for N = 10,15,20



Cshc =
∂U
∂T
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Figure: Specific heat capacity versus temperature : Sharp peak
approaches zero temperature as N increases. Blue, Green and Red
curves are for N = 10,15,20



As N → ∞, the critical temperature - location of maximum in
the SHC - goes to zero, while the height of the peak goes to
infinity : xc ∼ logN

N .

The initial low value of U, followed by the start of the steep rise
is captured by the stable part.

Z(2k , k) ∼ k !

In the N = ∞ limit
∞∑

k=0

Z(2k , k)e−βk ∼
∞∑

k=0

k !e−βk

diverges for any finite β, hence any finite x .



Thus we expect x → 0 singularity arising from factorial growth
of degeneracies. This type of zero temperature Hagedorn
transition in the large N limit has been recognised as a feature
of some U(N) and O(N) tensor quantum mechanics models at
N = ∞. With SN we can very explicitly study the approach to
x = 0 from finite N in one-matrix model.

M. Beccaria and A. A. Tseytlin, 2017 ;
K. Bulycheva, I. R. Klebanov, A. Milekhin and G. Tarnopolsky, 2018



Part 3 : PIMQM - Thermodynamics in the micro-canonical ensemble.
Degeneracies Ω(N, k) = Z(N, k).
The micro-canonical entropy

S(k) = log(Ω(N, k))

TdS = dU
dS
dU

= T−1

T−1
micro(k) = DkS(k)

For Ω(k) ∼ k !, S(k) ∼ k log k ,

T−1
micro(k) = Dk (k log k) = 1 + log k
=⇒ as k ↑ T−1

micro ↑ and Tmicro ↓
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Figure: Plot of micro-canonical energy E = k
N2 versus micro-canonical

temperature at N = 15 for kmin = 4, kmax = 100 - using descending
derivative – produces consistent negative SHC trend below critical E



Negative specific heat capacity on the lower branch.

Minimum temperature occurs at k ∼ N logN
2 .

Stable region large k behaviour of k ! determines the lower
branch. k ∼ N/2 : first signals of finite N taming of the large
growth. But at higher N, the taming becomes
thermodynamically significant.

This kind of small finite N corrections to stable behaviour at
k ∼ N then thermodynamically significant effect at much higher
N, has been seen in work on U(N) invt multi-matrix models>
Berenstein, 2018
Denjoe O’ Connor, 2022



The SHC cannot be negative in the canonical ensemble.

Cshc = ⟨H2⟩ − ⟨H⟩2
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Figure: Plot of the expectation value of the energy U = U/N2 in the
canonical ensemble versus canonical temperature T , superposed
upon E = k

N2 versus identification of Tmicro in micro-canonical
ensembles : Equivalence of ensemble above the transition region.
This plot is for N = 15. The micro-canonical data starts at k = 4 and
ends at k = 100.



Part 4 : Scale xc ∼ logN
N from high T expansion

From the form of the Z (N, x) as a sum over p, we can the
degree of the pole at x = 1

Z(N,p, x) =
1

(1 − x)Deg(N,p)R(x)

Deg(N,p) =
∑

i

ip2
i +

∑
i<j

2G(i , j)pipj



The most singular term : p = [1N ],
Second most singular term : p = [2,1N−2]



Leading two terms

1
N!(1 − x)N2 +

1
2(N − 2)!

1
(1 − x)(N−2)2(1 − x2)2N−2

For breakdown of the high T expansion:

xbkdwn =
log N

2N
+

1

4N
(log 2 − log a) +

1

4N2
(log(

a

2
) − 1) −

log N

2N2
+ O(

1

N3
) + O(

log N

N3
)



This identifies x ∼ logN
N as the characteristic scale of the

transition.
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Figure: Comparison of microcanonical and canonical values for the tansition value of x = e−β with
β = βmicro(kcrit ) for the microcanonical ensemble. The best fit curves, plotted against ν = 1

N are

xcrit (ν) = 0.508 log(N)/N + 0.032/N + 0.522 log(N)/N2 for the microcanonical ensemble and
xmax (ν) = 1.37557 log(N)/N − 2.86538/N + 5.1274 log(N)/N2 for the canonical ensemble.



The specific heat capacity, per particle, i,e. as derived from
logZ(N,x)

N2 , has a peak of Cshc ∼ N logN.

N Cshc;max

N logN
10 0.104449
15 0.105513
20 0.108528
25 0.108454
30 0.106822
40 0.102552

Interesting project Build a local model of the transition which
explains this scaling.



To summarise.

Field symmetry Degen. Thermodynamics
One matrix U(N) Z(k) ∼ e

√
k No transition.

Two matrix U(N) Z(k) ∼ ek log 2 Finite temp. Hagedorn

One matrix SN Z(k) ∼ ek log k Zero temp. Hagedorn.



Table: Degeneracies and negative heat capacities

Ω(k) Parameter ranges Description
eakb

a > 0,b > 1 Super-exponential

eak(log k)b
a > 0,b > 0 Weakly super-exponential

ea log k+k log d d > 1,a < 0 Sub-exponential (power-law corrected exponential)



Part 5 : Similar thermodynamics
in matrix/tensor systems with U(N) symmetry.

A tensor quantum mechanics model, with harmonic oscillator
potential, and variables

Φijk

transforming in VN ⊗ VN ⊗ VN representation of U(N)×3.

We gauge the U(N)×3 so that the physical states are invariant.



