Extending EFT of inflation/dark energy to arbitrary background with timelike scalar profile

> **Shinji Mukohyama (YITP, Kyoto U)**

Collaborators

V.Yingcharoenrat K.Takahashi K.Tomikawa K.Aoki E.Seraille

M.A.Gorji C.G.A.Barura H.Kobayashi N.Oshita

arXiv: 2204.00228 w/ V.Yingcharoenrat arXiv: 2208.02943 w/ K.Takahashi, V.Yingcharoenrat arXiv: 2304.14304 w/ K.Takahashi, K.Tomikawa, V.Yingcharoenrat

- Ref. arXiv: 2405.10813 w/ C.G.A.Barura, H.Kobayashi, N.Oshita, K.Takahashi, V.Yingcharoenrat arXiv: 2406.04525 w/ N.Oshita and K.Takahashi arXiv: 2407.xxxxx w/ E.Seraille, K.Takahashi, V.Yingcharoenrat arXiv: 2111.08119 w/ K.Aoki, M.A.Gorji, K.Takahashi arXiv: 2311.06767 w/ K.Aoki, M.A.Gorji, K.Takahashi, V.Yingcharoenrat
- Also Arkani-Hamed, Cheng, Luty and Mukohyama 2004 (hep-th/0312099) Mukohyama 2005 (hep-th/0502189)

Scalar-tensor gravity

- Contains majority of inflation & dark energy models
- Contains GR + a scalar field as a special case
- Metric $g_{\mu\nu}$ + scalar field ϕ
- Jordan (1955), Brans & Dicke (1961), Bergmann (1968), Wagoner (1970), …
- Most general scalar-tensor theory of gravity with 2nd order covariant EOM: Horndeski (1974)
- DHOST theories beyond Horndeski: Langlois & Noui (2016)
- U-DHOST theories beyond DHOST: DeFelice, Langlois, Mukohyama, Noui & Wang (2018)
- All of them (and more) are universally described by an effective field theory (EFT)

EFT of scalar-tensor gravity with timelike scalar profile

- **Inflaton/dark energy has timelike derivative**
- **Time diffeo is broken by the scalar profile but spatial diffeo is preserved.**

EFT of scalar-tensor gravity with timelike scalar profile

- **Time diffeo is broken by the scalar profile but spatial diffeo is preserved.**
- All terms that respect spatial diffeo must be included in the EFT action.
- Derivative & perturbative expansions
- Diffeo can be restored by introducing NG boson

EFT on Minkowski

background = ghost condensation

Arkani-Hamed, Cheng, Luty and Mukohyama, JHEP 0405:074,2004

 $\langle \partial_\mu \phi \rangle$ = const $\neq 0$ and timelike Minkowski metric **EFT of ghost condensation = EFT of scalar-tensor gravity with timelike scalar profile on Minkowski background** Backgrounds characterized by $^{4} \left\langle \left(h_{00} - 2 \dot{\pi} \right)^2 - \frac{\alpha_1}{M^2} \left(K + \vec{\nabla}^2 \pi \right)^2 \right\}$ 00 200 $\sqrt{2}$ $L_{\it eff} = L_{\it EH} + M^4 \left\{ (h_{00} - 2 \dot{\pi})^2 - \frac{c_0}{M^2} \right\} K^2$ α π) $-\frac{1}{2}$ K + V π \int $= L_{EH} + M^4 \left\{ (h_{00} - 2\dot{\pi})^2 - \frac{\omega_1}{\omega_0^2} (K + \nabla) \right\}$ $\frac{2}{\sqrt{2}}\left(\dot{K}^{ij}+\vec{\nabla}^i\vec{\nabla}^j\pi\right)\left(K_{ij}+\vec{\nabla}_i\vec{\nabla}_j\pi\right).$ 2 $\frac{\alpha_2}{M^2}\Bigl(\overset{\cdot}{K}{}^{ij}+\overset{\rightarrow}{\nabla}{}^i\overset{\rightarrow}{\nabla}{}^j\pi\Bigr)\Bigl(\,K_{ij}+\overset{\rightarrow}{\nabla}_i\overset{\rightarrow}{\nabla}_j\,$ π II K \cdot + V \cdot V $\cdot \pi$ \bigcap $-\frac{\omega_2}{\sqrt{2}}\left(K^{ij}+\nabla^i\nabla^j\pi\right)\left(K_{ii}+\nabla_i\nabla_j\pi\right)+\cdots\}$ \int Arkani-Hamed, Cheng, Luty and Mukohyama 2004 $t \rightarrow t + const \& t \rightarrow -t$ unbroken up to $\phi \rightarrow \phi$ + const & $\phi \rightarrow -\phi$

Gauge choice: $\phi(t, \vec{x}) = t$. $\pi \equiv \delta \phi = 0$ (Unitary gauge) Residual symmetry: $\vec{x} \rightarrow \vec{x}'(t, \vec{x})$ \rightarrow \rightarrow \rightarrow \rightarrow $\rightarrow \vec{x}'$

Write down most general action invariant under this residual symmetry.

(\longrightarrow Action for π : undo unitary gauge!)

Start with flat background

$$
g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}
$$

$$
\delta h_{\mu\nu} = \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu}
$$

Under residual ζ^i

$$
\delta h_{00} = 0, \delta h_{0i} = \partial_0 \xi_i, \delta h_{ij} = \partial_i \xi_j + \partial_j \xi_i
$$

Action invariant under ξⁱ $\left(h_{00}^{} \right)^2$

OK

 $h^{\,}_{00}$

h

2

Beginning at quadratic order, since we are assuming flat space is good background.

Since we are assuming that
\nspace is good background.
\n
$$
K^2
$$
, $K^{ij}K_{ij}$ OK $K_{ij} = \frac{1}{2}(\partial_0 h_{ij} - \partial_j h_{0i} - \partial_i h_{0j})$
\n $L_{eff} = L_{EH} + M^4 \left\{ (h_{00})^2 - \frac{\alpha_1}{M^2} K^2 - \frac{\alpha_2}{M^2} K^{ij} K_{ij} + \cdots \right\}$

Action invariant under ξⁱ $\left(h_{00}^{} \right)^2$ $h^{\,}_{00}$ $\left(b_{0i}\right)^2$ 0*i h* 2 $\overline{K^2, K^{ij}K_{ij}}$ **OK** $K_{ij} = \frac{1}{2}(\partial_0 h_{ij} - \partial_j h_{0i} - \partial_i h_{0j})$ Since we are assuming riat
space is good background.
 $K_{ij} = \frac{1}{2} (\partial_0 h_{ij} - \partial_j h_{0i} - \partial_i h_{0j})$ **OK** $^{4} \left\langle \left(h_{00} \right) \right\rangle^{2} - \frac{\alpha_{1}}{M^{2}} K^{2} - \frac{\alpha_{2}}{M^{2}}$ 00 $\sqrt{14}$ $\sqrt{2}$ $L_{\it eff} = L_{\it EH} + M^{\,4} \left\{ \left(h_{00} \right)^2 - \frac{\alpha_1}{M^{\,2}} \, K^2 - \frac{\alpha_2}{M^{\,2}} \, K^{ij} K_{ij} \right\}$ $\begin{bmatrix} 1 & 2 & \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & \alpha_4 & \alpha_5 \end{bmatrix}$ $= L_{EH} + M^4 \left\{ (h_{00})^2 - \frac{\omega_1}{M^2} K^2 - \frac{\omega_2}{M^2} K^{ij} K_{ij} + \cdots \right\}$ **Action for π** $K_{\overrightarrow{ij}}\rightarrow K_{\overrightarrow{ij}}+\partial_{\overrightarrow{i}}\partial_{\overrightarrow{j}}\pi$ $h_{00} \rightarrow h_{00} - 2 \partial_0 \pi$ $\xi^0=\pi$ $^{4} \left\langle \left(h_{00} - 2 \dot{\pi} \right)^2 - \frac{\alpha_1}{M^2} \right(K + \vec{\nabla}^2 \pi \right)^2$ 00 2 (1) $\sqrt{2}$ $L_{\it eff} = L_{\it EH} + M^4 \left\{ (h_{00} - 2 \dot{\pi})^2 - \frac{c_0}{M^2} \right\} K^2$ α π) $-\frac{1}{2}$ K + V π \int $= L_{EH} + M^4 \left\{ (h_{00} - 2\dot{\pi})^2 - \frac{\omega_1}{\omega_0^2} (K + \nabla) \right\}$ $\frac{2}{\sqrt{2}}\left(\dot{K}^{ij}+\vec{\nabla}^i\vec{\nabla}^j\pi\right)\left(K_{ij}+\vec{\nabla}_i\vec{\nabla}_j\pi\right).$ 2 $\frac{\alpha_2}{M^2}\Bigl(\dot{K}^{ij}+\vec{\nabla}^i\vec{\nabla}^j\pi\Bigr)\Bigl(\overline{K}_{ij}+\vec{\nabla}_i\vec{\nabla}_j\Bigr)$ π II K \cdot + V \cdot V $\cdot \pi$ \bigcap $-\frac{\omega_2}{\sqrt{2}}\left(K^{ij}+\nabla^i\nabla^j\pi\right)\left(K_{ii}+\nabla_i\nabla_j\pi\right)+\cdots\}$ \int Beginning at quadratic order, since we are assuming flat space is good background.

 \Rightarrow Good low-E effective theory Robust prediction

e.g. Ghost inflation [Arkani-hamed, Creminelli, Mukohyama, Zaldarriaga 2004]

EFT of scalar-tensor gravity with timelike scalar profile

- **Time diffeo is broken by the scalar profile but spatial diffeo is preserved.**
- All terms that respect spatial diffeo must be included in the EFT action.
- Derivative & perturbative expansions
- Diffeo can be restored by introducing NG boson

Cheung, Creminelli, Fitzpatrick, Kaplan and Senatore 2007

Extension to FLRW background = EFT of inflation/dark energy

Creminelli, Luty, Nicolis, Senatore 2006 Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore 2007

- Action invariant under $x^{i} \rightarrow x^{i}(t,x)$
- Ingredients $g_{\mu\nu}$, $g^{\mu\nu}$

 \vert t & its derivatives

• 1st derivative of t

$$
\partial_{\mu}t = \delta_{\mu}^{0} \qquad n_{\mu} = \frac{\partial_{\mu}t}{\sqrt{-g^{\mu\nu}\partial_{\mu}t\partial_{\nu}t}} = \frac{\partial_{\mu}^{0}}{\sqrt{-g^{00}}}
$$

$$
g^{00} \qquad h_{\mu\nu} = g_{\mu\nu} + n_{\mu}n_{\nu}
$$

• 2nd derivative of t

$$
K_{\mu\nu}\equiv h^\rho_\mu\nabla_\rho n_\nu
$$

Unitary gauge action

$$
I = \int d^4x \sqrt{-g} L(t, \delta^0_\mu, K_{\mu\nu}, g_{\mu\nu}, g^{\mu\nu}, \nabla_\mu, R_{\mu\nu\rho\sigma})
$$

derivative & perturbative expansions

$$
I = M_{Pl}^2 \int dx^4 \sqrt{-g} \left[\frac{1}{2} R + c_1(t) + c_2(t) g^{00} + L^{(2)} (\tilde{\delta} g^{00}, \tilde{\delta} K_{\mu\nu}, \tilde{\delta} R_{\mu\nu\rho\sigma}; t, g_{\mu\nu}, g^{\mu\nu}, \nabla_\mu) \right]
$$

$$
L^{(2)} = \lambda_1(t) (\tilde{\delta} g^{00})^2 + \lambda_2(t) (\tilde{\delta} g^{00})^3 + \lambda_3(t) \tilde{\delta} g^{00} \tilde{\delta} K^\mu_\mu + \lambda_4(t) (\tilde{\delta} K^\mu_\mu)^2 + \lambda_5(t) \tilde{\delta} K^\mu_\nu \tilde{\delta} K^\nu_\mu + \cdots
$$

 $\tilde{\delta}g^{00} \equiv g^{00} + 1$ $\tilde{\delta}K_{\mu\nu} \equiv K_{\mu\nu} - H\gamma_{\mu\nu}$ $\tilde{\delta}R_{\mu\nu\rho\sigma} \equiv R_{\mu\nu\rho\sigma} - 2(H^2 + \mathfrak{K}/a^2)\gamma_{\mu[\rho}\gamma_{\sigma]\nu} + (\dot{H} + H^2)(\gamma_{\mu\rho}\delta^0_{\nu}\delta^0_{\sigma} + (\text{3perm.}))$

NG boson

• Undo unitary gauge $t \to \tilde{t} = t - \pi(\tilde{t}, \vec{x})$ $H(t) \rightarrow H(t+\pi), \quad \dot{H}(t) \rightarrow \dot{H}(t+\pi),$

 $\lambda_i(t) \rightarrow \lambda_i(t+\pi), \quad a(t) \rightarrow a(t+\pi),$

 $\delta^0_\mu \rightarrow (1+\dot{\pi})\delta^0_\mu + \delta^i_\mu \partial_i \pi,$

NG boson in decoupling (subhorizon) limit

$$
I_{\pi} = M_{Pl}^2 \int dt d^3 \vec{x} \, a^3 \left\{ -\frac{\dot{H}}{c_s^2} \left(\dot{\pi}^2 - c_s^2 \frac{(\partial_i \pi)^2}{a^2} \right) \right.\left. - \dot{H} \left(\frac{1}{c_s^2} - 1 \right) \left(\frac{c_3}{c_s^2} \dot{\pi}^3 - \dot{\pi} \frac{(\partial_i \pi)^2}{a^2} \right) + O(\pi^4, \tilde{\epsilon}^2) + L_{\tilde{\delta}K, \tilde{\delta}R}^{(2)} \right\}\left. \frac{1}{c_s^2} = 1 - \frac{4\lambda_1}{\dot{H}}, \quad c_3 = c_s^2 - \frac{8c_s^2 \lambda_2}{-H} \left(\frac{1}{c_s^2} - 1 \right)^{-1}
$$

• Sound speed

 c_s : speed of propagation for modes with $\omega \gg H$ $\omega^2 \simeq c_s^2 \frac{k^2}{a^2}$ a^2 for $\pi \thicksim A(t) \exp(-i\!\int \omega dt + i k \cdot \vec{x})$

Application: non-Gaussinity of inflationary perturbation $\zeta = -H\pi$ I_{π} = $M_{Pl}^2 \int dt d^3 \vec{x} a^3 \left\{ -\frac{\dot{H}}{c_s^2} \left(\dot{\pi}^2 - c_s^2 \frac{(\partial_i \pi)^2}{a^2} \right) \right\}$ power spectrum $P_{\zeta}(\vec{k}) = \frac{\Delta}{k^3}$, $\Delta = \frac{H^4}{-4M_{Pl}^2 \dot{H} c_s} \Big|_{c_s k \approx aH}$ $-\dot{H}\left(\frac{1}{c_s^2}-1\right)\left(\frac{c_3}{c_s^2}\dot{\pi}^3-\left(\frac{\partial_i\pi)^2}{a^2}\right)+O(\pi^4,\tilde{\epsilon}^2)+L_{\tilde{\delta}K,\tilde{\delta}R}^{(2)}\right)$ non-Gaussianity $\langle \zeta_{\vec{k}_1}(t) \zeta_{\vec{k}_2}(t) \zeta_{\vec{k}_3}(t) \rangle = (2\pi)^3 \delta^3(\vec{k}_1 + \vec{k}_2 + \vec{k}_3) B_{\zeta}$ 2 types of 3-point interactions $c_s^2 \rightarrow$ size of non-Gaussianity $\mathbf{1}$ $\frac{1}{c_s^2}$ for small c_s^2 ∝ $c_3 \rightarrow$ shape of non-Gaussianity | plots of $B_{\zeta}(k, \kappa_2 k, \kappa_3 k)/B_{\zeta}(k, k, k)$ $c_3 = 0$ $1 \kappa_2$ $c_3 = -3.6$ $1 \kappa_2$ $c_3 = -4.3$ $1 \kappa_2$ 0.5 0.5 1.0 **Prototype of the** Linear combination **Prototype of the** ³ ³ ³ **orthogonal shape equilateral shape** of the two shapes

Parametrization suitable for DE → **EFT of DE** Gubitosi, Piazza, Vernizzi 2012 Gleyzes, Langlois, Piazza, Vernizzi 2013

- Matter (in addition to DE) needs to be added \rightarrow Jordan frame description is convenient
- In Jordan frame the coefficient of the 4d Ricci scalar is not constant.

$$
S = \frac{1}{2} \int d^4x \sqrt{-g} \left[M_*^2 f R \right] - \rho_D + p_D - M_*^2 (5H\dot{f} + \ddot{f}) - \left(\rho_D + p_D + M_*^2 (H\dot{f} - \ddot{f}) \right) g^{00} + M_2^4 (\delta g^{00})^2 - \bar{m}_1^3 \delta g^{00} \delta K - \bar{M}_2^2 \delta K^2 - \bar{M}_3^2 \delta K_\mu^{\ \nu} \delta K^\mu_{\ \nu} + m_2^2 h^{\mu\nu} \partial_\mu g^{00} \partial_\nu g^{00} + \lambda_1 \delta R^2 + \lambda_2 \delta R_{\mu\nu} \delta R^{\mu\nu} + \mu_1^2 \delta g^{00} \delta R + \gamma_1 C^{\mu\nu\rho\sigma} C_{\mu\nu\rho\sigma} + \gamma_2 \epsilon^{\mu\nu\rho\sigma} C_{\mu\nu}^{\ \ \kappa\lambda} C_{\rho\sigma\kappa\lambda} + \frac{M_3^4}{3} (\delta g^{00})^3 - \bar{m}_2^3 (\delta g^{00})^2 \delta K + \dots \right] ,
$$

EFT of scalar-tensor gravity with timelike scalar profile

- **Time diffeo is broken by the scalar profile but spatial diffeo is preserved.**
- All terms that respect spatial diffeo must be included in the EFT action.
- Derivative & perturbative expansions
- Diffeo can be restored by introducing NG boson

Mukohyama and Yingcharoenrat, JCAP 09 (2022) 010

It is not straightforward…

• General action in the unitary gauge $(\phi = \tau)$

$$
S = \int d^4x \sqrt{-g} \ F(R_{\mu\nu\alpha\beta}, g^{\tau\tau}, K_{\mu\nu}, \nabla_{\nu}, \tau)
$$

- Taylor expansion around the background
 $S = \int d^4x \sqrt{-g} \left[\bar{F} + \bar{F}_{g^{\tau\tau}} \delta g^{\tau\tau} + \bar{F}_K \delta K + \cdots \right]$
- The whole action is invariant under 3d diffeo but **each term is not…**
- Each coefficient is a function of (τ, x^i) but cannot be promoted to an arbitrary function.