Two tensor creation operators :

Φijk → A†
ijk

Φ̄ijk → (B†)ijk

Physical states :

|0⟩;
(A†)ijk (B†)ijk |0⟩



Hidden Sn symmetry for degree n observables
In general

(A†)i1j1k1 · · · (A
†)in jnkn(B

†)iσ1(1)
jσ2(1)

kσ3(1) · · · (B†)iσ1(n)
jσ2(n)

kσ3(n) |0⟩

Counting :

(σ1, σ2, σ3) ∼ (γLσ1γR, γLσ2γR, γLσ3γR)

σi , γL, γR ∈ Sn
Joseph Ben Geloun, Sanjaye Ramgoolam, “Counting Tensor Model Observables and Branched Covers of the
2-Sphere,” arXiv:1307.6490 [hep-th] Ann.Inst.H.Poincare Comb.Phys.Interact. 1 (2014) 1, 77-138



Counting
Dimension of space of invariants for general N

Z(N,n) =
∑

R,S,T⊢n
l(R),l(S),l(T )≤N

(C(R,S,T ))2

For n ≤ N – stable limit – this simplifies :

Z(n) =
∑
p⊢n

(Symp)

Asymptotics

Z(n) ∼ n!

Joseph Ben Geloun, Sanjaye Ramgoolam, “All-orders asymptotics of tensor model observables from symmetries of
restricted partitions,” J. Phys. A: Math. Theor. 55 435203 ; arXiv:2106.01470 [hep-th]



High temperature scaling from path integrals

Z (s)
N (x, d) ∼

∫ s∏
k=1

[dAk ]
d∏

a=1

[dΨa][dΨa
] e

−
∑d

a=1

(
|(A(1)

i1 i′1
+···A(s)

is i′s
)Ψa

i′1...i
′
s
|2+β2m2|Ψa

i1,...,is
|2
)

Ψ′ =
Ψ

βm
.... dNs fields

Ψ̄′ =
Ψ̄

βm
.... dNs fields

A′ = βmA ... (N2 − 1)s + 1 fields

Z (s)
N (x ; d) ∼ (βm)s(N

2−1)+1−2dNs
∼

1

(1 − x)2dNs−s(N2−1)+1
.

Denjoe O’ Connor and Sanjaye Ramgoolam, “Gauged permutation invariant matrix quantum thermodynamics and
negative specific heat capacities in large N systems” arXiv:2405.13150v1 [hep-th]
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Figure: Micro-canonical energy versus temperature for 3-index tensor
N = 4 with k equals 3 to 12 using the symmetric Dsym discrete
derivative. Note the curve turns around, i.e. SHC become positive at
higher energy.



Another example with similar thermodynamics,
but finite temperature transition as N → ∞

Complex matrix model : Z i
j - N2 complex variables.

Z → UZU†

U(N) transformations.
U(1) transformation :

Z → eiθZ
Z † → e−iθZ †

Counting of multi-traces : Total number of Z and Z † in the
traces equal.



Micro-canonical degeneracies in the stable high energy regime
:

Z (n) ∼ 4n
√

n
Ramgoolam, Wilson, Zahabi, 2018
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Figure: Micro-canonical energy versus temperature for zero charge
complex matrix system N = 13 with k equals 3 to 18 using the
symmetric Dsym discrete derivative. Note the curve has a short
positive SHC branch, a negative SHC branch (expected to grow in
size with N) and a positive SHC branch expected to connect to
extend to the high temperature limit.



The curve comes from the group-theoretic counting formula :

Z (n,N) =
∑

R,S⊢n,T⊢n
l(T )≤N

(LR(R,S,T ))2



To summarise.

Field symmetry Degen. Thermodynamics
One matrix SN Z(k) ∼ ek log k Zero temp. Hagedorn. and neg SHC

Two matrix
(zerocharge) U(N) Z(k) ∼ ek log 2

√
k

Zero temp. Hagedorn. and neg SHC

Φijk U(N)×3 Z(k) ∼ ek log k Zero temp. Hagedorn. and neg SHC



The negative specific heat capacities here arise purely from
counting in harmonic oscillator systems, without interaction.

Other recent discussions of negative SHC in matrix models
seeking to understand small black holes invoked the quartic
interactions away from the free limit to argue for the negative
SHC. (Berenstein 2018).

Better understanding the relation between our counting results
and these recent discussions is an interesting question for the
future.



Some open questions :

Derive the numerical coefficients characterising the transition
xc ∼ logN

N . Locations of minimum and maximum of SHC in
canonical ensemble. Values of the energy U/N2 at these
locations. Also kcrit/N2 in the micro-ensemble.



Negative SHC are known to arise for small black holes in AdS -
Hawking-Page. They deduce, from semi-classical gravity -
using the mass of the black hole as function of the horizon
radius, and the Hawking formula for the temperature as a
function of the radius, that the black hole solution at horizon
radius below a critical radius, has negative SHC.

They combine this with existence of solutions involving
radiation coupled to gravity.

They build a picture of the gravitational thermodynamics in
different temperature ranges.

To build a quantum mechanical model for this physics based on
a Z(x ,N) = Tre−βH involving negative SHC as well as the
interaction of radiation, the quantum mechanics must contain
some well-defined sector with negative SHC coupled with
additional degrees of freedom.....

The matrix and tensor models discussed here should provide
some useful ingredients ...



Negative SHCs have been discussed quite generally in
gravitational thermodynamics - Thirring, Lynden-Bell - for
astrophysical objects beyond black holes ...

Also in statistical physics e.g. Touchette ( refs in paper) —
attributed to long range forces ...

The zero-charge 2-matrix sector is a promising set-up to
investigate the gravitational side of the physics further ... for
some range of parameters, has an interpretation in terms of
branes and anti-branes ... hence attractive forces ; has a known
gravitational dual via standard AdS/CFT ....