Solution: consistency relations

• The chain rule

relates xⁱ-derivatives of an EFT coefficient to other EFT coefficients, and leads to consistency relations.

- **The consistency relations ensure the spatial diffeo invariance.**
- Taylor coefficients should satisfy the consistency relations but are otherwise arbitrary.
- (No consistency relation for τ -derivatives.)

EFT action

$$
S = \int d^4x \sqrt{-g} \left[\frac{M_{\star}^2}{2} f(y)R - \Lambda(y) - c(y)g^{\tau\tau} - \beta(y)K - \alpha^{\mu}_{\nu}(y)\sigma^{\nu}_{\mu} - \gamma^{\mu}_{\nu}(y)r^{\nu}_{\mu} + \frac{1}{2}m_2^4(y)(\delta g^{\tau\tau})^2 \right. \left. + \frac{1}{2}M_1^3(y)\delta g^{\tau\tau}\delta K + \frac{1}{2}M_2^2(y)\delta K^2 + \frac{1}{2}M_3^2(y)\delta K^{\mu}_{\nu}\delta K^{\nu}_{\mu} + \frac{1}{2}M_4(y)\delta K\delta^{(3)}R \right. \left. + \frac{1}{2}M_5(y)\delta K^{\mu}_{\nu}\delta^{(3)}R^{\nu}_{\mu} + \frac{1}{2}\mu_1^2(y)\delta g^{\tau\tau}\delta^{(3)}R + \frac{1}{2}\mu_2(y)\delta^{(3)}R^2 + \frac{1}{2}\mu_3(y)\delta^{(3)}R^{\mu}_{\nu}\delta^{(3)}R^{\nu}_{\mu} \right. \left. + \frac{1}{2}\lambda_1(y)^{\nu}_{\mu}\delta g^{\tau\tau}\delta K^{\mu}_{\nu} + \frac{1}{2}\lambda_2(y)^{\nu}_{\mu}\delta g^{\tau\tau}\delta^{(3)}R^{\mu}_{\nu} + \frac{1}{2}\lambda_3(y)^{\nu}_{\mu}\delta K\delta K^{\mu}_{\nu} + \frac{1}{2}\lambda_4(y)^{\nu}_{\mu}\delta K\delta^{(3)}R^{\mu}_{\nu} \right. \left. + \frac{1}{2}\lambda_5(y)^{\nu}_{\mu}\delta^{(3)}R\delta K^{\mu}_{\nu} + \frac{1}{2}\lambda_6(y)^{\nu}_{\mu}\delta^{(3)}R\delta^{(3)}R^{\mu}_{\nu} + \dots \right] ,
$$

- EFT coefficients should satisfy the consistency relations but are otherwise arbitrary
- One can restore 4d diffeo by Stueckelberg trick
- Easy to find dictionary between EFT coefficients and theory parameters
- Can be applied to arbitrary background with timelike scalar profile

EFT of scalar-tensor gravity with timelike scalar profile

- **Time diffeo is broken by the scalar profile but spatial diffeo is preserved.**
- All terms that respect spatial diffeo must be included in the EFT action.
- Derivative & perturbative expansions
- Diffeo can be restored by introducing NG boson

Taylor expansion of the general action

 $S = \int d^4x \sqrt{-g} \; F(R_{\mu\nu\alpha\beta}, g^{\tau\tau}, K_{\mu\nu}, \nabla_{\nu}, \tau)$

$$
S = \int d^4x \sqrt{-g} \left[\bar{F} + \bar{F}_{g^{\tau\tau}} \delta g^{\tau\tau} + \bar{F}_K \delta K + \dots \right]
$$

Consistency relations S is invariant under spatial diffeo but the background breaks it.

$$
\frac{d}{dx^{i}}\bar{F}=\bar{F}_{g^{\tau\tau}}\frac{\partial\bar{g}^{\tau\tau}}{\partial x^{i}}+\bar{F}_{K}\frac{\partial\bar{K}}{\partial x^{i}}+\ldots
$$

Conformal/disformal transformation [arXiv: 2407.15123 w/E.Seraille, K.Takahashi & V.Yingeharoenrat]

- EFT of DE is usually written in Jordan frame, to which matter minimally couple
- EFT of BH perturbations is studied mainly in an almost Einstein frame (with constant coefficient of 4d Ricci scalar)
- In order to bridge these EFTs, one needs to know how EFT coefficients are mapped under conformal/disformal transformations

 $\hat{g}_{\mu\nu} = f_0(\Phi, X) g_{\mu\nu} + f_1(\Phi, X) \partial_\mu \Phi \partial_\nu \Phi$

GW speed near BH [arXiv: 2407.15123 w/E.Seraille, K.Takahashi & V.Yingeharoenrat]

- GW170817 \rightarrow $|c_{GW} 1|$ < 10⁻¹⁵ @ cosmological scale \rightarrow constraint on DE/MG models
- Typically, one requires $c_{GW}=1$ on FLRW for all H(t) & $\phi(t)$ @ low E
- Does this imply $c_{GW}=1$ around BH @ low E?
- Yes, in Horndeski theory $[G_{4,X}=0=G_{5}].$
- No, in general, e.g. in cubic HOST theories.
- In EFT, the following operator does the job. $M_6(y)\bar\sigma^\mu_\nu\delta K_\alpha^\nu\delta K_\mu^\alpha$ traceless part of background K^μ_{ν}

Stealth BH with $\phi = qt + \psi(r)$

- Schwarzschild in k-essence (Mukohyama 2005)
- Schwarzschild-dS in Horndeski theory (Babichev & Charmousis 2013, Kobayashi & Tanahashi 2014) Schwarzshild-dS in DHOST (Ben Achour & Liu 2019, Motohashi & Minamitsuji 2019)
- Kerr-dS in DHOST (Charmousis & Crisotomi & Gregory & Stergioulas 2019)
- However, perturbations around most of those stealth solutions are infinitely strongly coupled (de Rham & Zhang 2019). This means the solutions cannot be trusted.
- Fortunately, Scordatura (= detuning of degeneracy condition) solves the strong coupling problem (Motohashi & Mukohyama 2019), if and only if the scalar profile is timelike.
- EFT of ghost condensation already includes scordatura (Arkani-Hamed & Cheng & Luty & Mukohyama 2004)
- Approximate Schwarzschild in ghost condensation (Mukohyama 2005). Also in quadratic HOST (DeFelice & Mukohyama & Takahashi, JCAP 03 (2023) 050).

Applications to BHs with timelike scalar profile

- Background analysis for spherical BH [arXiv: 2204.00228 w/ V.Yingcharoenrat]
- Odd-parity perturbation around spherical BH → Generalized Regge-Wheeler equation [arXiv: 2208.02943 w/ K.Takahashi & V.Yingcharoenrat] [see also arXiv: 2208.02823 by Khoury, Noumi, Trodden, Wong]

\rightarrow Quasi-normal mode

[arXiv: 2304.14304 w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat]

QNM of Hayward BH

[arXiv: 2304.14304 w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat]

- Non-singular BH background $A = B = 1$
- Set $p_4 = M_3^2 = 0$ to ensure $c_T^2 = 1$ @ r $\rightarrow \infty$

• Overtones show more prominent deviations [Konoplya, arxiv: 2310.19205]

Applications to BHs with timelike scalar profile

- Background analysis for spherical BH [arXiv: 2204.00228 w/ V.Yingcharoenrat]
- Odd-parity perturbation around spherical BH → Generalized Regge-Wheeler equation [arXiv: 2208.02943 w/ K.Takahashi & V.Yingcharoenrat] [see also arXiv: 2208.02823 by Khoury, Noumi, Trodden, Wong] \rightarrow Quasi-normal modes deviate from GR [arXiv: 2304.14304 w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat]

\rightarrow Static Tidal Love number

[arXiv: 2405.10813 w/C.G.A.Barura, H.Kobayashi, N.Oshita, K.Takahashi, V.Yingcharoenrat]

Tidal Love number of Hayward BH

[arXiv: 2405.10813 w/C.G.A.Barura, H.Kobayashi, N.Oshita, K.Takahashi, V.Yingcharoenrat]

• TLNs \leftarrow regularity @ horizon $x \equiv r/r_q$

 $\tilde{\psi}(x) = x^{\ell+1} \left[1 + \mathcal{O}(x^{-1}) \right] + \left(K_{\ell}(\eta) x^{-\ell} \left[1 + \mathcal{O}(x^{-1}) \right] \right)$

- Analytic continuation of multipole index I \rightarrow Separation of growing & decaying sols.
- Expansion w.r.t. η
 $\eta \equiv \sigma^3/r_a^3$

$$
K_{\ell}(\eta) = \sum_{k \ge 0} \eta^k K_{\ell}^{(k)}
$$

• Static tidal Love numbers are non-vanishing $K_{\ell=2} = \frac{7}{20}\eta^2 - \frac{11}{20}\eta^3 + \frac{2}{5}\eta^4 + \cdots$ $K_{\ell=3} = \frac{5}{42}\eta + \frac{1417}{504}\eta^2 - \frac{1285}{1008}\eta^3 + \frac{3713}{4032}\eta^4 + \cdots$ $K_{\ell=4} = \frac{23}{840}\eta + \left(\frac{110051}{50400} - \frac{24}{25}\log x\right)\eta^2 + \cdots$ logarithmic running

Applications to BHs with timelike scalar profile

- Background analysis for spherical BH [arXiv: 2204.00228 w/ V.Yingcharoenrat]
- Odd-parity perturbation around spherical BH → Generalized Regge-Wheeler equation [arXiv: 2208.02943 w/ K.Takahashi & V.Yingcharoenrat] [see also arXiv: 2208.02823 by Khoury, Noumi, Trodden, Wong] \rightarrow Quasi-normal modes deviate from GR [arXiv: 2304.14304 w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat] \rightarrow Static Tidal Love numbers are non-vanishing [arXiv: 2405.10813 w/C.G.A.Barura, H.Kobayashi, N.Oshita, K.Takahashi, V.Yingcharoenrat] \rightarrow (In)stability of greybody factors [arXiv: 2406.04525 w/N.Oshita and K.Takahashi]

(In)stability of greybody factor

[arXiv: 2406.04525 w/N.Oshita and K.Takahashi]

Applications to BHs with timelike scalar profile

- Background analysis for spherical BH [arXiv: 2204.00228 w/ V.Yingcharoenrat]
- Odd-parity perturbation around spherical BH → Generalized Regge-Wheeler equation [arXiv: 2208.02943 w/ K.Takahashi & V.Yingcharoenrat] [see also arXiv: 2208.02823 by Khoury, Noumi, Trodden, Wong] \rightarrow Quasi-normal modes deviate from GR [arXiv: 2304.14304 w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat] \rightarrow Static Tidal Love numbers are non-vanishing [arXiv: 2405.10813 w/C.G.A.Barura, H.Kobayashi, N.Oshita, K.Takahashi, V.Yingcharoenrat] \rightarrow (In)stability of greybody factors [arXiv: 2406.04525 w/N.Oshita and K.Takahashi]
- Even-parity perturbation around spherical BH [work in progress w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat]
- Rotating BH [work in progress w/ N.Oshita & K.Takahashi & Z.Wang & V.Yingcharoenrat]

SUMMARY

- Majorities of inflation/DE models are described by scalartensor gravity with timelike scalar profile.
- Ghost condensation universally describes all scalar-tensor theories of gravity with timelike scalar profile on Minkowski background respecting time translation / reflection symmetry (up to shift / reflection of the scalar).
- Extension of ghost condensation to FLRW backgrounds results in the EFT of inflation/DE.
- These EFTs provide universal descriptions of all scalar-tensor theories of gravity with timelike scalar profile on each background, including Horndeski theory, DHOST theory, U-DHOST theory, and more.
- Majorities of inflation/DE models are described by scalartensor gravity with timelike scalar profile.
- Ghost condensation universally describes all scalar-tensor theories of gravity with timelike scalar profile on Minkowski background respecting time translation / reflection symmetry (up to shift / reflection of the scalar).
- Extension of ghost condensation to FLRW backgrounds results in the EFT of inflation/DE.
- These EFTs provide universal descriptions of all scalar-tensor theories of gravity with timelike scalar profile on each background, including Horndeski theory, DHOST theory, U-DHOST theory, and more.
- EFT of scalar-tensor gravity with timelike scalar profile on arbitrary background was developed. Consistency relations among EFT coefficients ensure the spatial diffeo invariance. Applicable to BHs with scalar field DE.
EFT of scalar-tensor gravity with timelike scalar profile

- **Time diffeo is broken by the scalar profile but spatial diffeo is preserved.**
- All terms that respect spatial diffeo must be included in the EFT action.
- Derivative & perturbative expansions
- Diffeo can be restored by introducing NG boson

Taylor expansion of the general action

 $S = \int d^4x \sqrt{-g} \; F(R_{\mu\nu\alpha\beta}, g^{\tau\tau}, K_{\mu\nu}, \nabla_{\nu}, \tau)$

$$
S = \int d^4x \sqrt{-g} \left[\bar{F} + \bar{F}_{g^{\tau\tau}} \delta g^{\tau\tau} + \bar{F}_K \delta K + \dots \right]
$$

Consistency relations S is invariant under spatial diffeo but the background breaks it.

$$
\frac{d}{dx^{i}}\bar{F} = \bar{F}_{g^{\tau\tau}}\frac{\partial \bar{g}^{\tau\tau}}{\partial x^{i}} + \bar{F}_{K}\frac{\partial \bar{K}}{\partial x^{i}} + \ldots
$$

- Majorities of inflation/DE models are described by scalartensor gravity with timelike scalar profile.
- Ghost condensation universally describes all scalar-tensor theories of gravity with timelike scalar profile on Minkowski background respecting time translation / reflection symmetry (up to shift / reflection of the scalar).
- Extension of ghost condensation to FLRW backgrounds results in the EFT of inflation/DE.
- These EFTs provide universal descriptions of all scalar-tensor theories of gravity with timelike scalar profile on each background, including Horndeski theory, DHOST theory, U-DHOST theory, and more.
- EFT of scalar-tensor gravity with timelike scalar profile on arbitrary background was developed. Consistency relations among EFT coefficients ensure the spatial diffeo invariance. Applicable to BHs with scalar field DE.
- Any other applications? Let's discuss!

Residual symmetry in the unitary gauge

 $\vec{x} \rightarrow \vec{x}'(t, \vec{x})$

Scalar-tensor Vector-tensor $\vec{x} \rightarrow \vec{x}'(t, \vec{x})$ $t \to t - g_{\rm M} \chi(t, \vec{x}) \quad A_{\mu} \to A_{\mu} + \partial_{\mu} \chi(t, \vec{x})$ leaving $\delta^0_\mu = \delta^0_\mu + g_{\rm M} A_\mu$ invariant

Residual symmetry in the unitary gauge

 $\vec{x} \rightarrow \vec{x}'(t, \vec{x})$

Scalar-tensor Vector-tensor $\vec{x} \rightarrow \vec{x}'(t, \vec{x})$ $t \to t - g_{\rm M} \chi(t, \vec{x}) \quad A_{\mu} \to A_{\mu} + \partial_{\mu} \chi(t, \vec{x})$ leaving $\widetilde{\delta}_{\mu}^{0}=\delta_{\mu}^{0}+g_{\mathrm{M}}A_{\mu}$ invariant

Residual symmetry in the unitary gauge

Scalar-tensor $\vec{x} \rightarrow \vec{x}'(t, \vec{x})$

See also "CMB spectrum in unified EFT of dark energy: scalar-tensor and vectortensor theories", arXiv: 2405.04265

$$
\begin{array}{|l|} \hline \text{Vector-tensor} \\ \hline \vec{x} \rightarrow \vec{x}'(t, \vec{x}) \\ t \rightarrow t - g_{\text{M}} \chi(t, \vec{x}) \quad A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \chi(t, \vec{x}) \\ \hline \text{leaving} \quad \tilde{\delta}^{0}_{\mu} = \delta^{0}_{\mu} + g_{\text{M}} A_{\mu} \text{ invariant} \end{array}
$$

Thank you!

V.Yingcharoenrat K.Takahashi K.Tomikawa K.Aoki E.Seraille

M.A.Gorji C.G.A.Barura H.Kobayashi N.Oshita

Backup slides

Stealth solutions in k-essence Mukohyama 2005

-
- Action in Einstein frame
 $I = \int d^4x \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R + P(X) \right] \quad X = -g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi$ • EOMS $\frac{1}{\sqrt{-g}}\partial_\mu(\sqrt{-g}P'(X)g^{\mu\nu}\partial_\nu\phi)=0$
	- $M_{\rm Pl}^2 G_{\mu\nu} = 2P'(X)\partial_\mu\phi\partial_\nu\phi + P(X)g_{\mu\nu}$
- Stealth sol with $X = X_0$, where $P'(X_0) = 0$

$$
G_{\mu\nu} = \Lambda_{\text{eff}} g_{\mu\nu} \qquad \Lambda_{\text{eff}} = P(X_0) / M_{\text{Pl}}^2
$$

- $X = X_0 \ (\neq 0)$ $u^{\mu} = g^{\mu\nu}\partial_{\nu}\phi$ defines geodesic congruence $(u^{\nu}\nabla_{\nu}u^{\mu}=-\nabla^{\mu}X/2=0)$
	- $\phi/\sqrt{|X_0|}$ defines Gaussian normal coord.

Stealth solutions in k-essence

- Mukohyama 2005
- Any metric locally admits Gaussian normal coord.
- If $P'(X)$ has a real root X_0 then any vacuum GR sol with $\Lambda_{\text{eff}} = P(X_0)/M_{\text{Pl}}^2$ locally leads to a stealth sol.
- Schwarzshild metric admits a "globally" well-behaved Gaussian normal coord. (Lemeitre reference frame) $2+\frac{r_g}{r}\epsilon^{2} + r^2(\tau,R)d\Omega^2$ (τ ,R) *g r dR* $g_{\mu\nu}dx^{\mu}dx^{\nu} = -d\tau^2 + \frac{g}{dx^2} + r^2(\tau,R)d$ r (τ , R $\mu_{\mathcal{A}x}V$ $\mu\nu$ $\tau + \frac{1}{\tau} + r \tau$ $\mathcal T$ $=-d\tau^2 + \frac{s}{r} + r^2(\tau, R)d\Omega$ 3 Γ $\left| \right|^{2/3}$ $(\tau, R) = \frac{1}{\tau} \sqrt{r_a (R - \tau)}$ $r(\tau,R) = \frac{1}{2}\sqrt{r_g(R-\tau)}$ $\begin{bmatrix} 3 & -1 \end{bmatrix}$ $=\left[\frac{1}{2}\sqrt{r_g(K-\tau)}\right]$
- Stealth Schwarzschild solution with $\phi = \sqrt{X_0}\tau$, if $P'(X)$ has a positive root X_0 and if Λ_{eff} is canceled by Λ_{bare}

Stealth solutions with $\phi = qt + \psi(r)$

- Schwarzschild in k-essence (Mukohyama 2005)
- Schwarzschild-dS in Horndeski theory (Babichev & Charmousis 2013, Kobayashi & Tanahashi 2014) Schwarzshild-dS in DHOST (Ben Achour & Liu 2019, Motohashi & Minamitsuji 2019)
- Kerr-dS in DHOST (Charmousis & Crisotomi & Gregory & Stergioulas 2019)
- However, perturbations around most of those stealth solutions are infinitely strongly coupled (de Rham & Zhang 2019) . This means the solutions cannot be trusted.
- Approximately stealth solution in ghost condensate does not suffer from strong coupling (Mukohyama 2005). Why?

Origin of strong coupling

- EFT around stealth Minkowski sol. (= ghost condensate) → universal dispersion relation without the usual k² term $\omega^2 = \alpha k^4/M^2$
- For $\alpha = O(1)$ (>0), EFT is weakly coupled all the way up to ~M. [$E_{\text{cubic}} \simeq |\alpha|^{7/2} M$]
- If eom's for perturbations are strictly 2nd order (as in DHOST) then $\alpha = 0$ and the dispersion relation loses dependence on k \rightarrow strong coupling
- [For ω^2 =c $_{\rm s}$ ²k², strong coupling @ E~ $c_{\rm s}^{7/4}M$]

Strong coupling scales • EFT of inflation in decoupling limit $S_{\pi} = M_{\rm Pl}^2 \int dt d^3 \vec{x} \, a^3 \left[-\frac{\dot{H}}{c_{\rm s}^2} \left(\dot{\pi}^2 - c_{\rm s}^2 \frac{(\partial_i \pi)^2}{a^2} \right) \right]$ $-\dot{H}\left(\frac{1}{c^2}-1\right)\left(\frac{c_3}{c^2}\dot{\pi}^3-\dot{\pi}\frac{(\partial_i\pi)^2}{a^2}\right)+\mathcal{O}(\pi^4,\tilde{\epsilon}^2)+\mathcal{L}^{(2)}_{\tilde{\delta}K,\tilde{\delta}R}\bigg|_{\tilde{\delta}K}$ $\frac{1}{c_s^2} = 1 + \frac{4\lambda_1}{-\dot{H}}$, $c_3 = c_s^2 - \frac{8c_s^2\lambda_2}{-\dot{H}}\left(\frac{1}{c_s^2} - 1\right)^{-1}$ • If $c_s^2 \simeq$ const is not too small, $\mathcal{L}_{\tilde{\delta}K,\tilde{\delta}R}^{(2)}$ can be ignored. We further assume $0 < c_s < 1$. $S_{\pi} = \int dt d^{3} \vec{\tilde{x}} a^{3} (c_{s} \epsilon M_{\rm Pl}^{2} H^{2}) \left| \dot{\pi}^{2} - \frac{(\tilde{\partial}_{i} \pi)^{2}}{a^{2}} + \left(\frac{1}{c_{s}^{2}} - 1 \right) \dot{\pi} \left(c_{3} \dot{\pi}^{2} - \frac{(\tilde{\partial}_{i} \pi)^{2}}{a^{2}} \right) + \cdots \right|$ $\vec{x} = c_s \vec{\tilde{x}}$ $\dot{\pi}^2 \sim \frac{(\partial_i \pi)^2}{a^2} \sim \frac{E^4}{c_{\rm s} \epsilon M_{\rm Pl}^2 H^2} \qquad \left(\frac{1}{c_{\rm s}^2} - 1\right) |\dot{\pi}| \Big|_{E=E_{\rm cubic}} \sim \frac{1}{\max[|c_3|,1]}$ $E_{\rm cubic} \lesssim \frac{(c_{\rm s}^5 \epsilon M_{\rm Pl}^2 H^2)^{1/4}}{\sqrt{1-c^2}} \rightarrow 0 \hspace{0.5cm} (c_{\rm s}^5 \epsilon/(1-c_{\rm s}^2)^2 \rightarrow 0)$

A solution: scordatura

Motohashi & Mukohyama 2019

- Detuning of degeneracy condition recovers $\omega^2 = \alpha k^4 / M^2$ and uplifts the strong coupling scale to $\sim |\alpha|^{7/2} M$. If the amount of detuning is at most of O(1) then an apparent ghost is heavy enough to be integrated out.
- Scordatura = weak and controlled detuning of degeneracy condition
- Scordatura DHOST realizes ghost condensation near stealth solutions while it behaves as DHOST away from them. **Example 2016** educalingo.com

Strong coupling scales • De Sitter limit = small c_s^2 limit $+\lambda_3\left(H-\frac{\partial_ j^2\pi}{a^2}\right)\frac{(\partial_i\pi)^2}{a^2}+(\lambda_4+\lambda_5)\frac{(\partial_i^2\pi)^2}{a^4}+\cdots\right]$ $\lambda_1 = \frac{M^4}{8M_{\rm Pl}^2}, \quad \lambda_3 = \frac{M^3 \beta}{2M_{\rm Pl}^2}, \quad \lambda_4 = -\frac{M^2(\alpha + \gamma)}{2M_{\rm Pl}^2}, \quad \lambda_5 = \frac{M^2 \gamma}{2M_{\rm Pl}^2}$ $S_{\pi}=\frac{M^4}{2}\int dtd^3\vec{x}\,a^3\left|\dot{\pi}^2-c_{\rm s}^2\frac{(\partial_i\pi)^2}{a^2}-\dot{\pi}\frac{(\partial_i\pi)^2}{a^2}-\frac{\alpha}{M^2}\frac{(\partial_i^2\pi)^2}{a^4}+\frac{\beta}{M}\left(H-\frac{\partial_j^2\pi}{a^2}\right)\frac{(\partial_i\pi)^2}{a^2}+\cdots\right|$ $E^{-1}p^{-3}M^4(E\pi)^2 \sim 1$ $\pi \sim \frac{E^{3/2}}{p^{1/2}M^2}$ $\left.\frac{E\pi p^2}{E^2}\right|_{E=E_{\text{cubic}}}\sim 1$ $\left.\left(\frac{p}{E}\right)^{7/4}\frac{E}{M}\right|_{E=E_{\text{cubic}}}\sim 1$ $\frac{\omega^2}{M^2} = \alpha \frac{k^4}{M^4 a^4}$ ω^2 for $\max\left|c_s^2, |\beta|\frac{H}{M}\right| \ll |\alpha|\frac{k^2}{M^2a^2} \ll 1$ $E_{\text{cubic}} \simeq |\alpha|^{7/2} M$

Stealth solutions with $\phi = qt + \psi(r)$

- Schwarzschild in k-essence (Mukohyama 2005)
- Schwarzschild-dS in Horndeski theory (Babichev & Charmousis 2013, Kobayashi & Tanahashi 2014) Schwarzshild-dS in DHOST (Ben Achour & Liu 2019, Motohashi & Minamitsuji 2019)
- Kerr-dS in DHOST (Charmousis & Crisotomi & Gregory & Stergioulas 2019)
- However, perturbations around most of those stealth solutions are infinitely strongly coupled (de Rham & Zhang 2019). This means the solutions cannot be trusted.
- Fortunately, Scordatura (= detuning of degeneracy condition) solves the strong coupling problem (Motohashi & Mukohyama 2019), if and only if the scalar profile is timelike.
- EFT of ghost condensation already includes scordatura (Arkani-Hamed & Cheng & Luty & Mukohyama 2004)
- Approximate Schwarzschild in ghost condensation (Mukohyama 2005). Also in quadratic HOST (DeFelice & Mukohyama & Takahashi, JCAP 03 (2023) 050).

Approximately stealth BH in ghost condensate Mukohyama 2005

- Two time scales: t_{BH} << t_{GC} ~ M_{Pl} ²/M³
- For t_{BH} << t << t_{GC} , a usual BH sol is a good approximation \rightarrow approximately stealth

Approximately stealth BH in ghost condensate

Mukohyama 2005; Cheng, Luty, Mukohyama and Thaler 2006

 π

 $\frac{1}{\pi}$

 π

- A tiny tadpole due to higher derivative terms is canceled by extremely slow time-dependence.
- As a result, $\pi = \delta \phi$ starts accreting gradually.
- XTE J1118+480 (M_{bh} ~7M_{sun},r~3R_{sun},t~240Myr or 7 Gyr) M<10¹²GeV much weaker than M<100GeV

$$
M_{bh} = M_{bh0} \times \left[1 + \frac{9\alpha M^2}{4M_{Pl}^2} \left(\frac{3M_{Pl}^2 v}{4M_{bh0}}\right)^{2/3}\right]
$$

- v : advanced null coordinate
- : coefficient of h.d. term

See DeFelice, Mukohyama, Takahashi, arXiv: 2212.13031 for a similar formula in more general HOST.

Summary of stealth BH with timelike scalar profile

- Stealth solutions = backgrounds with GR metric and non-trivial scalar profile \rightarrow examples of BH solutions with timelike scalar profile
- They suffer from strong coupling problem, which is solved by scordatura (= controlled detuning of degeneracy condition)
- DHOST/Horndeski do not include scordatura but U-DHOST does (DeFelice, Mukohyama, Takahashi 2022) .
- EFT of ghost condensation already included scordatura.
- Approximately stealth solutions in ghost condensation (Mukohyama 2005) and in more general HOST with scordatura (DeFelice & Mukohyama & Takahashi, arXiv: 2212.13031) are stealth at astrophysical scales (no need for screening?, c.f. arXiv:1402.4737 by Davis, Gregory, Jha & Muir) and are free from the strong coupling problem.
- Cosmology and black holes (BHs) play as important roles in gravitational physics as blackbody radiation and hydrogen atoms did in quantum mechanics.
- In cosmology a time-dependent scalar field can act as dark energy (DE), while BHs serve as probes of strong gravity. We then hope to learn something about the EFT of DE by BHs.
- This would require **the scalar field profile to be timelike near BH**. Otherwise, the two EFTs, one for DE and the other for BH, can be unrelated to each other (unless a UV completion is specified).

EFT of scalar-tensor gravity on arbitrary background with timelike scalar profile

Applications to BHs with timelike scalar profile

• Background analysis for spherical BH [arXiv: 2204.00228 w/ V.Yingcharoenrat]

Background analysis

• Spherically symmetric, static background

$$
ds^2 = -A(r)dt^2 + \frac{dr^2}{B(r)} + r^2d\Omega^2
$$

• Lemaitre coordinates

$$
ds^2 = -d\tau^2 + [1-A(r)]d\rho^2 + r^2d\Omega^2
$$

• Shift and Z_2 symmetries

$$
\Phi \rightarrow \Phi + const. \qquad \Phi \rightarrow -\Phi
$$
\n
$$
S = \int d^4x \sqrt{-g} \left[\frac{M_{\star}^2}{2} R - \Lambda(r) - c(r)g^{\tau\tau} - \tilde{\beta}(r)K - \alpha(r)\bar{K}_{\nu}^{\mu}K_{\mu}^{\nu} - \zeta(r)n^{\mu}\partial_{\mu}g^{\tau\tau} \right. \\
\left. + \frac{1}{2}m_2^4(r)(\delta g^{\tau\tau})^2 + \frac{1}{2}\tilde{M}_1^3(r)\delta g^{\tau\tau}\delta K + \frac{1}{2}M_2^2(r)\delta K^2 + \frac{1}{2}M_3^2(r)\delta K_{\nu}^{\mu}\delta K_{\mu}^{\nu} \right. \\
\left. + \frac{1}{2}\mu_1^2(r)\delta g^{\tau\tau}\delta^{(3)}R + \frac{1}{2}\lambda_1(r)_{\nu}^{\mu}\delta g^{\tau\tau}\delta K_{\mu}^{\nu} + \frac{1}{2}\mathcal{M}_1^2(r)(\bar{n}^{\mu}\partial_{\mu}\delta g^{\tau\tau})^2 \right. \\
\left. + \frac{1}{2}\mathcal{M}_2^2(r)\delta K(\bar{n}^{\mu}\partial_{\mu}\delta g^{\tau\tau}) + \frac{1}{2}\mathcal{M}_3^2(r)\bar{h}^{\mu\nu}\partial_{\mu}\delta g^{\tau\tau}\partial_{\nu}\delta g^{\tau\tau} \right]
$$

• Tadpole cancellation condition

$$
\Lambda - c = M_{\star}^{2} (G^{\tau}{}_{\rho} - G^{\rho}{}_{\rho}),
$$
\n
$$
\Lambda + c + \frac{2}{r^{2}} \sqrt{\frac{B}{A}} \left(r^{2} \sqrt{1 - A} \zeta \right)' = -M_{\star}^{2} \bar{G}^{\tau}{}_{\tau} ,
$$
\n
$$
\left[\partial_{\rho} \bar{K} + \frac{1 - A}{r} \left(\frac{B}{A} \right)' \right] \alpha + \frac{A'B}{2A} \alpha' + \sqrt{\frac{B(1 - A)}{A}} \tilde{\beta}' = -M_{\star}^{2} \bar{G}^{\tau}{}_{\rho} ,
$$
\n
$$
\frac{1}{2r^{2}} \sqrt{\frac{B}{A}} \left[r^{4} \sqrt{\frac{B}{A}} \left(\frac{1 - A}{r^{2}} \right)' \alpha \right]' = M_{\star}^{2} (\bar{G}^{\rho}{}_{\rho} - \bar{G}^{\theta}{}_{\theta}) ,
$$

$$
\bar{G}^{\tau}{}_{\tau} = -\frac{[r(1-B)]'}{r^2} + \frac{1-A}{r} \left(\frac{B}{A}\right)^{\prime} , \quad \bar{G}^{\rho}{}_{\rho} = -\frac{[r(1-B)]'}{r^2} - \frac{1}{r} \left(\frac{B}{A}\right)^{\prime} ,
$$

$$
\bar{G}^{\tau}{}_{\rho} = -\frac{1-A}{r} \left(\frac{B}{A}\right)^{\prime} , \qquad \qquad \bar{G}^{\theta}{}_{\theta} = \frac{B(r^2A')'}{2r^2A} + \frac{(r^2A)'}{4r^2} \left(\frac{B}{A}\right)^{\prime}
$$

Applications to BHs with timelike scalar profile

- Background analysis for spherical BH [arXiv: 2204.00228 w/ V.Yingcharoenrat]
- Odd-parity perturbation around spherical BH → Generalized Regge-Wheeler equation [arXiv: 2208.02943 w/ K.Takahashi & V.Yingcharoenrat] [see also arXiv: 2208.02823 by Khoury, Noumi, Trodden, Wong]

Odd-parity perturbations

• General odd-parity perturbations

$$
\delta g_{\tau\tau} = \delta g_{\tau\rho} = \delta g_{\rho\rho} = 0 ,
$$

$$
\delta g_{\tau a} = \sum_{\ell,m} r^2 h_{0,\ell m}(\tau,\rho) E_a{}^b \bar{\nabla}_b Y_{\ell m}(\theta,\phi) ,
$$

$$
\delta g_{\rho a} = \sum_{\ell,m} r^2 h_{1,\ell m}(\tau,\rho) E_a{}^b \bar{\nabla}_b Y_{\ell m}(\theta,\phi) ,
$$

$$
\delta g_{ab} = \sum_{\ell,m} r^2 h_{2,\ell m}(\tau,\rho) E_{(a)}{}^c \bar{\nabla}_c \bar{\nabla}_{(b)} Y_{\ell m}(\theta,\phi) ,
$$

- Gauge fixing $(\ell > 2)$ h_2 $\rightarrow 0$
- Master variable

$$
\chi=\dot{h}_1-\partial_\rho h_0-p_4h_1
$$

• Quadratic action $S_2 = \int d\tau d\rho \mathcal{L}_2$ $\frac{(j^2-2)(2\ell+1)}{2\pi j^2}\mathcal{L}_2=s_1\dot{\chi}^2-s_2(\partial_{\rho}\chi)^2-s_3\chi^2$ $s_1 = \frac{j^2 - 2}{2\sqrt{1 - A}} \frac{(M_\star^2 + M_3^2)^2 r^6}{(j^2 - 2)M_\star^2 + (M_\star^2 + M_3^2)r^2 p_4^2}$ $s_2 = \frac{(M_\star^2 + M_3^2)r^6}{2(1-A)^{3/2}}$ $j^2 \equiv \ell(\ell+1)$ $s_3 = j^2 \frac{(M_\star^2 + M_3^2) r^4}{2\sqrt{1 - A}} + \mathcal{O}(j^0)$ $p_4 \equiv \sqrt{\frac{B}{A(1-A)}} \left(\frac{A'}{2} + \frac{1-A}{r}\right) \frac{\alpha + M_3^2}{M_*^2 + M_3^2}$

- Sound speeds
 $c_{\rho}^2 = \frac{\bar{g}_{\rho\rho}}{|\bar{g}_{\tau\tau}|} \frac{s_2}{s_1} = \frac{M_{\star}^2}{M_{\star}^2 + M_3^2} + \frac{r^2 p_4^2}{j^2 2}$ $c_{\theta}^2 = \lim_{\ell \to \infty} \frac{r^2}{|\bar{g}_{\tau\tau}|} \frac{s_3}{j^2 s_1} = \frac{M_{\star}^2}{M_{\star}^2 + M_3^2}$
- For $p_4 = 0$, i.e. $\alpha + M_3^2 = 0$
 $c_\rho^2 = c_\theta^2 = \frac{M_\star^2}{M_\star^2 + M_3^2} \equiv c_T^2$ • Stability $s_1 > 0$, $c_{\theta}^2 > 0$, $c_{\theta}^2 > 0$
	- $M_{\star}^2 + M_{3}^2 > 0$, $M_{\star}^2 > 0$

• Going back to Schwarzschild coordinates
\n
$$
\frac{(j^2-2)(2\ell+1)}{2\pi j^2} \mathcal{L}_2 = a_1(\partial_t \chi)^2 - a_2(\partial_r \chi)^2 + 2a_3(\partial_t \chi)(\partial_r \chi) - a_4 \chi^2
$$
\n
$$
a_1 = \frac{s_1 - (1 - A)^2 s_2}{\sqrt{A^3 B (1 - A)}}, \qquad a_2 = \sqrt{\frac{B(1 - A)}{A}} (s_2 - s_1),
$$
\n
$$
a_3 = \frac{(1 - A)s_2 - s_1}{A}, \qquad a_4 = \sqrt{\frac{A}{B(1 - A)}} s_3.
$$

• Generalized Regge-Wheeler equation

$$
\frac{\partial^2 \Psi}{\partial \tilde{t}^2} - c_{r_*}^2 \frac{\partial^2 \Psi}{\partial r_*^2} + V_{\text{eff}} \Psi = 0 \qquad \Psi = \sqrt{\Gamma} \chi
$$

$$
V_{\text{eff}} \equiv \frac{a_4}{\tilde{a}_1} + \frac{1}{2\sqrt{AB} \tilde{a}_1} \frac{d^2 \Gamma}{dr_*^2} - \frac{1}{4\tilde{a}_1 a_2} \left(\frac{d\Gamma}{dr_*}\right)^2 \qquad \Gamma \equiv \frac{a_2}{\sqrt{AB}}
$$

$$
\tilde{t} = t + \int \frac{a_3}{a_2} dr \qquad r_* = \int \frac{1}{\sqrt{AB}} dr \qquad \tilde{a}_1 = a_1 + \frac{a_3^2}{a_2}
$$

Applications to BHs with timelike scalar profile

- Background analysis for spherical BH [arXiv: 2204.00228 w/ V.Yingcharoenrat]
- Odd-parity perturbation around spherical BH → Generalized Regge-Wheeler equation [arXiv: 2208.02943 w/ K.Takahashi & V.Yingcharoenrat] [see also arXiv: 2208.02823 by Khoury, Noumi, Trodden, Wong]

\rightarrow Quasi-normal mode

[arXiv: 2304.14304 w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat]

QNM of stealth Schwarzschild BH

[arXiv: 2304.14304 w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat]

- Background with 2m=1
 $A(r) = B(r) = 1 1/r$ $ds^2 = -A(r)dt^2 + \frac{dr^2}{B(r)} + r^2 d\Omega^2$ $A(r) = B(r) = 1 - 1/r$
- Set $p_4 = 0$ to make c_T^2 finite $@r \rightarrow \infty$
- Generalized Regge-Wheeler potential

$$
V_{\text{eff}}(r) = (1 + \alpha_{\text{T}}) f(r) \left[\frac{\ell(\ell+1)}{r^2} - \frac{3r_g}{r^3} \right] \quad f(r) = 1 - r_g/r
$$

$$
\alpha_{\text{T}} \equiv c_{\text{T}}^2 - 1 = \alpha/(M_{\star}^2 - \alpha) \qquad r_g \equiv r_{\text{H}}/(1 + \alpha_{\text{T}})
$$

• QNM frequency
 $\omega = \omega_{\rm GR} (1 + \alpha_{\rm T})^{3/2}$ $\rightarrow \omega_{\rm GR}$ (c_T² \rightarrow 1)

QNM of Hayward BH

[arXiv: 2304.14304 w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat]

- Non-singular BH background $A = B = 1$
- Set $p_4 = M_3^2 = 0$ to ensure $c_T^2 = 1$ @ r $\rightarrow \infty$

• Overtones show more prominent deviations [Konoplya, arxiv: 2310.19205]

Applications to BHs with timelike scalar profile

- Background analysis for spherical BH [arXiv: 2204.00228 w/ V.Yingcharoenrat]
- Odd-parity perturbation around spherical BH → Generalized Regge-Wheeler equation [arXiv: 2208.02943 w/ K.Takahashi & V.Yingcharoenrat] [see also arXiv: 2208.02823 by Khoury, Noumi, Trodden, Wong] \rightarrow Quasi-normal modes deviate from GR [arXiv: 2304.14304 w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat]

\rightarrow Static Tidal Love number

[arXiv: 2405.10813 w/C.G.A.Barura, H.Kobayashi, N.Oshita, K.Takahashi, V.Yingcharoenrat]

Tidal Love number of Hayward BH

[arXiv: 2405.10813 w/C.G.A.Barura, H.Kobayashi, N.Oshita, K.Takahashi, V.Yingcharoenrat]

• TLNs \leftarrow regularity @ horizon $x \equiv r/r_q$

 $\tilde{\psi}(x) = x^{\ell+1} \left[1 + \mathcal{O}(x^{-1}) \right] + \left(K_{\ell}(\eta) x^{-\ell} \left[1 + \mathcal{O}(x^{-1}) \right] \right)$

- Analytic continuation of multipole index I \rightarrow Separation of growing & decaying sols.
- Expansion w.r.t. η
 $\eta \equiv \sigma^3/r_a^3$

$$
K_{\ell}(\eta) = \sum_{k \ge 0} \eta^k K_{\ell}^{(k)}
$$

• Static tidal Love numbers are non-vanishing $K_{\ell=2} = \frac{7}{20}\eta^2 - \frac{11}{20}\eta^3 + \frac{2}{5}\eta^4 + \cdots$ $K_{\ell=3} = \frac{5}{42}\eta + \frac{1417}{504}\eta^2 - \frac{1285}{1008}\eta^3 + \frac{3713}{4032}\eta^4 + \cdots$ $K_{\ell=4} = \frac{23}{840}\eta + \left(\frac{110051}{50400} - \frac{24}{25}\log x\right)\eta^2 + \cdots$ logarithmic running

Applications to BHs with timelike scalar profile

- Background analysis for spherical BH [arXiv: 2204.00228 w/ V.Yingcharoenrat]
- Odd-parity perturbation around spherical BH → Generalized Regge-Wheeler equation [arXiv: 2208.02943 w/ K.Takahashi & V.Yingcharoenrat] [see also arXiv: 2208.02823 by Khoury, Noumi, Trodden, Wong] \rightarrow Quasi-normal modes deviate from GR [arXiv: 2304.14304 w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat] \rightarrow Static Tidal Love numbers are non-vanishing [arXiv: 2405.10813 w/C.G.A.Barura, H.Kobayashi, N.Oshita, K.Takahashi, V.Yingcharoenrat] \rightarrow (In)stability of greybody factors [arXiv: 2406.04525 w/N.Oshita and K.Takahashi]

(In)stability of greybody factor

[arXiv: 2406.04525 w/N.Oshita and K.Takahashi]

Applications to BHs with timelike scalar profile

- Background analysis for spherical BH [arXiv: 2204.00228 w/ V.Yingcharoenrat]
- Odd-parity perturbation around spherical BH → Generalized Regge-Wheeler equation [arXiv: 2208.02943 w/ K.Takahashi & V.Yingcharoenrat] [see also arXiv: 2208.02823 by Khoury, Noumi, Trodden, Wong] \rightarrow Quasi-normal modes deviate from GR [arXiv: 2304.14304 w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat] \rightarrow Static Tidal Love numbers are non-vanishing [arXiv: 2405.10813 w/C.G.A.Barura, H.Kobayashi, N.Oshita, K.Takahashi, V.Yingcharoenrat] \rightarrow (In)stability of greybody factors [arXiv: 2406.04525 w/N.Oshita and K.Takahashi]
- Even-parity perturbation around spherical BH [work in progress w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat]
- Rotating BH [work in progress w/ N.Oshita & K.Takahashi & Z.Wang & V.Yingcharoenrat]

Extension of EFT of inflation to arbitrary background = EFT of BH perturbations

Mukohyama and Yingcharoenrat, JCAP 09 (2022) 010

- We call it EFT of BH perturbations simply because we applied it to BH in the presence of DE.
- Can be applied to any background as far as the scalar profile is timelike.

Extension of EFT of inflation to arbitrary background = EFT of BH perturbations

Mukohyama and Yingcharoenrat, JCAP 09 (2022) 010

- We call it EFT of BH perturbations simply because we applied it to BH in the presence of DE.
- Can be applied to any background as far as the scalar profile is timelike.
- Can be applied to e.g. astrophysics after inflation with ever rolling inflaton, such as ghost inflation.

Ghost inflation

Arkani-Hamed, Creminelli, Mukohyama and Zaldarriaga 2004

cf. tilted ghost inflation, Senatore (2004)

 ρ

 $\delta \! \rho$

scaling dim of π

 ϕ $H\delta\pi$ с ~ $\delta \pi \simeq M \cdot \left(H/M\right)^{1/4}$ $\sim M \cdot (H/M)$ 5/ 4 \int λ I \setminus $\bigg($ *M H* ~ $\boldsymbol{\phi}$ $\frac{1}{b}$ $\sim M^2$ [compare $\frac{11}{11}$] *Pl H* M _{pi} $\sqrt{\varepsilon}$

Prediction of Large non-Gauss.

Leading non-linear interaction

$$
\beta \; \frac{\dot\pi (\nabla \pi)^2}{M^2}
$$

non-G of ~
$$
\beta \left(\frac{H}{M} \right)^{1/7}
$$

 ~ $\alpha \beta \left(\frac{\delta \rho}{\rho} \right)^{1/5}$

 H ^{1/4} scaling dim of op. *M* $^{2}(\pi)^{2}$ $3x\left[\frac{1}{\pi^2}\right]$ of op.
 $\frac{1}{2}\dot{\pi}^2 - \frac{\alpha(\vec{\nabla}^2 \pi)}{M^2}$ *g* **aim** of op.
 *dtd*³ $x \left[\frac{1}{2} \dot{\pi}^2 - \frac{\alpha (\vec{\nabla}^2)}{M} \right]$ 1 of op.
 $\left[\frac{1}{-\dot{\pi}^2} - \frac{\alpha (\vec{\nabla}^2 \pi)^2}{2} + \cdots \right]$ 1 of op.
 $\left[\frac{1}{2}\dot{\pi}^2 - \frac{\alpha(\vec{\nabla}^2\pi)^2}{M^2} + \cdots\right]$ $\int dt d^3x \left[\frac{1}{2} \dot{\pi}^2 - \frac{\alpha (\vec{\nabla}^2 \pi)^2}{M^2} + \cdots \right]$

[Really "0.1" $\times (\delta \rho / \rho)^{1/5} \sim 10^{-2}$. VISIBLE. In usual inflation, non-G $\sim (\delta \rho / \rho) \sim 10^{-5}$ too small.] \times ($\delta\rho$ / ρ

$$
f_{NL} \sim 82 \beta \alpha^{-4/5}
$$
, equilateral type

Planck 2018 constraint (equilateral type)

 $\rm{f_{NL}}$ = -26 ± 47 (68% CL statistical) \rightarrow $-0.89\leq\beta\alpha^{-4/5}\leq0.26$

Extension of EFT of inflation to arbitrary background = EFT of BH perturbations

Mukohyama and Yingcharoenrat, JCAP 09 (2022) 010

- We call it EFT of BH perturbations simply because we applied it to BH in the presence of DE.
- Can be applied to any background as far as the scalar profile is timelike.
- Can be applied to e.g. astrophysics after inflation with ever rolling inflaton, such as ghost inflation.
- Any other applications? Depending on them, we may have to change the name… Let's discuss!

More backup slides

There are Frontiers in Physics:

at Short and Long Scales

There is a story going into smaller and smaller scales.

 10^{-10} m

 10^{-15} m neutrons

electron

string

string

 10^{-18} m

Two phases of the accelerated expansion of the universe

- Inflation in the early universe
- Accelerated expansion of the late-time universe driven by dark energy

 ϕ

 (ϕ)

reheating

- Quantum effects become important in the early universe
- **Quantum mechanically,** the inflaton (alarm clock) moves forward or backward slightly due to fluctuations
- **Exponential expansion** stretches microscopic fluctuations to macroscopic lengthes
	- If inflation ends a little earlier (or later) than the surrounding area, the energy density will be lower (higher) than the surrounding area.

 ϕ

 (ϕ)

reheating

- Quantum effects become important in the early universe
- **Quantum mechanically,** the inflaton (alarm clock) moves forward or backward slightly due to fluctuations
- **Exponential expansion** stretches microscopic fluctuations to macroscopic lengthes
	- If inflation ends a little earlier (or later) than the surrounding area, the energy density will be lower (higher) than the surrounding area.

 ϕ

 (ϕ)

reheating

- Quantum effects become important in the early universe
- **Quantum mechanically,** the inflaton (alarm clock) moves forward or backward slightly due to fluctuations
- **Exponential expansion** stretches microscopic fluctuations to macroscopic lengthes
	- If inflation ends a little earlier (or later) than the surrounding area, the energy density will be lower (higher) than the surrounding area.

- ϕ $\mathcal{V}(\phi)$ reheating
- Quantum effects become important in the early universe
	- **Quantum mechanically,** the inflaton (alarm clock) moves forward or backward slightly due to fluctuations
	- **Exponential expansion** stretches microscopic fluctuations to macroscopic lengthes
		- If inflation ends a little earlier (or later) than the surrounding area, the energy density will be lower (higher) than the surrounding area.

- ϕ $\mathcal{V}(\phi)$ reheating
- Quantum effects become important in the early universe
	- **Quantum mechanically,** the inflaton (alarm clock) moves forward or backward slightly due to fluctuations
	- **Exponential expansion** stretches microscopic fluctuations to macroscopic lengthes
		- If inflation ends a little earlier (or later) than the surrounding area, the energy density will be lower (higher) than the surrounding area.

- ϕ $\mathcal{V}(\phi)$ reheating
- Quantum effects become important in the early universe
	- **Quantum mechanically,** the inflaton (alarm clock) moves forward or backward slightly due to fluctuations
	- **Exponential expansion** stretches microscopic fluctuations to macroscopic lengthes
		- If inflation ends a little earlier (or later) than the surrounding area, the energy density will be lower (higher) than the surrounding area.

Perfect match with observation

The composition of the universe: 95% unknown!

Inflation, dark energy & dark matter are (almost) confirmed by

Cosmic microwave background

Two phases of the accelerated expansion of the universe

- Inflation in the early universe
- Accelerated expansion of the late-time universe driven by dark energy

We (almost) know they (or something like them) are/were there... But, we don't know what they are.

• Cosmology and black holes (BHs) play as important roles in gravitational physics as blackbody radiation and hydrogen atoms did in quantum mechanics.

- Cosmology and black holes (BHs) play as important roles in gravitational physics as blackbody radiation and hydrogen atoms did in quantum mechanics.
- In cosmology a time-dependent scalar field can act as dark energy (DE), while BHs serve as probes of strong gravity. We then hope to learn something about the EFT of DE by BHs.
- Cosmology and black holes (BHs) play as important roles in gravitational physics as blackbody radiation and hydrogen atoms did in quantum mechanics.
- In cosmology a time-dependent scalar field can act as dark energy (DE), while BHs serve as probes of strong gravity. We then hope to learn something about the EFT of DE by BHs.
- This would require **the scalar field profile to be timelike near BH**. Otherwise, the two EFTs, one for DE and the other for BH, can be unrelated to each other (unless a UV completion is specified).

Timelike gradient

Dark energy

 ϕ = const.

Black hole

roiting

https://www.eso.org/public/images/eso1907a/

Spacelike gradient Timelike gradient Unlucky case

A - Colem-

Black hole Dark energy

No smooth matching Smooth

$\phi = \text{const.}$

Taylor expansion around $X=X_{BH}<0$ $(\beta_1, \beta_2, \beta_3,...)$

Black hole

between No direct relation Taylor coefficients relation
Taylor c coefficients

 $(\alpha_1, \alpha_2, \alpha_3, \ldots)$ Taylor expansion around $X=X_{DF}>0$

Dark energy

between EFT1 & EFT2 No direct relation direct $\mathbf D$ lation $\frac{1}{\mathsf{N}}$

Dark energy

Timelike gradient Timelike gradient Lucky case

ϕ = const.

Black hole Dark energy

Lucky case $G_n(X)$ $X = -g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi$

Taylor expansion around $X=X_{BH}>0$ $(\alpha'_{1}, \alpha'_{2}, \alpha'_{3},...)$

Black hole Dark ener

Timelike gradient Timelike gradient $G_n(X)$ $X=-g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi$

 $(\alpha_1, \alpha_2, \alpha_3, \ldots)$ Taylor expansion around $X=X_{\text{DE}}>0$
Lucky case $X = -g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi$ $G_n(X)$

EFT

Timelike gradient Timelike gradient $X=-g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi$ EFT $(\alpha_1(t,x^i), \alpha_2(t,x^i), \alpha_3(t,x^i), \dots)$

Black hole Dark energy

- Cosmology and black holes (BHs) play as important roles in gravitational physics as blackbody radiation and hydrogen atoms did in quantum mechanics.
- In cosmology a time-dependent scalar field can act as dark energy (DE), while BHs serve as probes of strong gravity. We then hope to learn something about the EFT of DE by BHs.
- This would require **the scalar field profile to be timelike near BH**. Otherwise, the two EFTs, one for DE and the other for BH, can be unrelated to each other (unless a UV completion is specified).

EFT of scalar-tensor gravity on arbitrary background with timelike scalar profile